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Abstract: Optical coherence tomography angiography (OCTA) has significantly advanced the
study and diagnosis of eye diseases. However, current clinical OCTA systems and software tools
lack comprehensive quantitative analysis capabilities, limiting their full clinical utility. This paper
introduces the OCTA Retinal Vessel Analyzer (OCTA-ReVA), a versatile open-source platform
featuring a user-friendly graphical interface designed for the automated extraction and quantitative
analysis of OCTA features. OCTA-ReVA includes traditional established OCTA features based
on binary vascular image processing, such as blood vessel density (BVD), foveal avascular zone
area (FAZ-A), blood vessel tortuosity (BVT), and blood vessel caliber (BVC). Additionally, it
introduces new features based on blood perfusion intensity processing, such as perfusion intensity
density (PID), vessel area flux (VAF), and normalized blood flow index (NBFI), which provide
deeper insights into retinal perfusion conditions. These additional capabilities are crucial for
the early detection and monitoring of retinal diseases. OCTA-ReVA demystifies the intricate
task of retinal vasculature quantification, offering a robust tool for researchers and clinicians to
objectively evaluate eye diseases and enhance the precision of retinal health assessments.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Optical coherence tomography angiography (OCTA) is a non-invasive imaging technique that
generates volumetric angiography images within seconds. It has become instrumental in the study
of retinal vascular pathologies, allowing for detailed assessment of retinal perfusion without the
need for contrast agents. OCTA has been extensively explored in the study of eye diseases like
diabetic retinopathy (DR) [1–6], glaucoma [7,8], sickle cell retinopathy (SCR) [9–11], age-related
macular degeneration (AMD) [12–14] and other diseases. Unlike other imaging modalities
such as color fundus photography, scanning laser ophthalmoscopy, and fluorescein angiography,
which lack the ability to differentiate individual vascular plexuses due to limited segmentation
capabilities, OCTA stands out for its unique capability to discern and differentiate specific plexus
layers within the retina. This facilitates a more comprehensive and detailed analysis of retinal
microvasculature, allowing researchers and clinicians to precisely investigate and understand
alterations in distinct layers associated with various ocular pathologies.

The development of quantitative OCTA features has played a significant role in diagnosing and
managing ocular diseases. Quantitative OCTA metrics offer precise evaluations of the retinal
blood vessels, enabling consistent, objective assessments of vascular alterations linked to eye
disorders. Currently, clinical OCTA devices offer a limited number of quantitative features,
including blood vessel density (BVD) and foveal avascular zone area (FAZ-A). While these
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features offer valuable insights into retinal vasculature, it is crucial to recognize that different
diseases can manifest unique OCTA changes. This underscores the need for more sophisticated
tools enabling comprehensive analysis.

In recent years, several open-source tools have been developed for quantitative OCTA analysis,
many of which include user-friendly graphical user interfaces (GUIs). These tools have contributed
significantly to the standardization and accessibility of comprehensive OCTA analysis. For
instance, Amirmoezzi et al. developed an open-source toolbox for quantitative OCTA analysis
[15], focusing on providing measurements of several FAZ metrics. Similarly, Untracht et al.
developed the OCTAVA toolbox aimed at standardizing retinal OCTA analysis [16]. While
these toolboxes have advanced the field, they mainly focus on binary image processing based
OCTA features, such as BVD, blood vessel tortuosity (BVT), blood vessel caliber (BVC), vessel
perimeter index (VPI), FAZ contour irregularity (FAZ-CI), FAZ perimeter (FAZ-P), and vessel
complexity index (VCI), providing limited features for blood flow perfusion information available
in OCTA, which is critical for understanding retinal health and disease progression [17–20].

Recognizing the gap in existing tools, we developed the OCTA Retinal Vessel Analyzer
(OCTA-ReVA), an innovative software designed to enhance OCTA data analysis. OCTA-ReVA
includes traditional established OCTA features based on binary vascular image processing,
such as BVD, BVC, VSD, VPI, BVT, VCI, FAZ-A, FAZ-P, and FAZ-CI. Most importantly, it
introduces new features based on blood flow perfusion intensity processing, such as perfusion
intensity density (PID), vessel area flux (VAF), and normalized blood flow index (NBFI). These
new features provide deeper insights into the perfusion status of retinal tissues, offering critical
parameters for early detection and monitoring of various retinal diseases. Recent publications
have highlighted how these perfusion intensity processing improve the accuracy of DR staging
[4–6].

Recent literature highlights the critical importance of standardizing retinal OCTA to ensure
consistency and comparability across studies and clinical practices. Sampson et al. extensively
discussed the need for standardized protocols in OCTA imaging, emphasizing that variability
in image acquisition and processing can lead to inconsistencies in retinal assessments. Their
review underscores the significance of adopting uniform terminology and measurement criteria to
enhance the reproducibility of OCTA studies and facilitate multi-center collaborations [20]. Munk
et al. also contribute to this discourse by presenting the first survey results aimed at standardizing
OCTA nomenclature in retinal vascular diseases. They highlight the consensus among experts
regarding the definitions and naming conventions for various OCTA metrics, which is crucial for
aligning research outputs with commercial OCTA instruments [21]. Considering these efforts,
we have also used standardized terms and definitions for our quantitative OCTA features. Also,
we ensured that our definitions for metrics like FAZ-A, FAZ-CI, and BVT were consistent with
those proposed in the recent literature. This alignment will facilitate easier comparison with
other studies and enhance the clinical relevance of the toolbox.

OCTA-ReVA’s comprehensive suite of features, combined with its intuitive GUI, simplifies
the analysis process for users with varying levels of technical expertise. This broad spectrum of
features facilitates a nuanced examination of retinal vasculature, thereby enhancing the detection,
classification, and monitoring of retinal diseases. By integrating sophisticated algorithms for
image analysis within a user-friendly platform, OCTA-ReVA aims to support evidence-based
clinical decision-making and advance research in ophthalmology.

2. Methods

2.1. Development environment

The OCTA-ReVA toolbox was developed using MATLAB R2022a (MathWorks, Natick, MA,
USA). MATLAB’s extensive libraries and toolboxes, specifically tailored for image analysis,
provided a robust foundation for designing the advanced algorithms necessary for OCTA feature
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extraction. The GUI was developed using MATLAB App Designer development environment.
The GUI’s layout was strategically planned to ensure ease of use, with straightforward navigation,
real-time image analysis, result displays, and accessible control elements. This focus on user
experience is aimed at democratizing the use of advanced OCTA analysis, making it accessible
to clinicians and researchers irrespective of their computational expertise. Figure 1 shows a
screenshot of the toolbox.

Fig. 1. Screenshot of the OCTA-ReVA toolbox.

2.2. Graphical user interface (GUI)

The OCTA-ReVA toolbox, as shown in Fig. 1, features an intuitive and interactive interface.
The design incorporates interactive elements such as buttons and drop-down menus for easy
navigation and control. Real-time visualization panels display OCTA images alongside their
analysis results, allowing the user to interact with the data directly. The output can be saved
locally to the user’s personal computer. The toolbox saves both intermediate images used in
the calculation of the various metrics and a Microsoft Excel sheet containing the results of the
analysis. The intermediate images include binary vessel maps, skeletonized vessel maps, vessel
perimeter maps, FAZ masks, and FAZ contour masks. Figure 2 shows representative intermediate
images that are saved.

2.3. Quantitative features

The OCTA-ReVA toolbox provides BVD, VSD, FAZ-A, FAZ-P, FAZ-CI, PID, VAF, and NBFI
for both superficial and deep layers. Additionally, it offers BVC, VPI, BVT, and VCI for the
superficial layer. The calculation and the significance in retinal disease of these features have
been comprehensively discussed [5,21,22]. A brief explanation of these features and how they
are calculated is given below.

BVD: This feature, also known as vessel density, reflects the portion of the OCTA image
occupied by blood vessels. It is pivotal in detecting early phases of different conditions that may



Research Article Vol. 15, No. 10 / 1 Oct 2024 / Biomedical Optics Express 6013

Fig. 2. Intermediates images used in the calculation of the quantitative OCTA features. A)
Original OCTA image. B) Binarized vessel map. C) Skeletonized vessel map (red) with
FAZ segmented (blue region) and FAZ contour (green outline). One representative vessel
branch is highlighted in green with X and Y endpoints identified with yellow dots. D) Vessel
perimeter map. E. Original OCTA image with a pseudo-color map. F. OCTA image with
the noise removed. G. Background noise removed from the OCTA image.

present with ischemia and dropout zones in the retinal vasculature.

BVD =
∑︁n

x=1, y=1 A(x, y)∑︁n
x=1, y=1 I(x, y)

(1)

where A(x, y) represents the pixels occupied by the vessels in the binary vessel map (Fig. 2(B)),
and I(x, y) represents all the pixels in the OCTA image.

BVC: This feature measures the diameter, or width, of the blood vessels, indicating vascular
dilation or constriction associated with various retinopathies.

BVC =
∑︁n

x=1, y=1 A(x, y)∑︁n
x=1, y=1 S(x, y)

(2)

where A(x, y) represents the pixels occupied by the vessels in the binary vessel map (Fig. 2(B)),
and S(x, y) represents the pixels occupied by the vessels in the skeletonized vessel map (Fig. 2(C)).

VSD: This feature is calculated from the skeletonized vessel map. It measures the vascular
network’s density by reducing vessel thickness to a single pixel, offering insights into vascular
architecture.

VSD =
∑︁n

x=1, y=1 S(x, y)∑︁n
x=1, y=1 I(x, y)

(3)

where S(x, y) represents the pixels occupied by the vessels in the skeletonized vessel map
(Fig. 2(C)) and I(x, y) represents all the pixels in the OCTA image.

VPI: This feature measures the ratio between the total perimeter length of blood vessels and
their overall area within the OCTA image. This feature is particularly useful for detecting vascular
changes indicative of early ischemia or vessel dropout.

VPI =
∑︁n

x=1, y=1 P(x, y)∑︁n
x=1, y=1 I(x, y)

(4)

where P(x, y) represents the pixels within the vessel perimeters, [the total length of blood vessel
outlines (Fig. 2(D))], and I(x, y) represents all the pixels in the OCTA image.
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BVT: This feature quantifies the degree of vessel distortion, reflecting blood transport efficiency.
Increased tortuosity can signal compromised vessel structure in diseased conditions.

BVT =
1
n

n∑︂
i=1

(︃
{Geodesic distance between two endpoints of a vessel branch i}
{Euclidean distance between two endpoints of a vessel branch i}

)︃
(5)

where i represents the ith vessel branch in the skeletonized vessel map (Fig. 2(C)) and n is the
total number of branches. The Euclidean distance represents the straight distance between two
endpoints of a vessel branch, while the geodesic distance indicates the total length along the
curve between the same endpoints.

VCI: This feature quantifies the complexity and inhomogeneity of the vascular network.
Typically, capillary dropout associated with various retinal diseases results in a less complex
vasculature.

VCI =

(︂∑︁n
x=1, y=1 P(x, y)

)︂2

4π
(︂∑︁n

x=1, y=1 A(x, y)
)︂ (6)

where P(x, y) represents the pixels within the vessel perimeters (Fig. 2(D)) and A(x, y) represents
the pixels occupied by the vessels in the binary vessel map (Fig. 2(B)).

FAZ-A: This feature measures the area of the FAZ, providing insights into the extent of
avascular regions in the retina. A larger FAZ area can indicate ischemia or other pathological
changes in the retinal vasculature.

FAZ − A =
⎡⎢⎢⎢⎢⎣Area of a single pixel (in µm2) ×

n∑︂
x=1, y=1

A(x, y)
⎤⎥⎥⎥⎥⎦ (7)

where A(x, y) represents the pixels occupied by the segmented FAZ region (blue region in
Fig. 2(C)).

FAZ-P: This feature measures the perimeter of the FAZ, reflecting the boundary length of the
FAZ. Changes in FAZ-P can indicate alterations in the retinal vascular architecture.

FAZ − P =
⎡⎢⎢⎢⎢⎣Length of a single pixel (in µm) ×

n∑︂
x=1, y=1

P(x, y)
⎤⎥⎥⎥⎥⎦ (8)

where P(x, y) corresponds to the pixels of the perimeter of the FAZ (green demarcation in
Fig. 2(C)).

FAZ-CI: This feature measures the irregularity of the FAZ contour, providing a metric for the
complexity and deviations in the shape of the FAZ. Higher contour irregularity indicates more
pronounced pathological changes.

FAZ − CI =
∑︁n1

x=1, y=1 P(x, y)∑︁n2
x=1,y=1 R(x, y)

(9)

where P(x, y) represents the pixels forming the perimeter of the FAZ (indicated by the green
demarcation in Fig. 2(C)), and R(x, y) represents the pixels forming the perimeter of a reference
circle with an area identical to the segmented FAZ. n1 denotes the total number of pixels along the
FAZ perimeter while n2 denotes the total number of pixels along the perimeter of the reference
circle.
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PID: This feature provides a metric to quantify blood flow in OCTA images without the need
for binarization. It is calculated directly from the OCTA image without any preprocessing.

PID = µ(Original OCTA Image) (10)

VAF: This feature quantifies blood flow from areas of perfusion in the OCTA image. The binary
map is used to select areas of perfusion in the OCTA image.

VAF =
∑︁n

x=1, y=1 FI(x, y)∑︁n
x=1,y=1 F(x, y)

(11)

where FI(x, y) represents the pixel intensities of the area covered by blood vessels and F(x, y)
represents all the vessels corresponding to blood vessels in the OCTA image.

NBFI: This feature provides a measure of blood flow which is normalized for variations in
image acquisition and processing.

NBFI =
µ(Noiseless OCTA Image)

σ(Noise Map)
(12)

2.4. Binary image processing

Binary image processing is a crucial step in the extraction of OCTA features, except for PID. This
process converts the OCTA images into binary format, where blood vessels are depicted as white
pixels (value= 1) and the background as black pixels (value= 0). This conversion isolates vascular
structures from the background, facilitating accurate measurement of quantitative features. To
enhance vessel detection, the Frangi “vesselness” filter was first applied to the enface OCTA
images. Subsequently, a threshold value is set to classify each pixel in the OCTA image as either
part of a vessel (white) or part of the background (black). Selecting an appropriate threshold is
critical for accurate binarization, as it directly affects the detection of vessels and, hence, the
calculation of OCTA features.

The OCTA-ReVA toolbox is equipped with five different methods to determine the threshold
for binarization. These include the Otsu method, fixed thresholding, mean thresholding, median
thresholding, and the 3-sigma method. The vessel maps generated using the various binarization
techniques are shown in Fig. 3. The inclusion of these diverse thresholding techniques within
the toolbox aligns with the findings from the study by Rabiolo et al., which showed significant
variability in BVD calculation across different thresholding methods in OCTA images [23].
OCTA images vary significantly based on the patient demographics, disease state, and acquisition
settings, with different segmentation methods optimized for various image characteristics. OCTA-
ReVA accommodates a wide range of datasets by providing multiple segmentation options,
ensuring accurate segmentation across diverse conditions. Since no single method works best
for all image types, such as Otsu’s method being good for high-contrast images but not for
uneven illumination, offering multiple methods improves the accuracy and reliability of metrics.
Additionally, multiple methods facilitate comparison and validation within the same toolbox,
allowing users to determine the most consistent and accurate results for their datasets. Brief
explanations of the available thresholding algorithms are provided below.

Otsu method: This approach selects a threshold that minimizes the within-class variance of the
black and white pixels or, equivalently, maximizes the between-class variance. It is particularly
effective for images with a clear bimodal distribution of pixel intensities. This method is highly
suitable for OCTA images with distinct contrast between the vessels and the background.

Fixed thresholding: A predefined intensity value is used as the threshold for binarization.
Pixels above this value are converted to white and those below to black. While this approach
is straightforward, it requires prior knowledge and/or experimentation to identify the optimal
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Fig. 3. Binary vessels maps generated using various binarization techniques. A) Original
OCTA image. B) Otsu method. C) Fixed thresholding with a threshold value of 0.3. D)
Mean thresholding. E) Median thresholding. F) 3-sigma method.

threshold value. It works best for datasets with consistent image quality and contrast levels. In
the OCTA-ReVA toolbox, the value input by the user is used as the threshold for all the images
loaded into the toolbox.

Mean thresholding: This approach calculates the average pixel intensity of the OCTA image
and uses this value as the threshold. Unlike the fixed method, the mean of each image is calculated
as the threshold to be used for that image.

Median thresholding: This approach involves using the median pixel intensity value of the
image as the threshold. This technique is less sensitive to outliers than mean thresholding,
providing a robust thresholding solution for images with uneven illumination or contrast. Like
the mean thresholding, the median intensity value of each image is calculated and used as the
threshold for that particular image.

3-sigma method: This approach sets the threshold at three standard deviations from the mean
intensity value. This is effective for images where vessels and background intensities are well
separated by intensity values. In OCTA images, the intensities of blood vessels are comparatively
high compared to the background and noise. For the 3-sigma approach used in the OCTA-ReVA,
the mean value plus three standard deviations from the mean of 40% of the total pixels with the
lowest intensities are calculated from each OCTA image. Several studies have reported BVD to
be in the range of 20% - 60% [24–27], and thus, 40% of the pixels with the lowest intensities
reliably reflect the background and noise in the OCTA image.

2.5. OCTA dataset and statistical analysis

OCTA images from 20 control subjects were collected and used to validate the OCTA-ReVA
toolbox. The Angiovue spectral domain OCT (Optovue, Fremont, CA, USA) was used to obtain
6 mm× 6 mm macular scans from each subject. OCTA enface images of the superficial vascular
plexus were extracted using the built-in ReVue software (version 2018.1.0.43). The quantitative
features were calculated from these images using various binarization techniques. We then
compared the results from the different binarization techniques.
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To assess the repeatability of the quantitative feature analysis, three repeated OCTA measure-
ments of each eye were taken from a subset of four control subjects, and the coefficient of
variation (CV) was used to quantify the relative variability across repeated measurements. The
CV of each quantitative feature was calculated using the formula:

CV =
σ

µ
× 100 (13)

where σ and µ stand for the standard deviation and mean of the quantitative feature. A CV below
10% is considered very good, 10–20% is considered good, 20–30% is acceptable, and above 30%
is unacceptable. Additionally, we performed the Friedman test to determine if there were any
statistically significant differences between the repeated measurements.

We also used the OCTA-ReVA toolbox to analyze OCTA images from a cohort of patients
with different stages of DR, including diabetics with no clinical signs of retinopathy (NoDR),
mild non-proliferative DR (NPDR), moderate NPDR, and severe NPDR. The images were 6 mm
x 6 mm from the superficial and deep plexuses. The Otsu binarization technique was used for all
the analyses.

Statistical analysis was performed using R Software, version 4.3.2 (R Core Team, Vienna,
Austria). The Shapiro-Wilk test was first used to check for the normality of the quantitative features
using the different binarization techniques. Comparisons between the different binarization
techniques were performed using one-way analysis of variance (ANOVA) for normally distributed
data and the Kruskal-Wallis test for non-normally distributed data. Also, the Spearman correlation
test was used to determine the correlation of the quantitative features using different binarization
techniques. Comparisons between the quantitative features between the controls and the DR
patients were done using the ANOVA test for normally distributed data, and the Kruskal-Wallis
test was used for non-normally distributed data. A P value <0.05 was considered statistically
significant.

3. Results

A total of 30 eyes from 20 healthy control subjects were used to validate the OCTA-ReVA toolbox.
Additionally, the toolbox was used to study 21 eyes from 15 NoDR subjects, 26 eyes from 22
mild NPDR patients, 36 eyes from 22 moderate NPDR patients, and 12 eyes from 7 severe NPDR.
A summary of the characteristics of the subjects is provided in Table 1.

Table 1. Demographics of Subjects

Control NoDR Mild Moderate Severe

No. of subjects 20 15 22 22 7

Gender

Male 13 5 9 8 3

Female 7 10 13 14 4

Age (year) 53.68± 14.59 57.29± 10.74 61.19± 11.27 62.14± 9.94 62.92± 4.89

Age Range 37 - 80 40 - 80 24 - 78 41 - 86 57 - 74

No. of Images 30 21 26 36 12

Eye

Right 14 10 11 18 6

Left 16 11 15 18 6

The comparative analysis of the quantitative features across the various binarization techniques
is shown in Table 2. Significant variability was observed across the different binarization
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techniques. The results show that the choice of binarization technique has a significant impact
on most quantitative OCTA features (p< 0.0001). The Otsu method generally yielded more
conservative values, suggesting a stricter criterion for distinguishing vessels from the background.

Table 2. Comparison of quantitative OCTA features using different binarization techniques

Quantitative Feature Otsu Fixed Mean Median 3-Sigma P-Value

BVD (%) 30.12± 3.10 31.92± 3.95 39.05± 1.81 42.99± 1.21 41.47± 0.83 <.0001b

BVC (µm) 45.81± 5.47 44.86± 5.32 40.78± 4.80 39.01± 4.66 39.66± 4.85 <.0001b

VSD (%) 11.03± 1.49 11.97± 2.01 16.02± 1.80 18.42± 0.92 17.48± 0.63 <.0001b

VPI (%) 30.17± 2.97 31.47± 3.42 35.65± 1.37 36.86± 0.92 36.48± 0.79 <.0001b

BVT 1.079± 0.005 1.082± 0.005 1.084± 0.004 1.084± 0.003 1.084± 0.004 <.0001a

VCI (x102) 32.27± 7.73 33.03± 7.53 34.77± 7.56 33.78± 7.41 34.29± 7.45 0.1711b

VAF 0.50± 0.02 0.48± 0.01 0.40± 0.03 0.37± 0.03 0.38± 0.03 <.0001b

NBFI 1.30± 0.14 1.46± 0.24 2.38± 0.06 3.19± 0.18 2.87± 0.30 <.0001b

aMultiple group comparisons performed using one-way ANOVA test.
bMultiple group comparisons performed using Kruskal-Wallis test.

The result from the correlation analysis is shown in Fig. 4. Despite the differences in
the absolute values obtained using different binarization techniques, the correlation matrices
demonstrate that these values are all positively correlated. This positive correlation suggests
that while the magnitudes of the measurements may vary, the trends and relative changes in the
measurements are consistent across the different techniques. For most features, the correlation
coefficients are close to 1, indicating a strong positive correlation. However, features such as
BVT, VAF, and NBFI have some coefficients being lower, indicating moderate to weak positive
correlations. This suggests that these features are more sensitive to the choice of binarization.

Fig. 4. Correlation matrix showing the relationship between the various binarization
techniques in the calculation of the quantitative OCTA features. The colormap represents
correlation coefficients, with darker colors indicating higher correlation and lighter colors
indicating lower correlation. Red indicates negative correlation, and blue indicates positive
correlation.

The results of the repeatability analysis are shown in Table 3. The mean CV for all quantitative
features was below 10%, indicating a high level of repeatability and consistency across the
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repeated measurements. Additionally, the p-values from the Friedman test for all quantitative
features were above 0.05, indicating no statistically significant differences between the repeated
measurements. This further supports the consistency and robustness of the OCTA-ReVA toolbox.

Table 3. Repeatability Analysis of Quantitative OCTA Features

Quantitative Feature Coefficient of Variation (%) Time 1 Time 2 Time 3 P-Value

BVD 4.46± 3.46 31.04± 2.69 30.27± 2.00 31.01± 1.87 0.4169

BVC 2.25± 1.31 26.65± 1.15 27.06± 0.68 27.00± 1.08 0.4169

VSD 6.52± 4.53 11.55± 1.38 11.06± 0.98 11.37± 1.09 0.1969

VPI 3.97± 2.98 30.04± 2.30 29.58± 1.35 29.87± 1.97 0.6065

BVT 0.30± 0.22 1.081± 0.004 1.081± 0.006 1.084± 0.008 0.0724

VCI 3.71± 2.72 21.38± 1.48 21.27± 0.07 21.18± 16.43 0.8825

FAZ-A 7.27± 5.15 0.41± 0.08 0.43± 0.09 0.41± 0.10 0.7480

FAZ-P 5.90± 3.58 2.58± 0.19 2.66± 0.32 2.53± 0.23 0.6873

FAZ-CI 3.60± 1.70 1.16± 0.08 1.16± 0.08 1.14± 0.07 0.7979

PID 4.82± 3.41 0.23± 0.01 0.23± 0.02 0.24± 0.02 0.6977

VAF 1.74± 1.24 0.51± 0.01 0.51± 0.02 0.52± 0.02 0.7640

NBFI 5.70± 4.06 1.48± 0.16 1.42± 0.14 1.49± 0.12 0.3031

Table 4. Comparative analysis of the quantitative OCTA features in DR patients (Superficial Layer)

Quantitative Feature Control NoDR Mild Moderate Severe P-Value

BVD (%) 30.12± 3.10 29.88± 3.58 28.76± 2.80 26.99± 2.86 25.66± 2.30 <.0001a

BVC (µm) 45.81± 5.47 42.19± 2.90 47.64± 5.72 42.41± 1.34 42.39± 0.94 0.0148b

VSD (%) 11.03± 1.49 10.84± 1.66 10.55± 1.33 9.57± 1.20 9.10± 0.96 <.0001a

VPI (%) 30.17± 2.97 29.68± 3.55 28.76± 2.77 26.42± 2.95 24.96± 2.54 <.0001b

BVT 1.079± 0.005 1.080± 0.005 1.078± 0.005 1.078± 0.004 1.077± 0.005 0.5600b

VCI (x102) 32.27± 7.73 36.79± 5.64 28.16± 2.77 32.96± 4.08 30.92± 3.61 0.0003b

FAZ-A (mm2) 0.48± 0.23 0.77± 0.49 0.63± 0.30 0.86± 0.74 1.10± 0.70 0.0019b

FAZ-P (mm) 2.65± 0.69 3.38± 1.08 3.21± 0.97 3.87± 1.71 5.29± 2.21 <.0001b

FAZ-CI 1.11± 0.06 1.13± 0.07 1.18± 0.11 1.24± 0.14 1.46± 0.3 <.0001b

PID 0.22± 0.02 0.22± 0.03 0.21± 0.02 0.20± 0.02 0.19± 0.02 0.0001b

VAF 0.50± 0.02 0.49± 0.03 0.50± 0.03 0.48± 0.03 0.49± 0.04 0.1514b

NBFI 1.30± 0.14 1.32± 0.16 1.27± 0.12 1.25± 0.11 1.24± 0.09 0.2710a

aMultiple group comparisons performed using one-way ANOVA test.
bMultiple group comparisons performed using Kruskal-Wallis test.

Tables 4 and 5 present the comparative analysis of various quantitative OCTA features across
different stages of DR in the superficial and deep retinal layers, respectively. Across both the
superficial and deep layers, a consistent trend of decreasing BVD and VSD was observed with
the progression of DR, indicating a significant loss of vascular structures as the disease advances,
which is a hallmark of DR. BVC, however, shows an initial increase in the early stages and
subsequent decline as the disease advances. The results show that BVT remained relatively
stable, indicating that vessel curvature does not significantly change with DR progression. The
FAZ metrics showed significant increases with worsening DR, reflecting the enlargement and
irregularity of the FAZ. Perfusion-related features, including PID, VAF, and NBFI, showed varied
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patterns between the layers, with significant decreases in NBFI, particularly in the deep layer,
indicating impaired blood flow as DR progresses.

Table 5. Comparative analysis of the quantitative OCTA features in DR patients (Deep)

Quantitative Feature Control NoDR Mild Moderate Severe P-Value

BVD (%) 37.24± 4.18 35.57± 4.58 33.19± 4.62 30.63± 4.17 29.72± 3.10 <.0001b

VSD (%) 15.73± 1.49 14.56± 2.83 13.23± 2.74 11.68± 2.15 11.10± 1.57 <.0001b

FAZ-A (mm2) 0.28± 0.09 0.48± 0.45 0.41± 0.17 0.47± 0.29 0.45± 0.19 0.0006b

FAZ-P (mm) 1.86± 0.34 2.49± 1.19 2.37± 0.68 2.63± 0.91 2.60± 0.66 <.0001b

FAZ-CI 1.03± 0.02 1.08± 0.08 1.08± 0.08 1.13± 0.11 1.14± 0.05 <.0001b

PID 0.24± 0.03 0.24± 0.04 0.21± 0.03 0.20± 0.03 0.20± 0.03 <.0001b

VAF 0.46± 0.03 0.46± 0.05 0.44± 0.03 0.45± 0.03 0.45± 0.03 0.0464b

NBFI 1.78± 0.27 1.66± 0.32 1.52± 0.33 1.41± 0.24 1.32± 0.15 <.0001a

aMultiple group comparisons performed using one-way ANOVA
bMultiple group comparisons performed using Kruskal-Wallis test.

4. Discussion

The development and application of the OCTA-ReVA toolbox represents a pivotal advancement
in OCTA analysis. This toolbox, designed with a focus on user-friendliness and comprehensive
quantitative analysis, has the potential to transcend the limitations of existing OCTA analytical
tools. Unlike current FDA-approved OCTA devices that offer automated calculations for a limited
set of features, the OCTA-ReVA enables the calculation of an extended range of quantitative
features, including BVD, BVC, VSD, VPI, BVT, VCI, FAZ-A, FAZ-P, FAZ-CI, PID, VAF, and
NBFI. This broad spectrum of features facilitates a nuanced examination of retinal vasculature,
thereby enhancing the detection, classification, and monitoring of retinal diseases.

Considering the work by Rabiolo et al. [16], the OCTA-ReVA toolbox includes five binarization
methods. The significant differences between these techniques align with Rabiolo et al.’s findings,
reaffirming that the choice of method can greatly influence the quantitative features extracted
from OCTA data. Despite these differences, our analysis revealed a consistent pattern across
the methods, which suggests that while the numerical values may differ, the relative differences
within the dataset remain stable. In practical terms, this means that while individual values should
not be directly compared across different techniques, the overall conclusions drawn from the data
analysis are likely to be consistent, provided the same method is used consistently throughout a
study. By providing multiple binarization options, the OCTA-ReVA toolbox allows users to select
the most appropriate method based on their specific dataset and clinical requirements while still
ensuring reliable comparative results. This flexibility and consistency in trends underscore the
utility of the toolbox in diverse research and clinical settings.

BVD is probably the most popular quantitative OCTA metric, and it has been used to study
several retinal diseases, including DR, AMD, and SCR. However, the pathophysiology of
certain diseases suggests that other features than BVD can be more sensitive for detection and
classification. For example, in the study by Alam et al., they found that BVT was more sensitive
in staging SCR compared to BVD, which was more sensitive in staging DR [28]. This finding
is corroborated by the results presented in Table 4, where BVD showed significant differences
across the stages of DR, indicating its utility in detecting disease progression. In contrast, BVT
remained fairly consistent as DR progressed, suggesting that while BVD is a robust marker for
DR, BVT might offer better sensitivity for other diseases like SCR, where vessel tortuosity is
more indicative of pathological changes.
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Recent studies have shown that perfusion intensity metrics can offer even greater sensitivity
for detecting early DR. For instance, Dadzie et al. demonstrated that NBFI is a more sensitive
biomarker for detecting early DR compared to BVD, highlighting the importance of these
additional metrics in disease diagnosis [4]. Similarly, studies by Abtahi et al. have shown that
the inclusion of perfusion intensity metrics improves the classification of DR stages, reinforcing
the clinical value of these features [5,6]. This comprehensive analysis is crucial for capturing
the multifaceted nature of retinal pathologies, where different diseases may impact the retinal
vasculature in unique ways that are best detected by specific metrics.

This emphasizes the need for multiple quantitative OCTA features in the analysis and study of
retinal diseases. This comprehensive analysis is crucial for capturing the multifaceted nature of
retinal pathologies, where different diseases may impact the retinal vasculature in unique ways
that are best detected by specific metrics. The efficacy of BVD in staging DR underscores its
relevance in conditions characterized by vascular dropout and ischemia, where vessel density
reduction is a hallmark. Conversely, the superior sensitivity of BVT in staging SCR aligns
with the disease’s pathophysiology, where sickle-shaped blood cells lead to the development of
tortuous and dilated vessels. Additionally, combining OCTA metrics can significantly enhance
disease detection and classification.

The capability of the OCTA-ReVA toolbox to analyze both the superficial and deep layers
of the retina is a significant advancement in the field of retinal imaging and diagnostics. This
feature is crucial as different layers can exhibit distinct pathological changes that are essential for
accurate diagnosis and effective monitoring of retinal diseases. Several studies have reported that
retinal diseases such as DR affect the superficial and deep layers of the retina differently [29–31].
The comparative analysis of the quantitative OCTA features in DR patients, as shown in Tables 4
and 5, indicates that NBFI in the superficial layer does not change significantly as DR progresses,
whereas it shows a significant difference in the deep layer. Similar findings have been reported in
other studies [32,33].

The combination of several quantitative OCTA features from different retinal layers provides
a comprehensive understanding of the pathophysiology of diseases. For instance, as shown in
Tables 4 and 5, BVD and VSD significantly decrease in both the superficial and deep layers
as DR progresses, indicating a general loss of vascular density. However, other features like
BVC provide additional context. Initially, there is a decline in BVC during the very early stages,
followed by an increase in the mild stage of the disease. This could be interpreted in the context
of the pathophysiological changes that occur during the development and progression of DR. The
early microvascular changes due to DR include capillary basement membrane thickening and loss
of pericytes, which can lead to decreased vessel caliber [34–36]. As DR progresses and capillary
dropout becomes more pronounced, the retinal vessels dilate in response to retinal ischemia and
hypoxia to maintain adequate perfusion to meet the metabolic demands of the retina. However,
as DR advances further into more severe stages, the vessel caliber begins to decline again after
the initial increase. This decline is as a result of the cumulative effects of chronic retinal ischemia
and extensive capillary loss, which overwhelm the compensatory mechanisms of vasodilation.
The continued damage to the retinal vasculature leads to a reduction in the number of functional
capillaries and a subsequent drop in perfusion intensity, which is shown by metrics such as VAF
and NBFI.

These observed changes in OCTA metrics for DR highlight the need for sophisticated tools
for studying retinal diseases. The OCTA-ReVA toolbox’s comprehensive analysis is crucial for
understanding the diverse vascular changes across different retinal diseases, including glaucoma,
AMD, and SCR. Each disease affects the retinal vasculature in unique ways, necessitating a
tool capable of capturing and quantifying these changes. The OCTA-ReVA toolbox will enable
clinicians and researchers to assess multiple quantitative OCTA metrics simultaneously, providing
a holistic view of the retinal vascular network. Furthermore, the toolbox’s user-friendly GUI
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will make advanced OCTA analysis accessible to a wide range of users. This approach not
only facilitates research in ophthalmology but also supports clinicians with varying degrees of
computational expertise in incorporating quantitative OCTA analysis into their practice.

Looking forward, the potential for OCTA-ReVA extends beyond its current capabilities. Future
developments could include the integration of artificial intelligence to automate feature detection
and classification, enhancing the toolbox’s utility in large-scale studies and clinical settings.
Future additions will include automatically segmenting arteries and veins in OCTA images for
differential artery-vein analysis. Furthermore, the toolbox will support analysis in different
regions of the retina, such as the fovea, parafovea, and perifovea, as well as specific quadrants like
superior, inferior, nasal, and temporal regions. While this study was limited to images from a
single OCTA device, future work will focus on validating the software across multiple platforms
to ensure broader applicability. By continuously evolving, the OCTA-ReVA toolbox aims to
remain at the forefront of OCTA analysis, providing invaluable support to both clinical and
research communities in ophthalmology.

5. Conclusion

The OCTA-ReVA toolbox represents a significant step forward in the analysis of OCTA data,
offering an accessible, comprehensive, and nuanced examination of the retinal vasculature.
By facilitating detailed assessments of vascular changes associated with a variety of ocular
pathologies, OCTA-ReVA supports the advancement of research in ophthalmology and the
improvement of clinical decision-making. Additionally, the inclusion of blood flow perfusion
intensity features enriches the analysis by providing insights into both structural and functional
aspects of the retinal vasculature. This comprehensive approach enhances our understanding of
ocular diseases and their progression, contributing valuable information to the field.
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