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Abstract

Plastic is a ubiquitous environmental contaminant, resulting in widespread exposure across

terrestrial and marine spaces. In the environment, plastics can degrade into microparticles

where exposure has been documented in a variety of fauna at all trophic levels. Human epi-

demiological studies have found relationships between inhaled microplastics and oxidative

stress and inflammation. Previous studies of bottlenose dolphins (Tursiops truncatus) have

reported prevalent exposure to plasticizing chemicals (e.g., phthalates) as well as particle

loads in gastrointestinal tracts, but exposure from inhalation has not yet been studied. The

objective of this study was to determine if inhalation is a viable route of microplastic expo-

sure for free-ranging dolphins. Exhalation samples were opportunistically collected from dol-

phins residing in Sarasota Bay, Florida (n = 5) and Barataria Bay, Louisiana (n = 6) during

catch-and-release health assessments to screen for microplastic particles. All dolphin sam-

ples contained at least one suspected microplastic particle, and polymer composition was

determined for 100% of a subset (n = 17) of samples. Additional studies are warranted to

better understand the extent of inhaled microplastics, as well as to explore impacts, given

potential risks to lung function and health.

Introduction

Microplastics (i.e., plastics< 5mm diameter) are ubiquitous pollutants; thousands of research

studies are available on the topic [1–3] and document their presence in terrestrial [4–7],

marine [8, 9], freshwater [10], and sea ice environments [11–13]. Previous studies have also

tracked their abundance on every continent [14–19] and modeled how they can be transported

through the air [20–22]. Because of this ubiquity, humans and wildlife are exposed through

multiple mechanisms [23], but primarily via ingestion [24–27] and inhalation [28, 29].

Through ingestion and inhalation, microplastic deposition in the gut [30], stool [31], and

lungs [32] are expected; however, these particles have also been detected in human heart [33]
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and placental tissue [34], as translocation and bloodstream transport can occur for very small

microplastics and nanoplastics [35, 36]. Microplastics may also bioaccumulate in organisms;

bioaccumulation potential was investigated in various trophic levels in a lake ecosystem in

China, and organisms at the highest trophic levels were found to have the highest degree of

microplastics [37]. These findings were consistent with other studies reporting microplastic

bioaccumulation within trophic levels and in predator-prey relationships [38–40]. Conversely,

no evidence of microplastic bioaccumulation within trophic levels has also been observed (e.g.,

[41], highlighting gaps in current knowledge of microplastic transport and fate. Further

research is needed to better understand the role bioaccumulation and trophic transfer play in

microplastic exposure, especially in consumers relying on fish and seafood as their main food

source. In human epidemiological studies and experimental rodent studies, myriad adverse

health impacts have been associated with microplastic exposure including oxidative stress and

cytotoxicity [42–45], as well as inflammatory and immune responses related to altered gut

microbiota diversity [46]. Additionally, environmental microplastics are often composed of

thousands of synthetic chemicals (e.g., phthalates, bisphenol A (BPA), per- and polyfluoroalkyl

substances (PFAS), brominated and organophosphate flame retardants [47]) and offer a high

surface-to-volume ratio for the adsorption of other environmental contaminants (e.g., organic

pollutants [48]; metals [49, 50]; harmful algal bloom toxins [49, 51, 52]; invasive species [53–

55]; potentially pathogenic microbes [56, 57]. As a result, microplastics may be a vehicle of

exposure to chemicals that have been associated with adverse influences on reproduction [58,

59], development [60], metabolism [61], and cardiovascular health [62, 63].

Human inhalation risk assessments have demonstrated higher particle abundance for

indoor environments, a predominance of fragments and fibers, multi-polymeric composition,

and particles smaller than 100 μm [64–69]. These risk assessment studies typically involve

active and passive sampling equipment that collects air and dust, while human exposure has

been directly quantified via sputum screening [70, 71], samples collected by nasal [71] or

bronchoalveolar lavage [72], and investigations of lung fluid and tissue collected by surgical

methods [28, 72]. Findings from these studies have demonstrated the propensity for both

upper respiratory exposure [71] and a deeper infiltration within the respiratory tract, leading

to particle accumulation in lung tissue [28, 72]. Although numerous factors, including occupa-

tion [73, 74], geographic location [75], and demography [25, 76], can impact microplastic

inhalation, humans likely inhale hundreds of microplastic particles per day [25].

Despite abundant evidence of outdoor airborne microplastics [77, 78] and atmospheric fallout

[22, 79–81], studies of microplastic inhalation in wildlife are nearly absent. This is especially surpris-

ing given widespread evidence of microplastic ingestion in marine wildlife (e.g., multiple fish species

[82–84], shorebirds [85–87], sea turtles [88, 89], sharks [90–92], and marine mammals [26, 93–97]

and recent studies suggesting that oceans may be sources of atmospheric microplastics [98, 99].

Bottlenose dolphins (Tursiops truncatus) inhabiting Sarasota Bay, FL, USA, have been the

focus of health and population abundance studies since 1970 [100]. We recently presented evi-

dence of prevalent exposure to ingested microplastics [94] and phthalate plasticizers [101–

103]. Therefore, our objective was to determine if samples from exhaled air collected during

routine catch-and-release health assessments [104, 105] can be used to identify and character-

ize microplastic inhalation exposure for free-ranging bottlenose dolphins.

Materials and methods

Sample collection

Samples from exhaled air were collected from bottlenose dolphins during catch-and-release

health assessments conducted in Sarasota Bay, FL, USA, (SB) and Barataria Bay, LA, USA (BB;
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Fig 1) in May and June 2023, respectively. During these health assessments, individual dol-

phins were encircled by a seine net and temporarily restrained to collect biological, physiologi-

cal, and morphological data/samples indicative of their overall health. An experienced

veterinary team attended to the dolphins during the examinations and sampling, to ensure

their safety and welfare. In SB, exhalation samples were collected by holding a pre-cleaned

(deionized (DI) water rinse) petri dish approximately 15 cm above the blowhole. To account

for ambient particle contamination, a pre-cleaned petri dish was also held open next to the dol-

phin during sampling for use as a ‘field blank’. The field blanks were processed in the same

way as the samples from exhaled air to account for any potential indoor ambient air contami-

nation that may have occurred during laboratory procedures. Prior to sample collection, the

blowhole and surrounding skin was gently dried with cotton gauze to prevent seawater con-

tamination of the exhalation samples. Sample and field blank petri dishes were refrigerated

until sample analysis.

For dolphins assessed in BB, samples from exhaled air were collected by rinsing the Fleish

flow-cell that was housed inside a pneumotachometer used to evaluate lung function [107].

The flow-cell was rinsed with DI water after it was held over the blowhole to measure respira-

tory function. The DI water rinse was collected in a glass jar and refrigerated until sample anal-

ysis. To account for potential device contamination, the pneumotachometer was rinsed with

DI water prior to the sampling of each dolphin; this DI rinse was used as the ‘field blank’.

Fig 1. Bottlenose dolphin study sites: (A) Sarasota Bay, Florida and (B) Barataria Bay, Louisiana. Map created using Esri ArcGIS Pro basemap, Esri, TomTom,

Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors, and the GIS User Community [106].

https://doi.org/10.1371/journal.pone.0309377.g001
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Bottlenose health assessments were conducted under Scientific Research Permit #26622

(Sarasota Bay) and # 24359 (Barataria Bay), issued by the National Oceanic and Atmospheric

Administration’s (NOAA) National Marine Fisheries Service (NMFS). Research studies were

reviewed and approved by Mote Marine Laboratory (Sarasota Bay) NMFS Atlantic (Barataria

Bay) Institutional Animal Care and Use Committees (IACUC). The Navy’s Bureau of Medi-

cine and Surgery reviewed and approved the NMFS IACUC protocol for the Barataria Bay

health assessments and issued a separate Navy protocol (NRD1265). The lung function studies

were approved by the Animal Care Committee of the Oceanografic (Approval number: OCE-

2v-19).

Sample analysis

For microplastic processing, pneumotachometer rinses were filtered onto GF/A 1.6 μm glass

fiber filters in a fume hood. Petri dish samples were rinsed three times with DI water onto GF/

A 1.6 μm glass fiber filters in a fume hood. Samples were left to dry in covered glass petri

dishes. Microplastic characterization followed criteria determined by [94]. Briefly, visual iden-

tification occurred for particles at least 35 μm in size using a dissection microscope (Leica EZ4,

magnification 8-35x). Plastic composition was suspected for particles that melted or were

marked when approached with a hot needle (250˚C, ‘suspected microplastic particles’; [108,

109]. Suspected microplastic particles were categorized following previously defined criteria

[94] based on physical attributes of the individual particle, including shape (e.g., fiber, film,

fragment, foam), and color (e.g., transparent, blue, black; [110]. Visual characteristics were

also used to further identify suspected plastic particles. For example, fibers were indicated by a

smooth, uniform surface that was longer than it was wide [111], while fragments were indi-

cated by smooth or angular edges that appeared to be broken from a larger piece of debris

[111]. Fragments could be further classified as a film or a foam if they were flexible and able to

be folded (film) or were distorted when handled but returned to the original shape (foam;

[111]). Microplastic dimensions were measured using the Leica LAS EZ (version 3.4.0, Swit-

zerland) imaging software system.

A subset of suspected microplastic particles (n = 17) from dolphin samples was analyzed for

polymer type by Raman microspectroscopy (Xplora Plus with LabSpec 6 software version 6.5,

Horiba Scientific). The subset was chosen based on the predominant types of particles found

and placed on double-sided tape for analysis. The spectra were obtained using a 50X or 100X

objective lens with a 785 nm or 532 nm laser at 0.1% to 100% power, confocal slit width of

100 μm, hole diameter of 300 μm with gratings of 600 or 1200 grooves/mm and 4s acquisition

time. Raman spectral matches were processed using LabSpec6 and matched to OpenSpecy

software to determine if particles were plastic or of anthropogenic origin [112]. All of the parti-

cles analyzed were matched with spectra from OpenSpecy. For our analysis, OpenSpecy had a

Pearson r coefficient cut-off of 0.60. Our average Pearson r coefficient was 0.82 among all our

samples.

QA/QC and data analysis

Given the potential for airborne plastic contamination, precautions were taken to ensure sam-

ple integrity. A 100% cotton lab coat and clean nitrile gloves were worn during all laboratory

analyses. All tools and glassware used in the laboratory were thoroughly rinsed with DI water.

Field blanks were collected for each sampled dolphin and processed the same way as the sam-

ples to account for any contamination resulting from ambient indoor air. Three positive con-

trols with commercially purchased microplastic particles (e.g., polyethylene and polyester)

were used to determine recovery efficiency, and mean recovery percentages exceeded 80% for
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all control particles. As this was an exploratory study, descriptive statistics were used to sum-

marize particle counts, suspected microplastic shapes, and polymer composition within and

between sampling sites. Microplastic particle counts were compared between demographic

characteristics (e.g., female vs. male; adult vs. subadult) with a Mann-Whitney U test. Sexual

maturity (as determined by several factors including age, calving history, pregnancy diagnosis

via ultrasonography, testis size from ultrasound, and sex hormone concentration; [113, 114]),

was used to differentiate adults vs. subadults.

Results

Exhalation samples, and matched field blanks, were collected from five SB and six BB dolphins

in 2023. Microplastic particles isolated from field blanks included fibers, films, and fragments

of multiple pigments, but most of the particles observed in SB field blanks were not similar to

particles detected in dolphin samples (Table 1). Among BB samples, however, there were more

similarities between exhalation samples and field blanks (Table 1). Suspected MPs identified in

exhalation samples were corrected for field contamination by removing particles of the same

shape and color from total particle counts (Table 2).

Following blank-correction, suspected microplastics were present in 100% of samples col-

lected for this study (n = 11), and all particles were less than 500 μm in size. Fiber lengths ran-

ged between 0.237 μm—1.7041 mm, and widths ranged between 0.0108 μm—0.0839 μm. Film

widths ranged between 0.0437μm—0.172μm. Overall, there were 54 unique particles across all

exhalation samples, and a nearly even distribution between sites (SB: 29; BB: 25; Table 2). The

proportion of fibers and films detected between sampling sites was significantly different

(Yates χ2 = 7.19, df = 1, p = 0.007); fibers were more abundant in SB samples (93%), while BB

particles were composed of films (44%) and fibers (56%; Fig 2). In addition to differences in

particle shape between sites, pigment predominance also varied. SB fibers were mostly green,

black, transparent, and brown; BB fibers were mostly red and yellow. There are only two films

observed in SB samples (yellow and brown), and most BB films were blue (Table 2).

Particle counts were compared between dolphins sampled at each location (Table 3). There

were no differences determined between demographic characteristics (i.e., sex or age class) of

the dolphins; however, given our small sample size, this finding may not be representative of

either population.

A subset of suspected microplastic particles (n = 17; 31.5% of total unique particles) from

dolphin samples was analyzed for polymer type. Raman analysis demonstrated that 100% of

the particles analyzed were confirmed to be of plastic origin (Table 4). Of the 17 particles, 58%

were fibers, and 42% fragments. The most dominant particle identified was polyethylene tere-

phthalate (PET), making up 53% of the microplastic particles analyzed (Table 4). Polyester

(PE) was the second most dominant particle type, making up 24% of the particles (Table 4, Fig

3). Other polymers identified included polyamide, polybutylene terephthalate, and poly

(methyl methacrylate; PMMA), representing 12%, 6%, and 6% of particles analyzed, respec-

tively (Table 4, Fig 3). Given the variability in polymer type identified and the small sample

size, we were underpowered to conduct further stratified comparison studies of polymers

detected within and between sampling sites.

Discussion

Microplastic inhalation in free-ranging bottlenose dolphins

To our knowledge, this is the first study to identify and characterize microplastic inhalation

exposure in a free-ranging marine mammal. Suspected microplastics were identified in all

exhalation samples collected from dolphins residing in Sarasota Bay, FL (n = 5), and Barataria
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Bay, LA (n = 6). A subset (n = 17) of suspected particles was analyzed with Raman spectros-

copy, and plastic composition was confirmed for all samples. These findings suggest inhalation

as a mechanism of microplastic exposure for marine mammals.

Airborne microplastic particle distribution and deposition has been reported in both urban

and rural areas [115]; therefore, it was expected that microplastics are present in both of our

field sites. Environmental contamination by fibrous microplastics is common in urban areas,

potentially due to sewage wastewater emissions [116–118]. Evidence provided by [99] shows

the potential for sea spray to release microplastics into the atmosphere, so any wastewater dis-

charged into SB could contribute to detection in those dolphins. Although Sarasota operates

Fig 2. Proportion of microplastic particle shapes detected in bottlenose dolphins from Sarasota Bay, Florida, and

Barataria Bay, Louisiana.

https://doi.org/10.1371/journal.pone.0309377.g002

Table 3. Demographic characteristics of bottlenose dolphins sampled from Sarasota Bay (SB), Florida and Bara-

taria Bay (BB) Louisiana.

Dolphin Total Particles Site Sex Age Class

F295 6 SB Female Subadult

F277 5 SB Female Adult

F292 5 SB Male Adult

F297 9 SB Female Subadult

F326 4 SB Male Subadult

YR4 3 BB Male Adult

YR2 3 BB Male Adult

Y1F 11 BB Female Adult

Y71 3 BB Female Adult

Y73 2 BB Female Adult

Y9F 2 BB Female Adult

p* - 0.08 0.65 0.19

*calculated using Mann-Whitney U test

https://doi.org/10.1371/journal.pone.0309377.t003
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an urban reclaimed water transmission system [119], temporarily failing, or overwhelmed sys-

tems (such as the Bee Ridge Wastewater Reclamation Facility, which has released more than

800 million gallons of reuse water into the bay since 2013; [120]) could result in wastewater

discharges into the bay. Further, positive correlations have been observed between particle

abundance and human activity [115, 116, 121]. While microplastics are common in urban

areas with high levels of human activity, they have also been detected in rural environments

with limited human activity [122]. Microplastic particles (microfibers in particular) originating

in urban environments have been shown to transport through the atmosphere to reach

extremely remote regions of the globe [123], so it seems possible that the proximity of BB to

larger cities such as New Orleans (population ~370,000; [124]) could therefore increase vulner-

ability to microplastic contamination.

Conversely, polymeric composition of inhaled microplastics was different between sam-

pling sites. Of fibrous particles detected in exhalation samples, the majority (80%) were com-

prised of PET. This is consistent with previous studies observing PET abundance in marine

atmospheric microplastic particles (e.g., northern Atlantic Ocean [125], South China Sea

[126–128], Baltic Sea [129], the west Pacific Ocean [128] and the Indian Ocean [127]). While

PET was detected among samples from both sites, it was much more prevalent in SB particles

(70% vs. 29%; Fig 1). PET is most commonly used to produce textiles and fabric [130]; there-

fore, it would be expected that urban areas susceptible to wastewater discharge (especially

from clothes washing) would experience greater PET contamination compared to rural areas.

Previous studies conducted in China have linked PET detection with urbanization and

increased population density [131, 132] suggesting links between human activity and prevalent

contamination. PET has also been detected in atmospheric fallout [79] and deposition [133] in

rural sites, thus providing a plausible exposure route for BB dolphins. In addition to PET, poly-

ethylene (PE) was also detected in microplastic particles from SB and BB exhalation samples

(20% and 29%, respectively). PE is also commonly used in clothing production and is therefore

found in wastewater [117, 118], as well as atmospheric deposition samples [134]. Findings

Table 4. Particle and polymer type identified in exhalation samples from individual dolphins residing in Sarasota Bay, Florida and Barataria Bay, Louisiana. Data

obtained from OpenSpecy [112].

SB Dolphin ID Particle type Polymer type Pearson r coefficient

F295 Fiber Polyethylene Terephthalate 0.93

F292 Fragment Polyester 0.77

Fiber Polyethylene Terephthalate 0.92

F326 Fiber Polyethylene Terephthalate 0.9

F297 Fiber Polyethylene Terephthalate 0.88

Fiber Polyethylene Terephthalate 0.91

F277 Fiber Polyethylene Terephthalate 0.88

Fragment Poly(methyl methacrylate) 0.59

Fiber Polyethylene Terephthalate 0.94

Fiber Polyester 0.91

BB Dolphin ID Particle type Polymer type Pearson r coefficient

YR4 Fragment Polyethylene Terephthalate 0.72

Y73 Fiber Polyethylene Terephthalate 0.88

Y1F Fragment Polyester 0.86

Fragment Polyamide 0.74

Fragment Polyamide 0.67

Fragment Polybutylene terephthalate 0.67

Fiber Polyester 0.79

https://doi.org/10.1371/journal.pone.0309377.t004
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from this study were consistent with human studies of inhaled microplastics [28, 70, 72] in

which PET and PE were consistently detected more frequently than other polymer types.

Although preliminary, these findings suggest widespread environmental contamination and

potential vulnerability to adverse health outcomes related to microplastic exposure.

Health implications

Microplastic toxicity is a function of polymer type [135], chemicals added during production

(e.g., phthalates [136]), and adsorbed materials (e.g., organic pollutants [137]). Gaps in knowl-

edge regarding inhalation as an exposure mechanism further complicates understanding

health risks. Although available data are limited, inhaled microplastics are suspected to influ-

ence lung health. For example, oxidative stress and inflammation induced by microplastic

exposure has been shown to result in pulmonary fibrosis in laboratory rodent studies [138–

140]. In humans, pulmonary fibrosis is a progressive lung disease with poor prognosis and

high mortality risk [141]. Dolphins rely on lung compression and collapse during diving, the

capacity of which could be reduced by fibrosis [142]. Additionally, the depth at which lungs

compress and collapse determines gas exchange, which would be limited by fibrosis as well

[142]. Therefore, inhaled microplastic particles could pose a serious threat to pulmonary

health. Microplastic inhalation may also offer an exposure route for other organs in the body.

Fig 3. Polymer detection in microplastic particles from bottlenose dolphin exhalation samples in (A) all sampled

individuals, (B) dolphins from Sarasota Bay, Florida, and (C) dolphins from Barataria Bay, Louisiana.

https://doi.org/10.1371/journal.pone.0309377.g003
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For example, microplastics have previously demonstrated translocation across lung epithelial

cells to secondary organs (e.g., liver, kidney, brain [143]). From there, microplastics can induce

oxidative stress and inflammation [144–146], leading to downstream tissue damage and

increased risk of neoplasia [44]. This inflammation mechanism was demonstrated in labora-

tory rodent studies in which inflamed ovaries and reduced oocyte quality were attributed to

microplastic exposure [147]. As this is the first study to document microplastic exposure via

inhalation in a free-ranging cetacean species, further research is needed to understand if this

exposure route contributes to or exacerbates the risk of adverse health impacts from micro-

plastics alone, or as part of multiple stressor scenarios.

Strengths and limitations

Plastic composition of suspected MPs was confirmed using Raman spectroscopy, a robust ana-

lytical technique that is commonly used in investigations of microplastic polymer types (e.g.,

[148–150]. Raman spectroscopy involves irradiating a sample with a light source (such as a

laser) to provide information on the molecular vibrations [151, 152]. The spectral outputs

from this process can be compared to a reference database to facilitate polymer identification.

Outputs generated with Raman spectroscopy can be regarded similarly to a human fingerprint,

where spectra are unique to each chemical structure [152]. Contamination by ambient micro-

plastic particles during sample collection, processing, and analysis is a significant concern

when conducting microplastic assessments. However, we employed rigorous QA/QC proto-

cols to limit any potential contamination including use of 100% cotton lab coats, clean nitrile

gloves, and DI rinsed glassware during all laboratory procedures. We also collected a blank

with every exhalation sample to account for potential contamination in either the field or in

the lab. Further, for data analysis, we employed a conservative approach to blank-correction

samples, in which particle shapes and colors observed in blanks were removed from total

counts of dolphin samples.

This study relied on opportunistic sampling of dolphins from both study sites; therefore,

findings may not be representative of either dolphin population. Our small sample size further

limits extrapolations to the larger populations. We also were only able to examine exhaled

microplastics. There is the potential for differential deposition of various particles along the

respiratory tract which could impact the particle types we detected. Although this has not been

studied for microplastics specifically, other particle studies conducted in humans have deter-

mined deposition to be size dependent. For example, a previous study reported that 10μm par-

ticles will deposit in the mouth, while 0.25μm and 0.1μm particles will deposit in the lungs and

alveolar regions respectively [153]. This has not yet been explored in dolphin respiratory tracts

and requires further research. Despite efforts to account for ambient contamination, we did

observe higher contamination among samples collected via pneumotachometer than petri

dish. This could be a result of storage; the pneumotachometer is stored in a case where it is still

potentially exposed to ambient particles, while the petri dishes remain sealed until use. To mit-

igate, a conservative blank correction protocol was employed to ensure that any particles

detected in exhalation samples were unique to that sample and not likely to be a result of con-

tamination. Future sampling via pneumotachometer should ensure adequate rinsing of the

device prior to use to limit contamination. To standardize across future potential field projects,

we recommend sample collection be conducted via petri dish.

Conclusion

Inhaled microplastic particles were detected in all sampled dolphins from Sarasota Bay, Florida

(n = 5) and Barataria Bay, Louisiana (n = 6). Findings from this study indicate inhalation as a
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relevant microplastic exposure route for bottlenose dolphins. Given significant gaps in knowl-

edge regarding the health effects posed by inhaled particles, implications for these findings are

unknown; however, laboratory rodent and human epidemiological studies suggest lung dam-

age as a possible outcome of this exposure route. The potential for particle translocation into

other tissues presents further opportunities for health risks throughout the individual. For

areas like BB, inhaled microplastics are particularly concerning as wildlife in this area experi-

enced myriad health impacts due to the Deepwater Horizon oil spill. Poor pulmonary health

has been reported in Barataria dolphins related to the spill [154], so inhaled microplastic parti-

cles could exacerbate existing lung disease. Dolphin respiratory function can be measured

using spirometry techniques [155] and could be used during health assessments to help evalu-

ate how microplastics exposure may contribute to adverse health effects and respiratory dis-

ease in individual dolphins over time. Further research to understand health implications

following inhaled microplastic exposure is warranted, especially among vulnerable populations

experiencing adverse pulmonary impacts. A systematic assessment of particle exhalation in

Sarasota Bay dolphins is planned to examine life history influences on exposure and associa-

tions with health impacts in the well-studied Sarasota Bay dolphin community.
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47. Wagner M, Monclús L, Arp HPH, Groh KJ, Engvig M, Muncke J, et al. State of the Science on Plastic

Chemicals. 2024 Mar. Available: https://doi.org/10.5281/zenodo.10701706

48. Santana-Viera S, Montesdeoca-Esponda S, Guedes-Alonso R, Sosa-Ferrera Z, Santana-Rodrı́guez

JJ. Organic pollutants adsorbed on microplastics: Analytical methodologies and occurrence in oceans.

Trends in Environmental Analytical Chemistry. 2021; 29: e00114. https://doi.org/10.1016/J.TEAC.

2021.E00114

49. Lim C, Kim N, Lee J, Yoon Y. Potential of Adsorption of Diverse Environmental Contaminants onto

Microplastics. Water (Switzerland). 2022; 14: 4086. https://doi.org/10.3390/W14244086/S1

50. Barus BS, Chen K, Cai M, Li R, Chen H, Li C, et al. Heavy Metal Adsorption and Release on Polysty-

rene Particles at Various Salinities. Front Mar Sci. 2021; 8: 671802. https://doi.org/10.3389/FMARS.

2021.671802/BIBTEX

51. Wang K, Lin H, Wang S, Dong X, Sun L, Zhou Q, et al. Species diversity and community structure of

microalgae living on microplastics in Luoyuan Bay, China. Mar Pollut Bull. 2022; 180: 113809. https://

doi.org/10.1016/j.marpolbul.2022.113809 PMID: 35688065

52. do Prado Leite I, Menegotto A, da Cunha Lana P, Júnior LLM. A new look at the potential role of marine

plastic debris as a global vector of toxic benthic algae. Science of The Total Environment. 2022; 838:

156262. https://doi.org/10.1016/j.scitotenv.2022.156262 PMID: 35643140
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