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“Candidatus Uabimicrobium helgolandensis”—a planctomycetal 
bacterium with phagocytosis-like prey cell engulfment, surface-
dependent motility, and cell division
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ABSTRACT The unique cell biology presented by members of the phylum Planctomy
cetota has puzzled researchers ever since their discovery. Initially thought to have 
eukaryotic-like features, their traits are now recognized as exceptional but distinctly 
bacterial. However, recently discovered strains again added novel and stunning aspects 
to the planctomycetal cell biology—shapeshifting by members of the “Saltatorellus” 
clade to an extent that is unprecedented in any other bacterial phylum, and phago
cytosis-like cell engulfment in the bacterium “Candidatus Uabimicrobium amorphum.” 
These recent additions to the phylum Planctomycetota indicate hitherto unexplored 
members with unique cell biology, which we aimed to make accessible for further 
investigations. Targeting bacteria with features like “Ca. U. amorphum”, we first studied 
both the morphology and behavior of this microorganism in more detail. While similar 
to eukaryotic amoeboid organisms at first sight, we found “Ca. U. amorphum” to be 
rather distinct in many regards. Presenting a detailed description of “Ca. U. amorphum,” 
we furthermore found this organism to divide in a fashion that has never been descri
bed in any other organism. Employing the obtained knowledge, we isolated a second 
“bacterium of prey” from the harbor of Heligoland Island (North Sea, Germany). Our 
isolate shares key features with “Ca. U. amorphum”: phagocytosis-like cell engulfment, 
surface-dependent motility, and the same novel mode of cell division. Being related to 
“Ca. U. amorphum” within genus thresholds, we propose the name “Ca. Uabimicrobium 
helgolandensis” for this strain.

IMPORTANCE “Candidatus Uabimicrobium helgolandensis” HlEnr_7 adds to the 
explored bacterial biodiversity with its phagocytosis-like uptake of prey bacteria. 
Enrichment of this strain indicates that there might be “impossible” microbes out there, 
missed by metagenomic analyses. Such organisms have the potential to challenge our 
understanding of nature. For example, the origin of eukaryotes remains enigmatic, with 
a contentious debate surrounding both the mitochondrial host entity and the moment 
of uptake. Currently, favored models involve a proteobacterium as the mitochondrial 
progenitor and an Asgard archaeon as the fusion partner. Models in which a eukaryotic 
ancestor engulfed the mitochondrial ancestor via phagocytosis had been largely rejected 
due to bioenergetic constraints. Thus, the phagocytosis-like abilities of planctomycetal 
bacteria might influence the debate, demonstrating that prey engulfment is possible in a 
prokaryotic cellular framework.
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T he bacterial phylum Planctomycetota has intrigued microbiologists for years, with 
some suggesting that these bacteria represent a “missing link” between prokaryotic 

and eukaryotic cells (1–3). Initially, this theory was supported for example by a protein 
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uptake mechanism in Gemmata obscuriglobus, resembling to some extent eukaryotic 
endocytosis (4). However, extensive research over the past decade has largely 
doubted these hypotheses (5–8). Even though planctomycetes still present an unconven
tional cell biology, they seemed to generally align with a Gram-negative cell plan (9). 
However, in 2019, we first described the phylogenetically distinct “Saltatorellus” clade 
(10, 11). A few months later, Shiratori et al., published “Candidatus Uab amorphum” 
(12) later renamed to “Ca. Uabimicrobium amorphum” (UA) acknowledging taxonomic 
rules (13). Showing unprecedented cell biological features, these new strains seem to 
challenge not only aspects of the planctomycetotal cell plan but also that of diderm 
bacteria in general. Especially UA’s unique capability of feeding on other bacteria via 
phagocytosis-like prey uptake contradicts previous predictions based on theoretical 
calculations as well as features of the Gram-negative cell plan (14, 15). Although other 
studies have suggested that the proposed energetic barrier preventing bacteria from 
developing complex traits such as phagocytosis does not exist, living evidence has 
not been found until now (16, 17). Thus, the discovery of organisms such as UA and 
the “Saltatorellus” clade is of major importance for several fields from biodiversity to 
evolution.

Aiming to isolate bacteria possessing similar phagocytosis-like capabilities as “Ca. 
U. amorphum” from the environment, we first needed to assess possibilities for 
their identification from both morphological and genomic perspectives. Therefore, we 
obtained a UA culture from the Japan Collection of Microorganisms (JCM 39082). 
Observing UA under the microscope, its striking resemblance to eukaryotic amoeboid 
organisms became evident (Fig. 1; Movie S1 and S2). Since this posed a high danger of 
mistaking amoebae for such bacteria, we screened literature and culture collections 
for size-wise comparable eukaryotic amoeboid organisms, to study similarities and 
differences. Based on such morphological criteria, we found Hartmannella sp. CCAP 
1534/15 and Squamamoeba japonica CCAP 1493/1 to be suitable for the comparison.

Despite certain similarities, we noticed clear differences: both, Hartmannella sp. and S. 
japonica have a rather uniform cell size (about 20 µm and 6 µm, respectively) and 
intracellular granulation. In contrast, UA cells differ significantly in size (4–20 µm) and 
granularity. Furthermore, the locomotion of UA contrasts that of the tested amoebae: 
while amoebae form pseudopodia to crawl along surfaces, UA cells show no such arm-
like protrusions and maintain a mostly round cell shape during crawling. Additional 
distinctions can be found in their cellular division process: UA cells require a surface to 
generate the force needed for dividing into two daughter cells (Fig. 1b; Fig. S1; Movie S2). 
Opposite cell poles move apart until they are only connected by a thin, thread-like 
structure. Its length is up to three times the cell diameter prior to division initiation and 
both cell poles continue crawling apart until the structure disrupts. In comparison, 
division of the two amoebae seemed not to require pulling by the emerging daughter 
cells, and neither of the tested amoebae formed such long tubules (Fig. S1; Movie S3). 
Despite the process of prey engulfment itself appearing quite similar (Fig. S2; Movie S1 
and S4), further differences can be found in the organisms’ feeding behavior: while UA 
seemed to engulf every bacterium encountered on the surface, both amoebae fre
quently let some bacteria escape. Additionally, the amoebae tend to move around a lot, 
frequently crossing areas where they already fed on bacteria before. In contrast, UA cells 
move less and instead internalize every bacterium in their proximity. This leads to the 
formation of “feeding circles”—accumulations of UA cells grazing in a circular line around 
areas with no prey bacteria left (Fig. S3). While both amoebae seem to sense accumula
tions of prey and move toward them over long distances, UA cells just feed in their 
proximity and ignore more distant prey accumulations.

Although morphological distinctions seemed to suffice for identifying further 
bacteria of prey, we wondered, whether an amoeba contamination could unquestiona
bly be excluded by our sequencing approaches. Therefore, we sequenced the UA cell 
culture including Alteromonas macleodii prey bacteria, a UA DNA sample (JCM), and the 
two amoebae cultures. For UA samples, only the two expected bacterial genomes were 
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found [NCBI accession number JAZFBE000000000 (A. macleodii, prey bacterium) and 
JAZFBD000000000 (UA)]. The amoebae cultures yielded genome fragments of the two 
amoebae, multiple prey bacteria, and mitochondria. Thus, our sequencing method is 
suitable to distinguish amoeba and bacteria and we can confirm that Shiratori et al.’s UA 
culture is that of a planctomycetotal bacterium.

Using the information obtained from studying UA, we repeated the original 
enrichment strategy and obtained a close relative from water sampled in Heligoland 
(North Sea, Germany) (18). Both morphology and behavior of the obtained isolate 
appear very similar to UA (12): the majority of its cells are 4–6 µm in size, it obligately 
feeds on other bacteria (Supplementary results), and cells divide like UA (Fig. 1c). 
Sequencing an enrichment culture, we obtained three bacterial bins, among them the 
genome of A. macleodii (added prey bacterium). A second, 9.3 Mb bacterial genome 
(CP165719) relates to UA within genus thresholds (Table S1 and S2), for which we 
propose the name “Candidatus Uabimicrobium helgolandensis” strain HlEnr_7 (UH). 
Pangenome analysis revealed 4,319 shared genes while 2,442 and 2,398 genes were 
unique for UH and UA, respectively (Fig. S4). Both multi-locus sequence analysis- 
(MLSA) and 16S rRNA gene-based tree reconstructions demonstrate deep phylogenetic 
branching of both “Ca. Uabimicrobium spp.” within the phylum Planctomycetota (Fig. 1). 
However, this branching pattern might be compromised by DNA G+C content differen
ces between 70% (“Saltatorellus” clade), 43% (Ca. Brocadiales), and 39% (UA) (19). Such 
differences affect sequence similarity and thus alignment accuracy, as sequences with 
similar DNA G+C content have fewer mismatches. This can influence phylogenetic tree 

FIG 1 Overview on the cell biology and phylogeny of “Ca. U. amorphum” SRT547 as well as the novel isolate “Ca. U. helgolandensis” HIEnr_7. Phagocytosis-like 

uptake of surrounding prey bacteria by “Ca. U. amorphum” (large cell) (a); white arrows indicate the prey bacterium being internalized. Cell division of “Ca. 

U. amorphum” (b), and “Ca. U. helgolandensis” HlEnr_7 (c). Two opposite cell poles move apart until only a thin, thread-like connection remains (red arrows) 

that finally disrupts. 16S rRNA gene sequence- (d) and multi-locus sequence analysis (MLSA)- (e) based phylogenies showing the deep branching of the “Ca. 

Uabimicrobium” clade within the phylum Planctomycetota.
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construction and gene prediction: a KEGG KOfam analysis of cell division and peptidogly
can synthesis genes revealed the lack of most such genes in UA and UH, indicating that 
“Ca. Uabimicrobium spp.” do not employ a canonical bacterial cell division mechanism 
(Fig. S5).

While confirming the findings of Shiratori et al., UH adds further evidence for 
undiscovered planctomycetotal biodiversity. Besides phagocytosis-like cell engulfment 
as their hallmark trait, both strains present a novel mode of cell division as well as other 
unique features that require further investigation. Especially their cell envelope and the 
process of prey engulfment need careful examination considering the previous critique 
regarding “true endocytotic invaginations” in Gram-negative bacteria (14). However, 
membrane coat-like proteins might play a role, as such a protein was recently identi
fied in UA (20). Furthermore, bioenergetics in these cells need to be addressed, since 
controversial opinions exist on the complexity achievable by prokaryotic cells (15–17). 
Although further analyses are required, a first stain of membranes and DNA revealed 
extensive membrane signals inside the cell (Fig. 2), which might serve a similar purpose 
as mitochondrial cristae increasing the metabolically active surface (15).

Taken together, the study of “Ca. Uabimicrobium spp.” indicates the conservation of a 
phagocytosis-like bacterial uptake mechanism, a predatory lifestyle, and unconventional 
cell biology. Such traits point toward yet unexplored evolutionary complexities and 
bioenergetic principles of Planctomycetota bacteria.
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Movie S1 (mBio02044-24-s0002.avi). Endocytosis-like prey uptake of “Ca. U. amorphum” 
(large cells).
Movie S2 (mBio02044-24-s0003.avi). Cell division of “Ca. U. amorphum.”
Movie S3 (mBio02044-24-s0004.avi). Cell division of Hartmannella sp. CCAP 1534/15.
Movie S4 (mBio02044-24-s0005.avi). Phagocytosis of Squamamoeba japonica CCAP 
1493/1.
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