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Abstract: CD154, also known as CD40 ligand, is a costimulatory molecule involved in humoral and
adaptive immune responses upon pairing with its classical receptor, CD40. The CD154/CD40 dyad
is a key participant in the pathogenesis of many autoimmune diseases, including systemic lupus
erythematosus (SLE). In SLE, the major cells at play, T and B lymphocytes, are shown to overexpress
CD154 and CD40, respectively. Subsequently, these cells and other CD40-positive cells engage in
numerous effector functions contributing to SLE development. With the recent identification of
additional receptors for CD154, all belonging to the integrin family, the role of CD154 in SLE is
more complex and calls for deeper investigation into its biological significance. Many therapeutic
strategies directed against the CD154/CD40 couple have been deployed for the treatment of SLE and
proved efficient in animal models and human studies. However, the incidence of thromboembolic
complications in patients treated with these anti-CD154/CD40 antibodies halted their further clinical
assessments and called for another class of therapies targeting these molecules. Second-generation
antibodies directed against CD154 or CD40 are showing promising results in the advanced stages of
clinical testing. Our review presents a thorough description of CD154 and its receptors, CD40 and
the integrin family members in SLE pathogenesis. All these elements of the CD154 system represent
important therapeutic targets for the treatment of SLE.

Keywords: CD154; systemic lupus erythematosus; CD40; integrins; inflammation; apoptosis; antagonistic
antibodies; thromboembolic complications

1. Introduction

Systemic lupus erythematosus (SLE) is a chronic multisystem autoimmune disease
that mostly affects women of reproductive age, especially of African American, Hispanic,
or Asian ethnicity [1]. As an autoimmune condition, SLE pathogenesis is characterized by
the abnormal and excessive activity of the immune system, especially B and T lymphocytes,
against normal cells and tissues of the body. Indeed, many auto-antibodies, especially
antinuclear ones, can be found in the sera of SLE patients. The loss of tolerance against
self-antigens and their recognition by antibodies (Abs) leads to the production of immune
complexes, complement activation, cytokine production, and inflammation, which together
result in different clinical presentations of SLE and organ manifestations, the most common
being lupus nephritis (LN) [2].

The co-stimulatory molecule, CD154, and its receptor CD40, have gained increasing
interest as important players in the different phases of SLE and have revealed themselves
as promising therapeutic targets for disease treatment [3]. This review will provide a
thorough description of the physiological effects of CD154 through its interactions with
its long-time known receptor, CD40, and the biological significance of the CD154/CD40
couple in SLE initiation and development. We will also describe the interaction of CD154

Cells 2024, 13, 1621. https://doi.org/10.3390/cells13191621 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells13191621
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0009-0004-6815-7394
https://orcid.org/0000-0002-1391-5248
https://doi.org/10.3390/cells13191621
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells13191621?type=check_update&version=1


Cells 2024, 13, 1621 2 of 16

with its more recently identified receptors, which all belong to the integrin family [4–8].
Such a global consideration of CD154 may allow for a more thorough understanding of its
implication at different levels of SLE pathogenesis. In addition, an overview of previous and
more recent therapeutic strategies involving the CD154 system in the treatment of SLE is
presented herein.

2. CD154

Human CD154, CD40 L or gp39, is a 33–39 kDa type II transmembrane glycoprotein
of the tumor necrosis factor (TNF) family. It is expressed in a transient fashion on the
surface of activated T cells and platelets as well as basophils and eosinophils [9]. The
CD154 molecule is an important effector in innate and adaptive immunity [9].

Along with its membrane-bound form (mCD154), CD154 also exists as a soluble
molecule (sCD154), composed of residues 113 to 261 released from activated T cells or
platelets [10,11]. Indeed, membrane-bound CD154 was shown to be proteolytically cleaved
from the surface of activated T cells and/or platelets. Studies have revealed the role of
MMP-2 and/or MMP-9 in catalyzing the cleavage of CD154 from the surface of activated
platelets upon its binding to CD40 or to αIIbβ3 [12–15]. On the other hand, in activated
T cells, such cleavage involves the metalloproteinases ADAM10 and ADAM17 following
the binding of CD154 to CD40 [16]. Interestingly, mCD154 can undergo a spontaneous
type of release from intracellular milieu or from the surface of activated T cells, also in an
ADAM10/17-dependent manner [10,11]. Although the biological effects of sCD154 are
still incompletely understood, it is thought that the liberation of sCD154, following the
interaction of mCD154 with CD40, allows for a reduction in the resulting response. In fact,
studies have shown that in comparison to sCD154, mCD154 produces a more potent effect
upon binding to CD40-expressing cells [11,17,18]. In addition, data from our laboratory
have outlined the importance of the soluble form of CD154 for a proper interaction with its
integrin receptors, as reported with the α5β1 and αMβ2 integrins [11,19].

Similarly to other members of the TNF family, membrane-bound or soluble CD154
exist as non-covalently bound homotrimers, a pre-requisite of biological activity [20,21].
This homotrimeric structure may also allow CD154 to interact with more than one receptor
at once if concomitantly expressed on the same cell [6]. This possibility could create a wide
diversity of CD154-mediated responses.

3. CD154 Receptors

Although for almost two decades CD40 was thought to be the only CD154 receptor,
several studies have demonstrated that sCD154 may bind to several members of the integrin
family such as αIIbβ3, αMβ2, α5β1, αvβ3 and α4β1 integrins [4–8].

3.1. The CD40 Molecule

CD40, the classical receptor of CD154, is a 45–50 kDa phosphorylated type I membrane
glycoprotein belonging to the family of tumor necrosis factor receptors (TNFRs) [9,21].
It is constitutively expressed on many cells, including antigen presenting cells (APCs)
such as B lymphocytes, dendritic cells (DCs), monocytes, macrophages as well as platelets,
fibroblasts, epithelial and endothelial cells, and smooth muscle cells [9,21,22]. Our group
demonstrated an interesting feature of CD40, whereby it undertakes homodimerization at
its cysteine residues in position 238, a process of high significance in some CD40-mediated
biological functions [23]. Because its cytoplasmic region has no enzymatic activity, CD40
associates with adaptor molecules, known as TRAFs (TNF receptor-associated factors) [22].
Upon CD154-CD40 interaction and the recruitment of TRAFs, including TRAF 1, 2, 3, 5 and
6, many signaling pathways are initiated. These include the activation of nuclear factor
κ B (NFκB), phosphatidylionositol-3 kinase (PI-3K), c-Jun-n-terminal-kinase (JNK), and
mitogen-activated protein kinases (MAPK) p38 and extracellular signal-regulated kinases
1/2 (ERK1/2), etc. [24].
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The CD154-CD40 couple is implicated in the regulation of humoral as well as cell-
mediated immune responses. In this context, it has been shown that the CD154/CD40
interaction results in bidirectional signaling simultaneously activating CD154- and CD40-
expressing cells [11,23]. In B cells, CD40 signaling allows the expression of costimulatory
molecules such as B7-1 (CD80) and -2 (CD86), promoting what is known as T cell-dependent
B cell responses [25,26]. CD40 ligation plays a crucial role in the proliferation of B cells,
the formation of germinal centers, isotype switching, production of memory B cells, as
well as the liberation of cytokines and cytotoxic radicals by these lymphocytes [27,28].
Additionally, the CD154-CD40 couple acts on macrophages, monocytes, DCs, fibroblasts
and endothelial cells (ECs), inducing their proliferation, expression of costimulatory and
adhesion molecules, as well as secretion of pro-inflammatory cytokines [28,29]. As for
T cells, studies in murine models demonstrated that signaling via CD154 induces T cell
priming as well as the proliferation of CD4+ and CD8+ T cells [30,31]. Also, as shown by
our group, the ligation of CD154 on the surface of activated T cells triggers their release of
various cytokines, including interleukin- (IL)-2 [23]. This plethora of effects in humoral and
cell-mediated immunity underscores the implication of the CD154-CD40 costimulatory pair
in the pathogenesis of multiple chronic inflammatory and autoimmune diseases. However,
while CD154 was initially identified as the ligand of CD40 through mediating effects of the
latter in various immune and non-immune cells, recent studies have identified additional
functions of CD154 as a ligand of other surface molecules. Indeed, and as mentioned above,
more receptors have been identified for CD154, all belonging to the integrin family [19],
starting with the integrin αIIbβ3 [4], then integrins αMβ2 [5] and α5β1 [6], and lastly,
integrins αvβ3 and α4β1 [7,8].

3.2. CD154 Receptors Belonging to the Integrin Family

The αIIbβ3 integrin, also termed GPIIb/IIIa is expressed on the surface of platelets and
megakaryocytes and is known for its role in platelet aggregation via binding to ligands such
as fibrinogen, fibronectin, and Von Willebrand factor [32]. In 2002, the CD154/αIIbβ3 inter-
action was first described and revealed to be important for the stabilization of the arterial
thrombi [4,33] and also for inducing platelet activation and aggregation [34]. Interestingly,
activating platelets via the CD154-αIIbβ3 binding enhanced an upregulation of their CD154
surface expression, a process of high significance in the development of atherosclerotic
events by enhancing interactions between activated platelets and CD40-expressing ECs [35].

Another integrin, the αMβ2, also known as Mac-1, was identified as an additional
receptor for CD154 [5]. This integrin is mainly found on the surface of monocytes,
macrophages, granulocytes, and NK cells [36]. It binds to ligands such as vitronectin,
fibrinogen, the complement fragment C3bi, intracellular adhesion molecule-1 (ICAM-1),
and heparin and is involved in the pathogenesis of atherosclerosis by allowing the adhesion
and rolling of myeloid cells on ECs and transendothelial migration [37]. Similarly, the
interaction of αMβ2 with CD154 is also shown to induce monocyte adhesion and migration
on ECs, thus enhancing the inflammatory process [5].

Yet additional members of the integrin family are being denoted as receptors for
CD154, namely the α5β1 integrin [6]. Like αIIbβ3, α5β1 belongs to the RGD-binding
subfamily of integrins. Its ligands include fibrinogen and fibronectin [32]. The α5β1
integrin is usually expressed on the surface of all nucleated cells [32,38]. Our observations
revealed that sCD154 is capable of binding to CD40−/αIIbβ3−/α5β1+ monocytic cells in
an α5β1-specific manner [6]. The biological significance of the CD154/α5β1 interaction will
be further outlined below while describing the role of CD154 in inflammatory responses
relating to SLE pathogenesis.

Adding to the list of integrins identified as receptors for CD154, Takada et al. revealed
αvβ3, and later α4β1, as capable of binding CD154 [7,8]. Although little is known about
the biological significance of these interactions, some studies suggested that CD154/αvβ3
might be implicated in tumorigenesis, inflammation, and atherosclerosis, while CD154/α4β1
could promote immune cell activation [7,8].
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4. Role of CD154 in Systemic Lupus Erythematosus

As previously mentioned, many studies have demonstrated that CD154 plays an
important role in many autoimmune diseases. From the activation of immune and non-
immune cells to the induction of cell-mediated immunity and inflammation, CD154 is
shown to highly contribute to the development and progression of autoimmunity. Numer-
ous chronic inflammatory and autoimmune conditions are characterized by an enhanced
expression of CD154 on T cells and of its classical receptor CD40 on other immune cells
and various mesynchemal, endothelial, and epithelial cells. Inhibiting the interaction
of the ligand with its receptor in animal models or human studies provided support to
the pathogenic signature of the CD154/CD40 axis in numerous diseases of inflammatory
and/or autoimmune nature, including rheumatoid arthritis (RA) [39], multiple sclero-
sis [40], autoimmune thyroiditis [41], polymyositis, dermatomyositis [42], inflammatory
bowel diseases [43], and SLE. Our review will focus on describing the role of CD154, acting
via its classical receptor, CD40, or its newly described receptors, members of the integrin
family in SLE. The following sections provide an overview of the implications of CD154 at
various stages of the disease.

4.1. The CD154-CD40 Dyad in SLE

CD154 is overexpressed on the CD4+ and CD8+ T lymphocytes of SLE patients. Indeed,
studies have shown that activated CD4+ and CD8+ T cells of patients with active lupus
or who are in remission for this condition express a higher level of CD154 than T cells
of control individuals [44,45]. Additionally, studies also showed that the B cells of SLE
patients and of BXBS mice affected by a lupus-like condition spontaneously express high
levels of CD154 [44,46]. This abnormal CD154 expression has been linked to autoimmunity.
Indeed, as demonstrated by Higuchi et al., the ectopic expression of CD154 on B cells of
transgenic mice leads to the production of auto-antibodies and SLE symptoms such as
glomerulonephritis [47]. Furthermore, in the spontaneous lupus model, BXBS mice, B cells
ectopically expressing CD154 showed increased proliferation which could be halted by the
administration of anti-CD40 Abs [46]. As in T and B lymphocytes, it is important to note
the overexpression of CD154 on the monocytes of SLE patients, further highlighting the
role of CD154-expressing myeloid cells in the pathogenesis of SLE [48].

Regarding the soluble counterpart of CD154, studies have demonstrated high con-
centrations of sCD154 in the sera of SLE patients, as compared to normal subjects with
levels correlating to disease activity [49,50]. Soluble CD154 was shown to contribute to
the expression of several immune accessory molecules, including CD54, CD95, and CD80
on B cells underscoring their activated state under SLE conditions [49]. Furthermore, the
serum levels of sCD154 are increased in SLE patients having experienced thrombotic events
and/or affected by secondary antiphospholipid syndrome [51]. Indeed, our team has
previously revealed that sCD154 can induce platelet activation and aggregation through
CD40-induced pathways [52,53].

In addition to the elevated levels of sCD154 in circulation and the overexpression of
CD154 in multiple immune cells, CD40 is also upregulated on the surface of B cells and
macrophages of SLE patients as well as on the endothelial and mesangial cells of the kidneys
in those with class III and IV LN [3,54]. This increased presence of CD154 and CD40 on
T cells, B cells, or other APCs of immune or non-immune nature is responsible for triggering
cell activation and enhancing SLE progression and even potentiating complications and
associated pathological conditions [55,56] (Figure 1). Indeed, the higher level of CD154
exhibited by SLE T cells [44,45] warrants the increased engagement of CD40 located on the
surface of B cells, leading to the heightened expression of their costimulatory molecules,
such as CD86, and their subsequent differentiation into auto-antibody-producing plasma
cells [57,58]. In the same line of evidence, activating CD40 on the surface of germinal center
B cells upregulates the expression of another costimulatory molecule, the inducible T cell
costimulatory ligand (ICOS ligand), which, by interacting with its receptor (ICOS) on the
surface of T follicular cells, further strengthens the T cell–B cell interaction, promoting
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Ab production. SLE B cells exhibited an overproduction of IgG upon co-culturing with
activated autologous T cells, a response inhibited by anti-CD154 Abs [59]. Furthermore, at
the level of the renal interstitium, auto-reactive B cells shown to overexpress CD40 (or even
naïve ones) undergo proliferation and expansion and engage in auto-antibody production
upon their interaction with CD154-expressing T cells [44]. In addition to B lymphocytes,
other CD40-positive cells are targets of CD154 functions. CD154 originating from activated
T cells or platelets was shown to promote the upregulation of CD40 on the surface of
mesangial cells and thus enhance their proliferation and the release of pro-inflammatory
factors, such as monocyte chemoattractant protein-1 (MCP-1), and pro-fibrotic factors,
including TGF-β, which are important players in glomerular nephritis pathogenesis [60,61].
The interaction of CD154 on the surface of infiltrating T cells with CD40-positive renal
tubular epithelial cells induces these latter to the secretion of various chemokines, such
as regulated on activation, normal T-cell expressed and secreted (RANTES), MCP-1 and
interferon (IFN)-γ-induced protein (IP)-10, as well as the C3 complement factor [56]. This
enhances further immune cell interstitial infiltration and promotes inflammation and
nephrogenesis. CD154 is also implicated in DC-mediated signaling and its role in various
inflammatory events that underlie lupus development. A combined stimulus with Toll-
like receptors (TLRs), IL-1 or IFN-γ, together with CD154, induces strong activation of
DCs, enhancing the release of several pro-inflammatory cytokines such as IL-1 and IFN-γ
themselves, IL-6, IL-12, IL-23, and IL-18, which promotes Th1 T cell differentiation as well
as the priming of CD8+ T cells [62–64]. The role of CD40-activated DCs in lupus is further
revealed via their contribution to B cell differentiation into Ab-producing plasma cells [65].
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Figure 1. A model describing the bidirectional interaction of membrane-bound CD154 expressed on
the surface of activated T cells with various CD40-positive cells in SLE pathogenesis.

As mentioned above, CD154 on activated T cells interacting with CD40 on the surface
of B cells or other APCs induces signaling pathways in a bidirectional manner, activating
all cells in the equation, including T cells [28,29]. Indeed, our group and others have
demonstrated that the co-stimulation of T cells via CD154 triggers intracellular signal
activation and induces numerous T cell functions, including IL-2 production [23], IL-4
synthesis [66], and the cleavage of CD154 itself [11,16].
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Furthermore, vascular events which are responsible for a high degree of morbidity
in SLE patients, involve a significant contribution of the CD154-CD40 dyad acting at
different phases in the vascular pathology [28,37,67]. Indeed, the CD154-CD40 couple was
found to be highly expressed in atherosclerotic lesions. CD154-CD40 interactions between
cells such as activated T lymphocytes and ECs, smooth muscle cells or macrophages
lead to the upregulation of adhesion molecules and the release of cytokines, MMPs, and
tissue factor, all of which contribute to atherosclerotic plaque formation. In this context,
the administration of anti-CD154 Abs to mice lacking the low-density lipoprotein (LDL)
receptor and fed a high-cholesterol diet reduced their atherosclerotic plaque size and
instability [68]. CD40 constitutively expressed on platelets could also be a mean of their
activation via its binding to CD154, inducing the release of their granules content as well as
the activation of their αIIbβ3 integrin, further underscoring the role of the CD154/CD40
pair in vascular events [69], and thus SLE complications.

4.2. The CD154-Integrin Dyad in SLE

The discovery of novel receptors for CD154, all belonging to the integrin family
opens new doors for a broader implication of CD154 in SLE pathogenesis. Although little
information is available as to how the interaction of CD154 with these integrins may play a
role in SLE, certain studies give us an insight into their potential influence in this context
(Figure 2).
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With respect to the α5β1 integrin as a receptor for CD154, new understandings have
been elaborated demonstrating the possible implication of this dyad in the pathogenesis of
autoimmune diseases such as SLE. Indeed, the CD154-α5β1 interaction plays an impor-
tant role in inflammation. The ligation of CD154 to this integrin was shown to activate
ERK1/2 signaling pathways in monocytes and their IL-8 production [6,70]. In addition, the
binding of CD154 to α5β1 enhanced IL-6 release from the fibroblasts of asthmatic patients
underscoring the role of such dyad in autoimmune responses such as allergy [71], and
probably in other pathologies with an autoimmune characteristic such as SLE. Interestingly,
a simultaneous ligation of α5β1 and CD40 was shown to result in a synergistic effect
involving the activation of ERK1/2 and p38 signaling pathways as well as the production
of MMP-2 and -9 [70], responses usually exhibited in arthritic inflammatory conditions
such as SLE and RA [72,73].

Interestingly, a study by Nakayamada et al. showed that β1 integrin expression is
increased on the T lymphocytes of patients with active SLE and that the activation of
this receptor leads to the enhanced proliferation of T cells and the upregulation of their
CD154 expression [74]. In the same line of evidence, our group has demonstrated that
sCD154 interaction with α5β1 promotes T cell survival [75,76]. Upon binding to α5β1
on the surface of T cells, sCD154 was shown to inhibit T cell death induced by various
death signals, including the Fas ligand, TRAIL, and TNF-α [75,76]. Altogether, these results
suggest that the CD154/α5β1 dyad could contribute to the development and persistence
of SLE by allowing the prolonged survival of effector T cells in this condition [19].

The biological significance of the CD154-α5β1 interaction was also revealed in pro-
moting the activation and aggregation of platelets [4,77]. Therefore, and considering that
both αIIbβ3/ and α5β1/CD154 dyads induce platelet activation and aggregation [77], it
is possible that these pairs may be also contributing to thrombotic events associated with
autoimmune and inflammatory pathologies such as SLE [4,28,77].

The role of the CD154/αMβ2 pair has been initially investigated in the context of
vascular conditions and atherosclerosis by enhancing monocyte adhesion and migration,
and the release of myeloperoxidase [5,37]. Nevertheless, such an inflammatory signature
of the CD154/αMβ2 interaction could directly contribute to SLE pathogenesis.

Finally, the well-established notion of the trimeric structure of CD154 [20,78,79] and
the more recent finding describing its interaction with its various receptors via distinct
residues [80], highly suggest the capacity of CD154 to simultaneously bind more than one
receptor and even potentially induce their cross-linking [78–80]. All these findings solicit a
deeper investigation into the more complex role of CD154 in SLE.

5. Therapeutic Approaches in SLE

The current treatment arsenal for SLE includes a variety of immunomodulatory and
immunosuppressive drugs [81]. Hydroxychloroquine, an antimalarial drug, is used in
most cases of SLE and can be paired with other therapeutic agents such as NSAIDS,
methotrexate, cyclophosphamide, azathioprine, and mycophenolate mofetil, in cases of
mild to moderate disease severity [81]. In more severe cases, treatment often requires the
use of systemic corticosteroids. Although these therapeutic strategies allow for a significant
improvement in SLE prognosis, such use of immunosuppressive drugs can be associated
with many adverse effects, which can take a toll on patients’ quality of life [82]. Many
research efforts have been dedicated to the identification of specific biological agents for
SLE treatment. Belimumab, a mAb directed against B cell-activating factor (BAFF), is the
only biological currently approved for SLE treatment [83]. Rituximab, an anti-CD20 mAb,
may also occasionally be used for patients with severe disease and who are not responding
to other therapeutic avenues [84]. Considering that CD154 is an important effector in the
pathogenesis of SLE, it has recently been subject to research concerning its potential use as
a target for novel biological therapies in SLE.
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5.1. Anti-CD154 and Anti-CD40 Agents in SLE Murine Models

The administration of anti-CD154 treatment in murine models of SLE was proven
beneficial in many studies [85]. Indeed, Early et al. demonstrated that the administration of
an anti-CD154 Ab to the spontaneous lupus-prone mice, New Zealand Black x New Zealand
White (NZB/W), decreased their auto-antibody production and prolonged their survival.
Responding mice showed no deposition of immune complexes in their renal glomeruli [86].
Another study evaluating early and late treatments with anti-CD154 Abs demonstrated
similar efficiency in lupus-prone mice. Authors showed that treating pre-nephritic NZB/W
F1 mice with anti-CD154 Abs resulted in a reduction in renal immune complex deposition,
a response that persisted even after treatment halting. The administration of the same
treatment to corresponding mice with established LN reduced their renal gene expression
of pro-inflammatory and profibrotic factors, and induced remission in 40% of cases [87].
Similarly, Kalled et al. demonstrated that anti-CD154 Ab treatment of Swiss Webster
x New Zealand Black (SWRxNZB) mice with established LN enhanced their survival
and decreased their risk of severe nephritis [88]. Interestingly, treatment administered
at younger age revealed better outcome than with older mice (7 months (mo) of age)
which necessitated a more aggressive treatment strategy. Additionally, the concomitant
administration of anti-CTLA4 and anti-CD154 mAbs was shown to delay SLE onset in
NZB/W F1 lupus-prone mice and even to prolong the survival of previously treated mice
with more advanced states of the disease [89].

As to anti-CD40 mAb therapies, it also showed numerous benefits in the treatment of
lupus in mice models [3,90]. When comparing NZB/W F1 mice treated with a rat/mouse
chimeric antagonistic anti-CD40 Ab, following the onset of renal damage to those treated
with the broad-spectrum anti-inflammatory drug, prednisolone, data revealed both agents
as capable of reducing the activation of immune cells in the germinal centers. However,
only anti-CD40 promoted renal protection [91]. Anti-CD40 Ab significantly reversed
the upregulation of inflammatory genes and the downregulation of metabolic pathways
observed in kidneys of lupus mice to levels in control mice [91]. Interestingly, the same
study demonstrated the efficiency of anti-CD40 in reducing inflammation in yet another
model of spontaneous lupus, the MRL/lpr mouse. In spite of promising results obtained
with the anti-CD40 Ab treatment, its effect was abrogated upon treatment cessation, unlike
the long-lasting effect exhibited by the anti-CD154 Abs in lupus-prone mice, underlining
the possible induction of tolerance in the latter case [3,91].

5.2. Anti-CD154 Agents in SLE Clinical Studies

Based on promising data obtained upon the CD154- or CD40- related treatment of
lupus animals, numerous anti-CD154/CD40 agents compatible for use in humans were
developed, as outlined in Table 1.

Two humanized anti-CD154 mAbs, Ruplizumab or BG9588 (Biogen Inc., Cambridge,
MA, USA) and Toralizumab or IDEC-131 (Idec Pharmaceuticals, San Diego, CA, USA),
were developed and tested in clinical trials.

Ruplizumab is a humanized anti-CD154 mAb composed of the complementary-
determining regions of the 5c8 mAb (murine anti-human CD154), combined with human
variable-region framework residues as well as IgG1 constant region [92]. A phase II clinical
trial was conducted to evaluate the safety and efficacy of Ruplizumab in SLE. Indeed,
patients with active LN received 20 mg/kg of Ruplizumab biweekly, followed by monthly
doses, and demonstrated the efficacy of such treatment in significantly reducing anti-
dsDNA antibody titers, decreasing hematuria, and increasing C3 complement fragment
concentration. In another study, treating SLE patients with Ruplizumab eliminated their
circulating CD38+ plasma cells and reduced their levels of anti-double stranded DNA,
proteinuria, and Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) [92].
Even a short-term treatment with this anti-CD154 mAb ameliorated serum complement
concentrations and prevented hematuria in patients with LN [93]. Despite these promising
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results, the trial was terminated prematurely because of thromboembolic complications in
some treated patients [93,94].

Table 1. Anti-CD154 and anti-CD40 agents in SLE clinical trials.

First Generation Anti-CD154 mAbs

Study Phase Patients Condition Outcome Adverse Events Refs.

Ruplizumab Phase II Patients with
active LN

- reduced anti-dsDNA Abs
- decreased hematuria

- elevated C3 concentration
- absence of CD38+ plasma cells

in circulation
- reduced proteinuria
- improved SLEDAI

Thromboembolic
complications [92,93]

Toralizumab Phase II
Patients with

mild-to-moderate
active SLE

- improved SLEDAI scores (but
in study and placebo groups)

Thromboembolic
complications [3,94,95]

Second generation anti-CD154 or anti-CD40 mAbs

Dapirolizumab
pegol or CDP7657

(anti-CD154)

Phase I SLE patients - well tolerated
- ameliorated SLEDAI

- not associated with
thromboembolic

complications
[96,97]

Phase IIb Patients with
active SLE

- improved anti-dsDNA
Ab titers [98]

BI 655064
(antagonistic
anti-CD40)

Phase I Healthy subjects
- well tolerated

- capable of inhibiting
CD154 upregulation

- not associated with
thromboembolic

complications
[99,100]

Phase II Patients with LN - reduction of SLEDAI
- better renal response [3,101]

Iscalimab or
CFZ533

(antagonistic
anti-CD40)

Phase I Healthy subjects
and RA patients - well tolerated

- not associated with
thromboembolic

complications
[102]

Phase II SLE and
LN patients

No publication yet (one study
still ongoing) [103,104]

The other humanized anti-CD154 mAb, Toralizumab, is also composed of murine
complementary-determining regions, although it binds to a different epitope than the ones
used for Ruplizumab and is combined with human IgG1 heavy and light chains [94]. In
a phase II clinical trial, patients with mild-to-moderate active SLE were randomized to
receive six doses of Toralizumab (2.5 mg/kg to 10.0 mg/kg) for a period of 16 weeks.
Results showed that SLEDAI scores had improved in all groups, without being significantly
different than the placebo group. In addition, the type and frequency of adverse events
observed in this trial were similar in both treatment and placebo groups [95]. These results
and the occurrence of thromboembolic events in patients with Crohn’s disease, halted the
progress of Toralizumab-based treatments in autoimmune or inflammatory diseases [3,105].

5.3. Second Generation Anti-CD154/CD40 Antibodies Overcoming Thromboembolic Complications

Thromboembolic complications observed in clinical trials of the above first-generation
anti-CD154 mAbs are believed to result from platelet activation and aggregation following
ligation of anti-CD154 mAb-sCD154 immune complexes to Fc gamma receptors located on
platelets surface [3,106]. With the aim of reducing these side effects, second-generation Abs
targeting CD154-mediated responses have recently been developed using Fc-independent
mechanisms (Table 1).

Dapirolizumab pegol or CDP7657 (UCB Pharma) is a humanized anti-CD154 Fab
fragment conjugated with polyethylene glycol (PEG), replacing its Fc region [3]. The
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use of a murine equivalent to CDP7657, consisting of a PEGylated monovalent Fab’ anti-
murine CD154 Ab (MR1 Fab’ PEG), for the treatment of NZB/W F1 mice with active
lupus induced disease remission [107]. In SLE patients, CDP7657 was shown to be well
tolerated and was not associated with thromboembolic events [96]. Clinical trials also
documented the improvement of disease activity following CDP7657 administration [97].
Further clinical trials in this context, more specifically a phase IIb study, showed that
CDP7657 administration in patients with active SLE improved certain biological disease
markers such as anti-dsDNA antibody titers [98]. The safety and efficacy of dapirolizumab
pegol is currently being tested in two ongoing phase III clinical trials [108,109].

Another approach targeting the CD154/CD40 interaction is the use of antagonistic anti-
CD40 mAbs. BI (Boehringer Ingelheim) 655064 is a humanized antagonistic non-depleting
anti-CD40 mAb with a mutation at the Fc region abolishing its effector function [3,110].
Two phase I clinical trials assessing the efficacy, pharmacokinetics, and safety of BI 655 064
in healthy subjects revealed such agent to be well tolerated, not associated with throm-
boembolic complications, and interestingly, capable of inhibiting CD154 upregulation,
thus having a high potential to abrogate CD154-CD40 interactions [99,100]. In addition,
two phase II clinical trials investigating the use of BI 655064 in LN have recently been
completed. Results seem to show a link between BI 655064 treatment and a reduction in
SLEDAI total score in LN patients [3]. One of these studies suggested a potential beneficial
effect (complete renal response as the endpoint outcome) of one of the doses used (180mg)
in LN patients [101].

Iscalimab or CFZ533 (Novartis Pharma) is a fully human blocking non-depleting
anti-CD40 mAb also mutated at its Fc region and incapable of stimulating Fc gamma
receptors [111]. Studies on cynomolgus and rhesus monkeys with lupus demonstrated
that treatment with CFZ533 induced a complete suppression of germinal center devel-
opment in lymphoid organs, highlighting its capacity to inhibit CD154/CD40-induced
pathways [112,113]. In a first-in-human phase I clinical trial, Iscalimab was shown to be
well tolerated with no association with thromboembolic complications [102]. Considering
these promising results, Iscalimab safety and efficacy were very recently tested in a phase II
clinical trial in patients with active LN [103] and are also currently being tested in another
phase II trial in SLE patients [104].

Given the overexpression of CD154 and CD40 on T and auto-reactive B cells [44],
respectively in the renal interstitium, the contribution of the CD154/CD40 axis to immune
complexes deposition at the level of renal tissues by enhancing activation of T and B cells
and promoting the antigen-presentation function of DCs and monocytes, and the role of
this axis in inducing pro-inflammatory functions of mesangial and renal tubular epithelial
cells [56,60,61], it might be highly recommended to administer anti-CD154/CD40 agents
to SLE patients with renal manifestations in an attempt to manage or even prevent the
devastating clinical presentation of LN.

Targeting the CD154/CD40 pathway proved its therapeutic potential in yet other
autoimmune diseases, providing further support for its use in SLE patients. Indeed, BI
655064 has been evaluated in patients with RA in a Phase IIa study. Results demonstrated
decreased levels of inflammatory mediators, namely IL-6 and bone remodeling factors such
as MMP-3 and RANK. Patients also exhibited a decrease in the percentage of activated
CD95+ B cells and the concentration of IgG and IgA rheumatoid factor-positive auto-
antibodies. In spite of promising biological and clinical changes in these patients, the
study endpoint, which was defined as a 20% improvement of the RA score, was not
met [114]. In the same line of evidence, the treatment of patients with Sjögren’s syndrome
with Iscalimab reduced their disease activity index with a trend toward reduced auto-
antibody response [115]. These studies, given their favorable safety profiles, support the
development of further studies assessing the efficacy and safety of BI 655064 and Iscalimab
in LN patients as described above.
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6. Conclusions

The development of specific treatment options for SLE is critical to providing patients
with better care and quality of life. Indeed, the standard practice for treatment or managing
symptoms in SLE patients includes the use of intensive non-selective immunosuppressives.
More recently, the use of targeted biologic therapies with better outcomes has surfaced;
however, there remains an urgent need for more efficient treatment strategies, especially
when devastating complications such as LN are manifested. The CD154-CD40 dyad, which
plays an important role at different levels of SLE pathogenesis, has emerged as an interest-
ing target for the development of novel biological therapies for disease treatment. Although
first-generation Abs targeting this dyad were unsuccessful due to thromboembolic compli-
cations, second-generation Abs that lack the Fc region, an activator of FcRs on the platelet
surface, are currently being tested in many clinical trials and may yield more promising
results. However, these potential new treatment avenues do not take into account CD154
interactions with its recently discovered receptors belonging to the integrin family, which
could also be highly involved in SLE pathogenesis and constitute important targets for
therapeutic approaches. In this context, taking into consideration any pre-existing condition
or SLE-related manifestation, which might be indicative of the CD154 interactions at play,
is of importance. For instance, the anti-CD154 mAb, while interfering with all interactions
of CD154, inhibits the binding of CD154 to the αIIbβ3 integrin on the surface of platelets.
In the case of patients with atherosclerotic vessels, such inhibition promotes the instability
and rupture of the atherosclerotic plaque leading to thrombotic events [4]. Thus, further
investigation into the role of CD154-integrin dyads in SLE pathogenesis and the effect
of blocking these interactions in SLE animal models and, ultimately, in patients with the
disease should be urgently carried out. This may be an important research path for the
better understanding of the implications of CD154 in SLE and for the identification of new
specific targets for SLE treatment with better clinical outcomes.
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