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Abstract

Estimates of population density are fundamental to wildlife conservation and management.

Distance sampling from line transects is a widely used sample count method and is most

often analysed using Distance software. However, this method has limited capabilities with

mobile populations (e.g., birds), which tend to encounter an observer more often than immo-

bile ones. This paper presents a novel distance sampling method based on a different set of

models and assumptions, named WildlifeDensity after its associated software. It is based

on mechanistic modelling of visual detections of individuals or groups according to radial dis-

tance from the observer or perpendicular distance from the transect line. It also compen-

sates for population–observer relative movement to avoid the detection overestimates

associated with highly mobile populations. The models are introduced in detail and then

tested in three ways: 1) WildlifeDensity is applied to several ‘benchmark’ populations of

known density and no-to-low mobility, 2) the movement compensation model is tested on

two highly mobile songbird populations, and 3) a fairly difficult case is analysed: a low-den-

sity, highly mobile bird population in a forest habitat. The results show that 1) using either

radial or perpendicular distance data from surveys of immobile populations, WildlifeDensity

provides similar estimates (and errors) to Distance, with radial WildlifeDensity analysis

appearing to be slightly better for surveys of low-mobility populations (kangaroos), 2) the

movement compensation model effectively removes the correlation between observer

speed and detection numbers, and 3) WildlifeDensity provides acceptable estimates where

conventional Distance analysis overestimates density due to high movement. In summary,

WildlifeDensity extends the capabilities of distance sampling by 1) compensating for move-

ment, 2) not requiring complete detectability on the transect line and 3) supporting the use of

radial distances, which simplifies fieldwork and increases measurement accuracy.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0310020 October 16, 2024 1 / 30

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Morgan DG, Gibbens JR, Conway ET,

Hepworth G, Clough J (2024) Wildlife density

estimation by distance sampling: A novel technique

with movement compensation. PLoS ONE 19(10):

e0310020. https://doi.org/10.1371/journal.

pone.0310020

Editor: Luca Nelli, University of Glasgow College of

Medical Veterinary and Life Sciences, UNITED

KINGDOM OF GREAT BRITAIN AND NORTHERN

IRELAND

Received: January 10, 2024

Accepted: August 23, 2024

Published: October 16, 2024

Copyright: © 2024 Morgan et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data are deposited

in the Dryad repository. The data are publicly

available at: https://doi.org/10.5061/dryad.

ns1rn8q14.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-5587-1829
https://doi.org/10.1371/journal.pone.0310020
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0310020&domain=pdf&date_stamp=2024-10-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0310020&domain=pdf&date_stamp=2024-10-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0310020&domain=pdf&date_stamp=2024-10-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0310020&domain=pdf&date_stamp=2024-10-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0310020&domain=pdf&date_stamp=2024-10-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0310020&domain=pdf&date_stamp=2024-10-16
https://doi.org/10.1371/journal.pone.0310020
https://doi.org/10.1371/journal.pone.0310020
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5061/dryad.ns1rn8q14
https://doi.org/10.5061/dryad.ns1rn8q14


Introduction

Reliable estimates of terrestrial wildlife numbers are in continual demand, particularly for pop-

ulations of conservation interest or that are overabundant. Such estimates are commonly

obtained through total counts, sample counts or mark-recapture estimates [1].

In line transect distance sampling, observers travel along transects and scan-search the sur-

rounding habitat to count an animal population [2]. Commonly, multiple transects are set

according to a random or systematic sampling design. Habitats may vary in structure, compo-

sition and observing conditions, affecting detectability. Animals are counted upon detection

and their radial distances r from the observer measured. The lateral angle θ between transect

and target bearings is often measured, allowing computation of the ‘perpendicular’ distance

from transect line to target, y = rsinθ. Survey data (e.g., counts, distances, angles, transect

lengths) are entered into software such as Distance [3], which then estimates population den-

sity and variance.

When plotted, population detection data display distinctive frequency distributions (Fig 1).

Radial distance distributions are typically bell-shaped and right-skewed; perpendicular distri-

butions are commonly reversed S-curves. Their consistency allows detection-distance distribu-

tions to be modelled and used to estimate population density. Over the years, several such

estimators have been developed and used with varying degrees of success [4].

Since the 1980s, Distance software has provided several density estimators, of which the

‘conventional’ estimator is probably the most commonly used [5]. Distance uses perpendicular

distance data, as radial data can cause bias [6]. The accuracy and precision of its density esti-

mates have proven satisfactory in surveys of terrestrial herbivores (e.g., deer, kangaroos) pro-

vided sample sizes are adequate and the modelling assumptions are met [7, 8]. The process

involves 1) data collection and 2) analysis using software.

Distance assumptions

Line transect distance sampling methods are generally based on assumptions that animals dif-

fer in their detectability to an observer due to differences in their conspicuousness (appearance

and behaviour), habitat (vegetation, topography and weather between the observer and ani-

mals) and observer searching methods (protocol, skill). Detectability typically declines with

distance from an observer.

Fig 1. Typical frequency distributions of (a) radial and (b) perpendicular distance data. The data are from the same walked line transect survey of

grey fantail songbirds and are fitted with WildlifeDensity models (lines).

https://doi.org/10.1371/journal.pone.0310020.g001
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For ‘conventional’ Distance surveys based on perpendicular distances of animals from the

transect line, the following key assumptions apply [2, 9]:

1. Location independence. Surveyed populations are distributed independently of transect lines.

2. Detection certainty. Animals at the transect line are detected with certainty (i.e., none are

missed).

3. Measurement accuracy. Detection distances, angles and counts are accurately determined.

4. Relative immobility. a) Animals do not move in response to approaching observers before

they are detected [10], and b) the observer’s overall rate of travel is faster than the indepen-

dent (non-responsive) movement of the population.

These key assumptions need to be met for density estimates by Distance to be reliable. If an

assumption is likely to be violated, there may be a valid alternative method (e.g., [11] if detec-

tion on the transect line is uncertain). Further assumptions include: animals are counted only

once unless they independently move out of and then back into the field of view following

detection; consistent, compatible search methods are used within a survey; and an adequate

sample size is obtained, which is recommended to comprise at least 60–80 observations [12].

Data analysis

Perpendicular distance data typically have a frequency distribution similar in shape to Fig 1

(B). If Assumption 2 of Distance is met, detectability should be complete (detection probability

p = 1) on the transect line and decline with distance from it. The actual relationship is

unknown, so Distance fits mathematical functions (e.g., half-normal) to the frequency distribu-

tion, using adjustment terms to improve fitting [4]. The best-fitting function is treated as the

detection function g(x) of the data [3].

The total number of individuals n within a strip of length L and width 2w centred on the

transect line is also estimated (w being the effective half-width). Function g(x) is used to esti-

mate the true number of animals within w by estimating how many are undetected. The pro-

gram estimates density as D = n/2wL and calculates its coefficient of variation.

Possible limitations

The main assumptions of Distance, especially complete detectability on the transect line, can

be unmet without the investigator realizing it, resulting in underestimated density [10]. Ani-

mals that change location more rapidly than the observer (e.g., flying birds) are at risk of being

detected more than once, leading to overestimated density [13]. This is because they have the

potential to leave and re-enter the visual field multiple times, whereas stationary animals can

only pass through the visual field once (as the observer passes by). Errors can be made in

counting and measuring distances and angles [9]. Inconsistent search procedures can compli-

cate comparisons between surveys.

A novel method

This paper describes a novel distance sampling approach and associated software called Wildli-
feDensity [14]. It originated from a 1970s study of dispersion and abundance in mobile, mainly

arboreal birds of old-growth Australian forests and woodlands. Arboreal birds are often diffi-

cult to survey by distance sampling, as they may 1) be above the observer’s horizontal plane

(high in the canopy), 2) exist in low numbers, 3) be continually moving, and 4) be sometimes

hidden (e.g., in nests).
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WildlifeDensity was designed for such situations, employing mechanistic models of the way

in which detectability varies with distance in terrestrial habitats. During survey programs for

Australian state and federal departments (e.g., [15]), its scope was later broadened to include

vertebrates of general terrestrial habitats, with its software developed in tandem. The models

attempt to approximate animal conspicuousness (e.g., size, colour, behaviour) and factors that

obscure them (e.g., vegetation, topography, weather) while allowing for distinctive population

behaviours and habitat attributes.

This paper summarizes WildlifeDensity’s assumptions and procedures, outlines its structure

and tests its effectiveness as a terrestrial wildlife density estimator.

Methods and models

A survey protocol

Observer search procedures affect the detection data collected along transects and the resulting

density estimates. We provide a detailed field protocol, as observer search behaviour has an

important influence on the results. Furthermore, consistency in search behaviour increases the

potential for data obtained at different times and by different observers to be pooled to

increase the sample size. The fieldwork protocol set out below was developed and refined in a

wide range of surveys in tandem with WildlifeDensity software. Its consistent use by all observ-

ers involved in a survey is strongly recommended to maximise the likelihood that robust den-

sity estimates are obtained.

Detections. A detection is defined as an individual or small cluster of animals seen at a

particular horizontal distance in the area scanned. Use only visual detections (sightings), since

auditory ones (calls) are frequently highly variable and, thus, unreliable, with the detection dis-

tances difficult to measure [16]. To simplify the scanning task, restrict population surveys to

one species at a time. Ensure that animals are unlikely to move in response to the observer’s

approach before detection.

Beginning and ending transects. Before beginning a transect, observers take note of,

then disregard, any animals already visible from the starting point. Record only new detections

made once the transect has begun. Record animals visible beyond the transect end point.

Making observations. Observers are to (a) travel slowly, quietly and as inconspicuously as

possible; (b) continually and evenly scan for animals within the 180˚ field of view ahead (both

sides of the transect line, although single-sided 90˚ surveys are possible. Scanning 360˚ is theo-

retically possible, but is much harder to do and has little benefit as animals behind the observer

have usually already been detected); (c) pause to record animals as they are detected while aim-

ing to maintain a steady average speed throughout the transect; (d) count only animals visible

to the unaided eye (use binoculars only to confirm an uncertain detection but not for scanning

or counting clusters); (e) individuals within a short distance of one another (e.g., 5–10 m) can

be counted as clusters; (f) treat cluster members initially obscured but later sighted (e.g., as a

ridge is crested) as a new detection; (g) measure (never estimate) radial detection distances in

the horizontal plane with a rangefinder (± 1 m) to the individual or the centre of the cluster;

(h) for detections above or below eye-level, also measure the elevation angle ; with an incli-

nometer to allow calculation of the direct-line distance d = r/cos;. If using perpendicular dis-

tances, measure lateral angles relative to the transect line (using a compass or protractor); (i)

keep track of counted animals and avoid recounting them unless they autonomously move out

of sight, then back into view; (j) to determine observer speed, record all transect lengths and

durations; (k) if traversing transects containing multiple habitats with differing detectability

(e.g., forest, grassland), record the habitat type and the duration of travel through it to allow

stratified analysis; and (l) record all data immediately, thoroughly and reliably (e.g., with paper
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and pencil or a dependable digital device). Data collected using the above methods are also

suitable for Distance analysis so long as lateral angles are recorded and care is taken not to

miss detections on the transect line. We note that the Distance literature provides relatively

brief information on search behaviour [2].

Animals that overtake observers. Animals detected behind the observer (i.e., beyond 90˚

to either side of directly ahead) are not counted unless the observer detects them entering the

scanning area from behind it (observers usually have some awareness of areas just beyond

90˚). For such cases, record the distance as zero (0) to signify to the WildlifeDensity software

that this detection was an overtake. During later analysis, the total detection frequencies are

then increased according to the proportion of overtakes (usually low). With perpendicular dis-

tance surveys, record detections exactly on the transect line (i.e., lateral angle 0˚, perpendicular

distance 0 m) as a near-zero distance to avoid confusion with overtakes (e.g., 0.01 m, which

has little effect on the results).

Stratification. To increase the precision of density estimates, transects can be divided into

segments of similar detectability, most commonly according to vegetation cover (“habitat”; or

by weather, lighting, sex in sexually dimorphic species, etc.). Observers estimate the length of

transect travelled in each stratum by recording the positions or times at which the strata

changed (assuming an overall consistent observer speed). The results from each of these strati-

fied samples are then combined (see Section Using stratification with line transect surveys).

WildlifeDensity assumptions

WildlifeDensity shares some of the assumptions required for Distance (Section Distance
assumptions), being Assumption 1 (location independence) and Assumption 3 (measurement

accuracy). However, complete detection on the transect line is not required (Assumption 2).

Assumption 4—that there is no movement (change in location) of animals—can be relaxed.

While it remains important that there is no responsive movement (a response to an observer’s

approach before detection), non-responsive movement (the animals’ normal behaviour) can be

allowed for. This should be more or less at random in the horizontal plane, as opposed to pop-

ulation-wide movements (such as migration). Both techniques assume that media between the

observer and animals (vegetation, atmosphere, topography) reduce detectability with distance.

The main models underlying WildlifeDensity are described below.

Modelling the study site

An observer scanning a horizontal plane ahead to 90˚ on each side of the transect will have a

semi-circular, or D-shaped, search area bounded by an arc (visual detection limit, radius rmax)

and a straight line perpendicular to the transect (Fig 2). This area moves forward with the

observer; animals enter it and become available for detection when the arc sweeps over them

or by overtaking from behind (only possible if they move faster than the observer). Consider a

site containing an animal population of density D, through which the observer walks a transect

of length L. As the observer moves forward, the arc passes through an area equal to a rectangle

of length L and width 2rmax. The population within this rectangle will be D�2Lrmax.

If the search area is divided into radial distance intervals, a set of concentric observing half-
annuli (half-ring-shaped areas) is produced (Fig 3). Imagine a set of, say, n� 70 half-annuli,

each with a narrow width Δr (where Δr = rmax/n); each passes through an area of 2Lr (where r
ranges between rmax and Δr). In the model, all half-annuli move ahead with the observer in Δr-
wide steps. This annulus-by-annulus procedure is fundamental to the WildlifeDensity
approach and can be applied to radial or perpendicular distance data.

PLOS ONE Distance sampling with movement compensation

PLOS ONE | https://doi.org/10.1371/journal.pone.0310020 October 16, 2024 5 / 30

https://doi.org/10.1371/journal.pone.0310020


Radial distance data. Beginning with the furthest half-annulus (bounded by rmax) and

then in nearer ones, animals are detected, recorded and subsequently disregarded as the

observer advances. The number of detections is near-zero at rmax and increases with

proximity to the observer up to a certain point; it then declines as the number of animals avail-

able for detection decreases. This typically results in a frequency distribution resembling a

Fig 2. The area passed through by the outermost observing arc (radius = rmax) as an observer travels a transect

from A to B (shaded; area = 2Lrmax m2). The diagram is not to scale; in reality, the length will be much greater than

the width and any discrepancies at either end (between the transect and search-area start/end points) will be minor.

https://doi.org/10.1371/journal.pone.0310020.g002

Fig 3. Simplified depiction of observing half-annuli ahead of an observer (O) on a transect line. In this example,

there are seven distance intervals, each containing three half-annuli of width Δr (only shown within Interval 6 for

simplicity). Detections begin in the most distant half-annulus (bounded by rmax), continue in closer ones (e.g., annuli

bounded by r1 and r2) and end where the detection probability pd = 1, unless some animals remain unseen. The half-

annuli pass through areas measuring 2Lr (see Fig 2), which vary according to the value of r.

https://doi.org/10.1371/journal.pone.0310020.g003
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right-skewed bell curve (Fig 1A). Densities are estimated for the areas passed through by each

half-annulus, then combined into distance classes.

Perpendicular distance data. A comparable model applies when using perpendicular dis-

tances, although the geometry of the sampling situation differs. Here, the program predicts

detection numbers within narrow strips parallel to the transect (Fig 4). Densities are estimated

for each perpendicular distance class in sequence from the greatest to least. The detection fre-

quency distribution typically has the reversed S-shape of Fig 1B.

The probability of detection

To see how the models work, consider now a radial distance survey of a population of density

D dispersed amongst relatively uniform vegetation. Let the transects be L m long, the observer

and population movement rates known, and N be the total number of detections. The task is

to estimate the numbers of detections within each half-annulus of radial distance r and corre-

sponding direct-line distance d (when the observer and population are in the same horizontal

plane, r = d). For this, we need to estimate both the population density D at r (and d) and the

probability Pd of detecting an animal at distance d.

Our modelling is based on the properties of light and human vision. Detecting an animal

requires an observer to visually discriminate it from the background. The probability of

Fig 4. Areas swept out by an interval of observing annuli on transect AB when using perpendicular distances y. As

with Fig 3, there are seven radial distance intervals, each containing three Δr-wide annuli (not shown). Consider the

end of Radial Interval 6 (between y2 and y1), which passes through rectangular strips on either side of the transect

(shaded; area = SLΔr m2). Each strip is also swept by portions of annuli with greater radii (in this case, Radial Interval

7). Densities are estimated for each perpendicular distance class in sequence from the greatest to least.

https://doi.org/10.1371/journal.pone.0310020.g004
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detecting an animal by sight at any particular distance—its visual detectability—depends

mainly on the amount of light reflected from the animal (affecting its conspicuousness) and the

extent to which it is obscured by atmospheric effects, vegetation and/or topography.

Animal conspicuousness. At a very short distance a, an animal is always detectable (pa =

1). Detectability then declines with distance according to the inverse-square law of light trans-

mission. An animal’s probability of being discriminated at d can then be represented as pd =
a2/d2 (0< pd< 1). Here, a is a constant defined as the conspicuousness coefficient, which

depends on the species and the habitat it is detected in and is approximately the minimum

detection distance (dmin, at which animals will never be undetected). There is also a maximum

detection distance dmax, beyond which the animal’s image is too small to discern. Larger ani-

mals usually have greater values of a, dmin and dmax than smaller ones. Movement and back-

ground contrast may also affect conspicuousness.

Atmospheric attenuation. Image clarity may decline with distance due to atmospheric

effects (e.g., mist, fog, rain), reducing detectability in a complex and exponential way repre-

sentable by pb, where pb = e−bd (0 < pb< 1) and b is the atmospheric attenuation coefficient. In

clear weather, except at very long distances (e.g., aerial surveys at sea), b will be negligible and

can be disregarded. Observers should avoid poor atmospheric conditions (e.g., heavy rain and

fog, where b is not negligible).

Lateral cover. Visual detection also requires a clear line-of-sight, which may be blocked

by vegetation and/or topographical cover, as follows. Let cover (c) represent the total length of

solid matter (e.g., tree trunks, foliage; in m) potentially interrupting the line-of-sight between

observer and animal. Then, the mean lateral vegetation cover (cv) of a given habitat is the mean

proportion of vegetation intercepting all lines-of-sight, for which ∑d is the overall line length:

cv = ∑c/∑d. Cover decreases detectability in proportion to cv and is cumulative. Because detect-

ability depends on unobscured visibility, if the lateral cover proportion is cv, the proportion of

lines-of-sight unobscured becomes (1 − cv). The probability of visibility through lateral cover
(pv) at d can then be modelled as pv = (1 − cv)d.

Topographical cover. If the terrain is level, or detection distances short, topography has

little effect on detection rate; however, features such as hills may obscure animals. Consider a

representative obscuring distance (dT) to a hilltop ahead (e.g., 200 m). Up to dT, no animal is

hidden by topography, while beyond dT, animals are increasingly obscured up to dmax. In gen-

eral, the probability of being unobscured by topography (pT) at distances less than dT is 1; it

declines to 0 at dmax. Field research (C. Timewell, unpublished) indicates there is an approxi-

mately exponential decay in detection probability from 1 to 0 at distances between dT and

dmax. This decay can be approximated by a topographical cover index (cT)—a rough approxi-

mation of a site’s hilliness. Hence, at distances between dT and dmax, pT = ecT(d–dT). The Wildli-
feDensity user can enter an estimate of the distance at which topography starts to obscure

animals.

Detection probability. Initial detection probability. At the start of the survey, the probabil-

ity of detecting an animal at any distance can be modelled by combining the above models.

Detectability depends on the animal’s conspicuousness, atmospheric attenuation, and vegeta-

tion and topographical cover at d. Hence, the detection probability at d is g(d), which is the

product of the detection probabilities at d (pd, pb, pv, pT)d minus those at dmax. Therefore, g(d)

reaches zero at dmax (Eq 1).

g dð Þ ¼ a2 e� bdð1 � cvÞ
d
� ecT ðd� dT Þ

d2
�

e� bdmaxð1 � cvÞ
dmax � ecT ðdmax � dT Þ

d2
max

 !
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Which is equivalent to:

gðdÞ ¼ ðpd � pb � pv � pTÞd � ðpd � pb � pv � pTÞdmax
ð1Þ

Note also that as animals are detected and subsequently disregarded, progressively fewer

remain available for detection in annuli nearer to the observer. This can be modelled as

follows.

The effect of previous detections on detection probability. All animals in the outermost

observing annulus are available for detection. In all subsequent annuli, let there be a probabil-

ity Q(d) that an animal is present but has remained undetected (as it was obscured or missed).

As the observer advances, Q(d) decreases from 1 at dmax to 0 at dmin (Fig 5, blue line). It can

be predicted by multiplying together the detection probabilities in all annuli already scanned

(Eq 2):

QðdÞ ¼
Yn

i¼1
½1 � gðdmax � ði � 1Þ � DdÞ� ð2Þ

where n is the number of annuli from dmax to d (= (dmax − d)/Δd), Δd is the annulus width (set

by the software), and i is the annulus index number (beginning at the outermost annulus).

Fig 5. Variations in probabilities with distance. The probability of an undetected animal being present Q(d) (blue), the probability of its detection, if present g
(d) (green), and the probability of being both present and detected Pd (red) with direct-line distance from an observer d, where Pd = g(d)�Q(d + Δd). Based on a

real example of a honeyeater population in a riparian open woodland in south-eastern Australia.

https://doi.org/10.1371/journal.pone.0310020.g005
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Overall detection probability. The overall probability Pd that an as-yet undetected animal is

present at d and is detected there will be the product of g(d) and Q(d + Δd); that is, g(d) in the

current annulus multiplied by Q(d) in the next annulus further out (Eq 3; Fig 5, red line):

Pd ¼ gðdÞ � Qðd þ DdÞ ð3Þ

Estimating numbers

Radial data. The expected total number of detections E[N] in a radial distance class r1–r2

can now be modelled as the sum of the expected detections in all observing annuli in that class

(Eq 4). In most situations, the direct-line distance d is equivalent to the radial distance r;
hence, r is used in the following equation:

E½N� ¼ DJ pa ns L Dr
Xn

i¼1
frh � ði � 1ÞDrg � gfr � ði � 1ÞDrg � Qfr � ði � 2ÞDrg ð4Þ

where:

J = movement compensation factor (derived in the following section);

pa = proportion of population observable (0 < pa< 1);

n = number of annuli in distance class = (r2 − r1)/Δr;
ns = transect sides scanned (usually 2);

rh = radial distance between observer and outer boundary of current annulus;

r = radial distance from observer to annulus centreline;

g(r) = mean probability of detecting an animal within the annulus of radius r; and

Q(r) = mean probability of an undetected animal being present in the annulus of radius r.
Perpendicular data. Because perpendicular detections are modelled in strips parallel to

the transect line; several observing annuli overlap each strip except the outermost one (Fig 4).

Hence, the number of detections expected in annuli between any two distances y2 and y1 is

modelled by Eq 5:

E½N� ¼ DJ pa ns L DrDr
Xm

j¼1
�
Xn

i¼1
gfrmax � ðj � n � n � iÞDrg

� Qfrmax þ Dr � ðj � n � n � iÞDrgð5Þ

where:

m = number of distance classes in the area from ymax to ymin on each side of the transect;

j = position of each class in the series (outermost = 1); and

the remaining variables are as defined earlier.

Eqs 4 and 5 incorporate a movement compensation factor J, derived as follows.

Compensating for animal–observer relative movement

Compared with a survey of an immobile population, detections tend to be greater when the

population’s mean speed of unresponsive movement (location changes due to normal behav-

iour) is faster than the observer speed (e.g., many birds), as moving animals can potentially

pass through the visual field more often than immobile ones.

Modelling population movement. Yapp [17] modelled the effects of bird movement on

detections made by an observer travelling a line transect. He likened encounters between a

moving observer and a mobile animal population to random intermolecular collisions, as

described by the classic kinetic theory of gases for a two-dimensional situation. Greater molec-

ular speeds increase the likelihood of collisions.

This approach was further developed by Skellam [18], who conceptualised the population

as a set of molecules moving randomly in paths composed of small, straight links. The observer

PLOS ONE Distance sampling with movement compensation

PLOS ONE | https://doi.org/10.1371/journal.pone.0310020 October 16, 2024 10 / 30

https://doi.org/10.1371/journal.pone.0310020


is like a relatively large molecule travelling in a consistent direction in the plane of the popula-

tion. The ‘observer molecule’ is encircled by a contour of interception at the boundary of the

observer’s visual field (with a radius equivalent to rmax in Fig 2). The ‘animal molecules’ (indi-

viduals and/or groups) move in random directions at a certain average velocity relative to the

observer. Detections are made whenever the contour and animals make contact.

These concepts are used to develop a way of compensating for the effect of relative animal-

to-observer movement on WildlifeDensity density estimates. Rather than using Skellam’s cir-

cular contour of interception, WildlifeDensity is based on modelling using D-shaped, semi-cir-

cular contours, an approach contributed by a mathematician colleague, the late Ed T. Conway.

This approach provides a better cost-benefit trade-off for fieldworkers, as many more animals

are usually first detected ahead than behind, while scanning a circular contour would require

observers to rotate as they move ahead. Conway’s models predict the effects of population–

observer relative movement on detections around the edge of the D-shaped contour. The sec-

tions below employ Conway’s derivation.

A movement compensation model

Movement compensation requires consideration of animal and observer movement in terms

of velocity (i.e., speed in a certain direction). Suppose the observer’s velocity has a magnitude

(i.e., speed) w in the transect direction θ = 0˚. Each animal has a velocity of magnitude u in a

direction θ relative to the transect direction, and the animal population an average speed ū in

random directions. Finally, each animal has a relative velocity in relation to the observer, of

magnitude v and direction θ (for example, the relative velocity of an animal moving in the

same direction and speed as the observer will be v = 0, θ = 0). Let the observer travel a line tran-

sect at a constant velocity w through a population of density D that is moving in the same

plane in random directions at an average speed ū (in reality, animals such as flying birds may

move in three dimensions). The observer scans the field ahead, which is modelled as a set of

D-shaped half-annuli concentric to the detection limit of radius rmax (Fig 2). For modelling

purposes, at the moment of detection each animal is assumed to be moving in a straight line.

Animals will be detected within annuli of various radii. Let us focus on the number of detec-

tions expected per unit time at any radial distance r.
A D-shaped contour of interception. According to Skellam [18], at any time t, members

of the population may differ widely in their speeds (v) and directions (θ) relative to the

observer. Then, ƒ(v, θ, t) dv�dθ becomes the population proportion at time t with speeds in the

interval v ± 0.5dv and directions in the interval θ ± 0.5dθ. Because the area of that part of the

contour is H(θ)v(t) dt, the expected number of animals within that class would be D�ƒ(v, θ, t)
dv dθ�H(θ)�v(t) dt, and the expected total number E{n} cutting the contour over a period of

time from T0 to T1 will be the integral of that function over v, θ and t [18]:

Efng
ðT0 ;T1Þ

¼ D
Z 2p

0

Z 1

0

Z T1

T0

f ðv; y; tÞ � vðtÞ � HðyÞdy dv dt ð6Þ

Using this integral, it is possible to calculate the effect of animal movement on detections.

However, an integral appropriate to a D-shaped contour of interception rather than Skellam’s

circular one is required (Fig 6).

Effects of movement on detections. If the observer has a constant velocity and the popu-

lation members are classified at time t according to their velocities relative to the observer, so

that f(v, θ, t)dv�dθ is the population proportion at time t with speeds within v ± 0.5dv and

directions within θ ± 0.5dθ, and their distribution is unaffected by time (a reasonable assump-

tion), then f = f(v, θ).
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A key relationship. The expected total number of animals cutting the contour of intercep-

tion per unit time, E{n}, for all directions and speeds, can then be given by Eq 7, which is an

appropriate modification of Eq 6:

Efng ¼ Dr �

Z 1

0

Z p

� p

f ðv; yÞ � v � HðyÞ � dy � dv ð7Þ

where:

E{n} = number of animals cutting the contour per unit time;

Dr = population density at r (detections at r per unit area);

v = animal speed relative to observer;

θ = animal direction relative to observer/transect;

ƒ(v, θ) = probability density function for v and θ; and

H(θ) = distance between tangents to the contour for animal direction θ (Fig 6).

Fig 6. Diagram showing moving animals crossing an observer’s D-shaped contour of interception of radius r. Animals moving in

a direction θ relative to the transect line are detected when they cross the contour. H(θ) is the distance between the two tangents to the

contour for direction θ. An animal moving in this direction can only cross the shaded portion of the contour, which has a width v(t)dt.
Any animal within this region within a small time-interval dt has a probability of being detected. In this example, there are three

potentially detectable animals (arrows) with direction θ: one (middle) is detected within time dt, another (left) was detected a moment

earlier and a third (right) is about to be detected. The speeds of each are slightly different, as represented by the arrow lengths. Such a

contour will be one of many that travel with the observer along a transect line.

https://doi.org/10.1371/journal.pone.0310020.g006
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The order of integration is unimportant, and the limits of the inner integral are more con-

veniently written as –π, π rather than as 0, 2π. All angles here are expressed in radians.

From Eq 7,

Dr ¼
Efng

R1
0

R p
� p

f ðv; yÞv � HðyÞ � dy dv
ð8Þ

If the contour were a complete circle, as envisaged by Skellam, then H(θ) = 2r and this

expression reduces to:

Dr ¼
Efng
2rV

Where V = mean velocity of animals relative to the observer and r = radial detection dis-

tance. However, for a D-shaped contour,

HðyÞ ¼ rð1þ jcos yjÞ ð9Þ

and the integral in Eq 7 requires evaluation; i.e.,

I ¼
Z 1

0

Z p

� p

f ðv; yÞ � v � HðyÞ � dy � dv ð10Þ

Terms in the integral (Eq 10). The value of ƒ(v, θ) depends on both the animals’ velocity dis-

tribution and the observer’s velocity. Animal speeds and directions are likely to be distributed

independently of a stationary observer but that ceases to be the case once the observer moves

forward. Any animal relatively close to and ahead of the contour of interception has some

chance of being contacted. Any animal behind that region may intercept it from behind if its

speed exceeds that of the observer. Whether contact occurs or not will depend on how close

the animal is to the contour, how fast it and the observer are moving, in what directions it is

moving, and whether the animal is detectable at that distance.

As in Skellam [18], let us make an approximation by taking the simplest distributions of the

key variables. Assume that all population members have the same speed but random direc-

tions, while the observer has a constant speed and direction. Using polar coordinates, the

observer’s velocity has magnitude w in direction θ = 0.

We can choose a particular angle θ, given the animal’s relative speed v, and consider the

sum total of all such angles. We can then find ƒ(v, θ) by using the relation:

f ðv; yÞ ¼ f1ðyjvÞ � f2ðvÞ ð11Þ

where:

ƒ1(θ|v) = the conditional probability density function for θ, given v. That is, the probability

that an animal moving at relative speed v has a direction θ; and

ƒ2(v) = the probability density function for v; i.e., the probability of an animal having a cer-

tain relative speed.

Let us begin by evaluating the probability density function ƒ2(v) for v. Fig 7 represents an

observer travelling a transect at speed w and an animal moving at speed u at vector angle F.

The animal’s relative velocity v and direction θ can be determined by the cosine rule (Eq 12).

v2 ¼ u2 þ w2 � 2uw cos F ð12Þ

where:

v = animal speed relative to observer;

u = animal speed;
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w = observer speed; and

F = vector angle between the animal and observer velocities.

Contacts will be made ahead of the observer with any values of u and w; animals behind are

only counted if they overtake the observer, which can only happen if u> w. Whatever the val-

ues of u and w, the set of possible animal relative velocities V will have the range:

ju � wj � V � uþ w ð13Þ

The probability of an animal’s direction being within an angle φ relative to the transect line

is:

PrðjFj < φÞ ¼ φ=p ð14Þ

where (0� φ� π radians). Then,

PrðV < vÞ ¼ PrðV2 < v2Þ

¼ Prðu2 þ w2 � 2uw cos � < v2Þ

¼ Pr cos � >
u2 þ w2 � v2

2uw

� �

¼ Pr j�j < arcos
u2 þ w2 � v2

2uw

� �

¼
arcos u2þw2 � v2

2uw

p
ð15Þ

with the numerator thus replacing φ in Eq 14.

Fig 7. Animal–observer relative velocity. An animal moving at speed u and vector angleF relative to an observer

moving at speed w along a transect has a relative velocity of speed v at angle θ (radians).

https://doi.org/10.1371/journal.pone.0310020.g007
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The probability density function for v is ƒ2(v); i.e., the population proportion with relative

velocities between v − 0.5dv and v + 0.5dv, and is obtained by differentiating with respect to v.

Thus,

f 2 vð Þ ¼
d
dv

arcos u2þw2 � v2

2uw

p

( )

Hence,

f2 vð Þ ¼
2v

p
ffiffiffiffiffiffiffiffiffiffiffiffi
4u2w2
p

� ðu2 þ w2 � v2Þ
2

¼
2v

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fv2 � ðu � wÞ2gfðuþ wÞ2 � v2g

q ð16Þ

for ju � wj � v � uþ w, and ƒ2(v) = 0 for all other values of v.

We now need an expression for ƒ1(θ|v), the probability density function for θ, given v.

Notice that the angle θ in Fig 6 will always satisfy π/2< θ< π. From Fig 7, because all animals

moving at relative speed v have, in effect, a single direction θ relative to the observer, then

according to the cosine rule (Eq 12),

cos y ¼
u2 � w2 � V2

2wV
ð17Þ

and

jyj ¼ arcos
u2 � w2 � V2

2wV
ð18Þ

This tells us that ƒ1(θ|v) is not a continuous function; once v is given as V, |θ| is uniquely

determined. This can be expressed in terms of a delta function for ƒ1(θ|v):

f ðjyjjvÞ ¼ d jyj � arcos
u2 � w2 � v2

2wv

� �

ð19Þ

So,

f1ðyjvÞ ¼ 0:5 d y � arcos
u2 � w2 � v2

2wv

� �

þ d yþ arcos
u2 � w2 � v2

2wv

� �� �

ð20Þ

The width of the contour of interception is H(θ). From the mean value theorem (see [18],

p. 392), the effect of using a D-shaped contour is that HðyÞ ¼ rð1þ jcos yjÞ, as per Eq 9, with

a value between r and 2r (see Fig 6), where r is the radius of the contour of interception.

Function evaluation. We can now go ahead and evaluate the integral in Eq 7. Then, using

Eq 11, the integral becomes:

I ¼ D �
Z 1

0

Z p

� p

f2ðvÞ�f1ðyjvÞ � v � HðyÞdy dv ð21Þ

The inner integral. The inner integral, by the property of δ-functions, is now (from Eq 20):
Z p

� p

f2ðvÞ�f1ðyjvÞ � v � HðyÞdy ¼ 0:5f2 vð Þ � v �H arcos
u2 � w2 � v2

2wv

� �

þ 0:5f2 vð Þ � v �H � arcos
u2 � w2 � v2

2wv

� �

ð22Þ
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Then, using the D-shaped contour (Eq 9), this inner integral is simply:

f2 vð Þ � v � r � 1þ j
u2 � w2 � v2

2wv
j

� �

ð23Þ

The whole integral. Consider now what happens as an observer moves forward along a tran-

sect at speed w, searching around a D-shaped contour while travelling through a population

moving at a mean speed ū in a variety of directions. As we have modelled the situation, poten-

tially detectable animals can be classified according to their relative speeds: 1) those with

speeds greater than the observer (u> w) may contact the contour of interception from any

direction, including by overtaking from behind, 2) animals with speeds less than that of the

observer (w> u) are detected as the observer passes by and 3) those with similar speeds

(u = w) have a lower probability of detection, as the paths of the animal and contour are less

likely to cross than in the other cases. Although real-world animal and observer speeds can

vary in a highly complex way, this pattern is sufficiently representative. The integration process

from here on depends on the relative magnitudes of u and w.

Case 1: When u> w, then |u − w|� V� u + w. Because ƒ2(v) is zero outside the range |u
− w|! u + w, using Eq 23, the whole integral becomes:

I ¼
Z uþw

ju� wj
f2ðvÞ � v � r 1þ j

u2 � w2 � v2

2wv
j

� �

¼

Z uþw

ju� wj

2v

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fv2 � ðu � wÞ2gfðuþ wÞ2 � v2g

q � v � r 1þ j
u2 � w2 � v2

2wv
j

� �

dv

¼
2r
p

Z uþw

ju� wj

v2 1þ j u
2 � w2 � v2

2wv j
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fv2 � ðu � wÞ2gfðuþ wÞ2 � v2g

q dv ð24Þ

Case 2: When w> u, then w − u� V� u + w. The lower limit of integration in Eq 24 now

becomes w–u; thus:

I ¼
2r
p

Z uþw

w� u

v2 1þ j u
2 � w2 � v2

2wv j
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fv2 � ðu � wÞ2gfðuþ wÞ2 � v2g

q dv ð25Þ

Case 3: When u = w, then Eq 25 becomes:

I ¼
2r
p

Z 2u

0

v2 1þ j � v
2

2uv j
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2fð2uÞ2 � v2g

q dv

¼
2r
p

Z 2u

0

v2 1þ j v
2u j

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2fð2uÞ2 � v2g

q dv ð26Þ

Only in Case 1 (Eq 24, fast animals where u> w) is animal movement highly likely to bring

significantly more individuals into the path of an observer, thereby requiring movement com-

pensation. Once values for u, w and r are chosen, the improper integral there can be evaluated

numerically. Dr from Eq 7 can also be calculated as E{n}/I.
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A movement compensation factor. To compensate for the effect of animal movement on

detections along a line transect, we need to compare the number actually detected with the

number expected for an immobile population.

Expected contacts per unit time. Let k be the animal-to-observer relative speed, where k = u/

w. Then, using Eq 24, we have:

I ¼
2r
p

Z wðkþ1Þ

wðk� 1Þ

v2 1þ j
ðk2 � 1Þw2 � v2

2wv j
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fv2 � w2ðk � 1Þ
2
gfw2ðkþ 1Þ

2
� v2g

q dv ð27Þ

If we then let v = ws, where s is the ratio between w and v, then:

I ¼
2r
p

Z kþ1

jk� 1j

w2s2 1þ j k
2 � 1� s2

2s j
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fs2 � ðk � 1Þ
2
gfðkþ 1Þ

2
� s2gw4

q wds

¼
2rw
p

Z kþ1

jk� 1j

s2 1þ j k
2 � 1� s2

2s j
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fs2 � ðk � 1Þ
2
gfðkþ 1Þ

2
� s2g

q ds ð28Þ

For a given mean animal speed ū and observer speed w, let J be the ratio between the num-

ber of detections and that expected for immobile animals (ū = 0); i.e.,

J ¼
detections expected at animal speed �u
detections expected at animal speed 0

ð29Þ

Contacts if animals immobile. If all animals were immobile, the number of contacts E{n}

expected on the perimeter of a D-shaped contour of radius r per unit time is expected to equal

the density at r multiplied by the area swept out per unit time; i.e.,

Efng ¼ Dr � 2rw ð30Þ

The movement compensation factor J. Replacing the numerator in Eq 29 with Eq 28,

and the denominator with Eq 30, we get:

J ¼ Dr
2rw
p

Z kþ1

jk� 1j

s2 1þ j k
2 � 1� s2

2s j
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fs2 � ðk � 1Þ
2
gfðkþ 1Þ

2
� s2g

q ds=Dr � 2rw ð31Þ

Then, for any given value of k, we get Eq 32:

J ¼
1

p

Z kþ1

jk� 1j

s2 1þ j k
2 � 1� s2

2s j
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f½s2 � ðk � 1Þ
2
�½ðkþ 1Þ

2
� s2�g

q ds ð32Þ

This improper integral can now be evaluated numerically. It is improper at both ends, but

convergent. Notice that the value of J is independent of both the population density D and the

radial detection distance r—its magnitude depends only on the population speed ū and

observer speed w.
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Then, at any radial distance r,

Dr ¼
Efng
2rwJ

ð33Þ

If an observer travels a transect of length L in time T, and detects individuals at a certain fre-

quency ƒr at various radial distances r, then the number of detections per unit time at r, nr, is

given by:

nr ¼
fr
T

ð34Þ

In the density estimator represented by Eq 33, J serves as a movement compensation factor.
Because J is a function of the population–observer relative speed and is independent of r, it can

be applied to reduce the observed number of detections of a mobile population to that

expected for an immobile one. J itself is dimensionless.

Calculating animal speed ū. For modelling purposes, the animal and observer speeds are

approximated as constants. Given that observers endeavour to move at a constant speed, w can

be estimated as the transect length divided by the travel time (w = L/T, m/min). Then, ū is cal-

culated by classifying the main behavioural types i of the species (e.g., resting, flying, walking),

quantifying the proportions of time spent in each behaviour pi, and estimating the average hori-
zontal speed of each behaviour ui (Eq 35).

�u ¼
X
ðpi � uiÞ ð35Þ

Estimation of pi and ui requires independent study of the target species under the survey

conditions (same time and environment). For example, an observer may spend several hours

recording behaviours at 10 s intervals (e.g., i = stationary, walking, travelling, fleeing) to estab-

lish values for pi. Then, the average speeds of these behaviours are estimated to establish values

for ui. For example, a bird’s flights can be timed and the distances measured to obtain utravelling.

Some movement speeds (e.g., flight) of particular species may be available in existing research.

Sometimes, an approximation based on a known species may suffice. Further guidance is pro-

vided in the WildlifeDensity manual [15]. We have not yet incorporated a measure of variance

in ū. This may be a topic of further research.

Evaluating J. Numerical integration of Eq 32 produces J values for values of k (Fig 8). Pro-

vided that an estimate of ū is supplied, WildlifeDensity calculates J and includes it with the

results of each density estimate. If an investigator requires a J value independently of Wildlife-
Density, they can first calculate k (= ū/w). At k = 0–0.3, J is effectively 1. For k = 0.3–3.0, J can

be closely approximated using a simple polynomial:

J ¼ � 0:068k3 þ 0:474k2 � 0:324kþ 1:069 ð36Þ

For k� 3, the relationship approaches linearity, where:

J ¼ 0:82k ð37Þ

Density estimation

Setting up an analysis. In the WildlifeDensity program, the Method and Sample Details
menus are used to enter details such as survey type, transect length and time taken, and popu-

lation speed ū. The detection data (distances and group sizes) are entered in the Observations
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menu manually or by copying from a text file. In the Options menu, one can set up an analysis

by entering a class interval width and number of iterations to be used in bootstrapping (say,

500–1000). The initial values of parameters D, c, a and dmax and their step sizes are chosen

automatically, or can be specified if they are already known. Calculations are then initiated

from the Estimate menu. Further advice is available in the guide provided with the software.

Computational summary. WildlifeDensity was originally written in Fortran and revised

using a combination of C, C++ and Objective C to run on MacOS systems. Processing begins

by incorporating survey data such as the number of transect sides searched (1 or 2) and the

transect lengths and times taken. The maximum detection distance is estimated from the data

or can be set manually. The program uses the relevant objective function model (Eq 7 or 8) to

determine the densities expected in distance classes across the range, with classes usually sub-

divided into multiple observing annuli. When sample sizes are large (> 250), estimates are

made of three parameters: D (density), a (conspicuousness) and c (lateral cover); the latter two

‘shape parameters’ affect the rate of change in detectability with distance and, hence, the form

of the detection vs distance frequency distribution. With smaller samples, the mean and stan-

dard error of D and one shape parameter are estimated, together with an approximation to the

other shape parameter.

Within each distance class, the numbers of detections expected in each arc are totalled and

compared with the numbers observed in that class. A total sum of squares of the differences

between the estimated and observed detection numbers in the various classes is then calcu-

lated. This is followed by a numerical function minimization process (Section Function mini-
misation) for each of the main parameters in turn to try to minimise the differences between

the observed and estimated detections.

To start the minimisation process, pre-set initial parameter estimates are normally used,

based on previous WildlifeDensity analyses of representative species. Alternatively, suitable

Fig 8. Relationship between the movement compensation factor J and population-observer speed ratio k. Dots

represent the numerical integration of Eq 32, while the dotted line represents the approximation provided by Eq 36. At

k< 0.5, the effect of k on detections is negligible; while at higher ratios, expected detections are much greater (e.g., 2.5

times at k = 3), suggesting that movement compensation is essential in some surveys.

https://doi.org/10.1371/journal.pone.0310020.g008
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initial values can be entered. A function minimization process using the original data then pro-

vides the first set of parameter estimates. The result is supplemented by multiple resampling of

the original data with replacement, or bootstrapping, for a pre-determined number of itera-

tions (e.g., 500). In each case, a stepwise procedure varies the initial values of the expediently

modified parameter D�2L and the two main shape parameters. The program then progressively

minimizes the differences and retains the resulting parameter estimates. This produces several

sets of parameter estimates with multiple cases in each, every set of which is usually approxi-

mately normally distributed (as assessed by Shapiro-Wilk tests). These are used to calculate the

final values of parameters D, a and c and their standard errors.

Function minimization. For development purposes, the WildlifeDensity program was

built from several subroutines that execute the iteration calculations for each dataset. For

instance, to drive the bootstrapping, a set of pseudo-random number generator subroutines is

first seeded from the original field data, then used to select the subsets of the bootstrapping.

Case selection is then at random with replacement, based on the relevant pseudo-randomly

selected index number, which may be any number from 1 to the total number of detections in

the relevant dataset.

Parameter estimation follows a modification of the classic Nelder-Mead ‘downhill’ simplex

method of function optimization [19, 20]. This uses algorithms based on MINIM software

[21], which were developed by staff of the Commonwealth Scientific Industrial Research Orga-

nisation (Sydney, Australia) and the Rothamsted Experimental Station (UK). It is a direct-

search method that estimates the main parameters in turn, beginning with D. The data are ana-

lysed in distance classes in order from the furthest class to the closest one (usually ending at 0

m). The process begins by setting up a simplex: a conceptually conceived geometrical shape

consisting of n + 1 test points, or vertices, in n dimensions (where n is the number of parame-

ters being estimated), initially spaced well apart and linked by straight lines. The coordinates

of the initial points are derived from the data and the initial step sizes. The program then pro-

gressively seeks to reduce the differences between observed and estimated detection numbers

through a progressive function minimization process, modifying the simplex as it goes. All var-

iables and numerical arrays are calculated at double precision.

The main routine varies the values of D, a and c, using the Nelder-Mead approach to mini-

mise the overall difference between the modelled and observed detection data. An algorithm

in n + 1 dimensions maintains a set of test points spatially arranged as a simplex of n + 1 points

in space. At each test point, the original point is replaced with a new one, the simplest

approach being to replace the ‘worst’ point with a new point reflected mathematically through

the centroid (i.e., geometric centre) of the remaining n points of the simplex. If the new point

is better than the best current point, then an exponential expansion along the line between

them is followed. The reflection side of the centroid, then the other side, may also be con-

tracted in length. Or, if the new point is not much better than the previous value, then the

overall simplex is shrunk towards a better one.

The modified simplex is tested for its degree of agreement with previous results, and a new

set of parameter values is derived. The process is repeated until comparison with a predeter-

mined stopping criterion shows that the function minimization process has reached a stage

where the function difference between modelled and observed detections has become very

small and acceptably close. The estimate of D is retained, together with final estimates of the

shape parameters a and c. If an acceptably close result is not produced after 750 iterations, the

search for a minimum is terminated and the analysis treated as unsuccessful. It may then be

appropriate to increase the sample size by collecting and processing additional field data.

If, as has been our usual experience, the analysis proceeds until an acceptable minimum is

reached (convergence), a set of bootstrapped data is selected and treated as above to produce
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another set of parameter values. This entire process is repeated until the predetermined num-

ber of bootstraps is complete. Ultimately, the accumulated estimates are used to calculate final

estimates of the means and standard errors of the main parameters. These are output, along

with an overall detectability coefficient S that delivers a single measure of detectability, the

observed and calculated frequency distributions, and an approximation to the detection proba-

bility at the transect line g(0).

Using stratification with line transect surveys

Line transect surveys can sometimes be made more precise by dividing the environment or

population into distinctive groups, or strata, that differ in some attribute likely to affect detect-

ability, commonly the vegetation type (habitat). In each stratum, the transect length and detec-

tion data are recorded separately. Data from different strata are then analysed separately (e.g.,

by WildlifeDensity). The resulting density estimates and variances are then combined after

weighting each according to the proportion of transect spent in that stratum type.

Thus, if L strata are being combined, the weighting factor for the hth stratum will be Nh/N,

where Nh is the transect length spent in the hth stratum and N is the total transect length. The

density estimate of the hth stratum is �yh. The overall mean density (�yst) of the combined strata

is then given by Eq (38):

�yst ¼
XL

h

Nh

N
�yh ð38Þ

The derivation of a variance varð�ystÞ of the mean of a stratified sample cannot simply rely

on proportional allocation because their sample sizes (detection numbers) n1, n2,. . .nL are ran-

dom variables, the values of which were obtained en route during sampling. Instead, poststrati-
fication methods are appropriate when determining variances [22]. If s2

h is the variance of the

population in the hth stratum, the estimated overall variance of the mean of the combined

stratified sample will be approximately that given by Eq (39), with the standard error being its

square root.

^varð�ystÞ �
N � n
nN

XL

h¼1

Nh

N

� �

s2

h þ
1

n2

N � n
N � 1

� �
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h¼1

N � Nh

N
s2

h ð39Þ

Evaluation

While the mathematical derivation is somewhat complex, the survey protocol and software

usage procedures are relatively straightforward. Ultimately what matters is that the technique

can be demonstrated to work in practice. This section examines WildlifeDensity’s capacity to

1) estimate the densities of ‘benchmark’ terrestrial populations for which density is already

known, 2) deal with inflated detection numbers in line transect surveys of highly mobile popu-

lations, and 3) estimate density in a fairly difficult scenario—that of a small, highly mobile

songbird occurring at low density in a forested site with heavy cover. Comparisons are also

made with conventional Distance analysis.

Test 1: Known-density populations

Method. WildlifeDensity was applied to existing line-transect distance sampling datasets for

which the population density and movement rate were known [8, 23, 24, J. Wischusen, unpubl.

data]. Table 1 summarises these datasets, with the methods used to determine the true
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densities shown in the right column. Three surveys were of inanimate, immobile objects

(including one by helicopter) and two were of relatively immobile herbivores (ū = 5 m/min).

WildlifeDensity estimates were made using both radial and perpendicular detection distances

and compared with those of conventional Distance analysis.

Results

Table 2 shows the density estimates obtained using the three methods. Shown also are the stan-

dard error (SE), bias, and root mean squared error (RMSE)—a combined measure of SE and

bias expressed as a percentage. For all variables except density, lower values indicate superior

estimation performance.

Shapiro-Wilk tests indicated that the frequency distributions of densities estimated by the

three methods were not significantly different from normal. Paired-samples t-tests were then

used to compare estimated and known densities in the 11 surveys for which all three methods

could be applied (Surveys 3a–5e). There were no significant differences between the known

densities and those estimated by WildlifeDensity using radial (n = 11, t = –1.350, p = 0.207) or

perpendicular data (n = 11, t = 1.361, p = 0.203) or by Distance using perpendicular data

(n = 11, t = 0.553, p = 0.593).

Bias. In Surveys 1 and 2—immobile populations for which radial data were unavailable—

perpendicular WildlifeDensity data produced density estimates with lower bias (mean = –

0.6%) than Distance (–7.9%). With the immobile population data, all three techniques can only

be compared using Survey 3. Here, WildlifeDensity perpendicular and Distance perpendicular

performed similarly (–0.4% and 1.7%, respectively) and slightly better than WildlifeDensity
radial (5.4%). For the relatively immobile populations (Surveys 4 and 5), WildlifeDensity radial

outperformed WildlifeDensity perpendicular and Distance perpendicular (–0.9%, –14.1% and

–14.7%, respectively). Comparing all three methods across all datasets (Surveys 3–5), a similar

result was obtained, with WildlifeDensity radial outperforming WildlifeDensity perpendicular

and Distance perpendicular (2.0%, –7.8% and –7.2%, respectively). These results suggest that

all three techniques show acceptable levels of accuracy with data from largely immobile

populations.

Table 1. Known-density datasets used to evaluate WildlifeDensity. Survey 2 was aerial; the others were walked. Surveys 3 and 5 were each undertaken five times.

No. Population Location

[source]

Habitat Transect

length (km)

Animal speed ū
(m/min)

Numbers

detected

Known density source; notes

Immobile populations

1 Wooden

stakes

Logan, UT

[23]

Sagebrush

meadow

1.0 0 68 Objects placed by design

2 Feral pig

carcasses

Arnhem Land,

NT

[24]

Open floodplain 348.0 0 51 Known number culled from aircraft

3a–

e

Eyelevel tree

tags

Clonbinane,

VIC

[J. Wischusen,

unpubl. data]

Open forest 2.0 0 177, 212, 252,

260, 199

Objects placed by design; identical scenario, 5

observers

Relatively immobile populations

4 Red kangaroo Kinchega,

NSW

[8; unpubl.

data]

Fenced low

shrubland

89.3 ~5 200 Preliminary drive count in open, elongated site

5a–

e

Red kangaroo Tidbinbilla,

ACT

[8; unpubl.

data]

Open forest

enclosures

21.8 ~5 242, 197, 166,

204, 101

Tagged, habituated population in reserve; 5 surveys

at different times (5c, e by spotlight at night)

https://doi.org/10.1371/journal.pone.0310020.t001
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Error. While WildlifeDensity estimates generally had less bias than Distance ones, most

(but not all) of their SE values were higher, suggesting that WildlifeDensity may often be more

accurate but less precise. We consider the RMSE as our most useful single indicator of estima-

tion quality as it combines the SE and bias, indicating both precision and accuracy. With the

completely immobile populations (Surveys 1–3), WildlifeDensity perpendicular performed

similarly to Distance (mean RMSEs = 10.1% and 7.7%, respectively). When comparing all

three techniques on an immobile population (possible with Surveys 3a-e only), similar mean

RMSEs were obtained (8.8%, 8.0%, 5.6%, respectively). With the relatively immobile kangaroo

populations (Surveys 4–5), WildlifeDensity radial performed slightly better than WildlifeDen-
sity and Distance perpendicular (13.6%, 17.6%, 19.8%, respectively). Overall, the three methods

showed comparable, acceptable error levels with populations of low or no mobility.

As there are no suitable datasets on highly mobile populations of known density, we under-

took two additional tests. Test 2 investigates the movement compensation ability of Wildlife-
Density, while Test 3 estimates density in a breeding population of a low-density,

inconspicuous and highly mobile forest songbird.

Test 2: Movement compensation

Method. Test 2 examines whether the movement compensation factor (J) can adequately

allow for the effect of high animal–observer relative movement. As it is impossible to vary ani-

mal speeds in a suitable experimental fashion, we instead varied the observer speed. Two sepa-

rate surveys were conducted, where observers walked transects multiple times at a variety of

speeds while searching for highly mobile Australian songbirds: 1) the grey fantail (Rhipidura
albiscapa) and 2) red wattlebird (Anthochaera carunculata). Both move about forest habitats

continually as they forage.

Table 2. Density estimates (est. D), standard errors (SE), bias and root mean squared errors (RMSEs) obtained by three methods of analysis of line-transect surveys

of known-density populations. *Radial data were not available for Surveys 1 and 2. †Densities for surveys 2 and 4 are per km2.

Survey True D WildlifeDensity–radial WildlifeDensity–perpendicular Distance–perpendicular

(no./ha) Est. D SE Bias

(%)

RMSE (%) Est. D SE Bias

(%)

RMSE (%) Est. D SE Bias

(%)

RMSE (%)

Immobile populations

1 37.5 .* . . . 34.5 3.40 -7.9 12.0 36.1 4.32 -3.7 12.1

2 2.8† .* . . . 3.0 0.48 6.8 18.4 2.5 0.17 -12.1 13.6

3a 14.6 14.7 0.83 0.3 5.7 14.1 1.21 -3.7 9.1 14.1 0.67 -3.5 5.7

3b 14.6 14.4 0.66 -1.1 4.7 14.0 0.93 -4.2 7.6 15.1 0.75 3.2 6.0

3c 14.6 16.6 1.31 14.0 16.0 14.7 0.69 1.0 4.8 14.8 0.40 1.3 3.0

3d 14.6 16.0 0.71 9.8 10.9 15.9 0.76 9.2 10.6 15.9 0.22 9.2 9.3

3e 14.6 15.2 0.79 3.9 6.7 14.0 1.01 -4.1 8.1 14.4 0.55 -1.6 4.1

Mean 3a-e 14.6 15.4 5.4 8.8 14.5 -0.4 8.0 14.9 1.7 5.6

Mean 1–3 16.2 15.8 -0.4 10.1 16.1 -1.0 7.7

Relatively immobile populations

4 14.0† 13.7 0.99 -2.3 7.5 13.6 1.24 -2.6 9.2 13.8 1.25 -1.4 9.0

5a 2.2 2.2 0.20 -2.7 9.4 2.1 0.19 -7.7 11.5 2.0 0.14 -10.8 12.5

5b 2.7 2.3 0.25 -14.4 17.1 2.0 0.32 -26.9 29.4 1.6 0.13 -39.5 39.8

5c 2.7 2.5 0.20 -8.5 11.3 2.0 0.23 -25.8 27.2 2.0 0.13 -28.0 28.5

5d 2.0 2.4 0.19 23.2 25.1 1.9 0.18 -6.1 10.1 1.8 0.15 -8.1 11.1

5e 2.0 2.0 0.22 -0.5 11.1 1.7 0.19 -15.2 17.9 2.0 0.35 -0.5 17.7

Mean 4–5 4.3 4.2 -0.9 13.6 3.9 -14.0 17.6 3.9 -14.7 19.8

Mean 3–5 9.0 9.3 2.0 11.4 8.7 -7.8 13.2 8.9 -7.2 13.3

https://doi.org/10.1371/journal.pone.0310020.t002
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Estimates of ū were obtained by measuring the speed of each behaviour type and the pro-

portion of time spent in each. Speed estimation required techniques such as measuring the

times and distances of flights between trees. Eq 35 was used to estimate overall speeds of ū =

116 m/min for fantails and ū = 66 m/min for wattlebirds.

Single observers (Survey 1 = R. Plant, Survey 2 = J. Gibbens) conducted line transect counts

of birds (fantail, wattlebird) while walking forest paths (lengths = 1000 m, 1370 m) at a variety

of approximately constant speeds (ranges = 15–100 m/min, 17–80 m/min), making 372 and

898 detections, respectively. Observer–animal distances were not required for this task. Eqs 36

and 37 were used to calculate J-values for each observer speed class, which were used to adjust

the detection numbers (= detections/J). We hypothesised that a faster-moving observer would

make fewer detections because birds would have less time to leave and re-enter their visual

field and be detected again. It is also possible that a faster-moving observer makes fewer detec-

tions because they have less time to scan the visual field and/or because their increased con-

spicuousness flushes animals. To minimise this, we restricted the range of speeds to those

where the observer was capable of adhering to the field protocol. We believe flushing to have

been minimal as the birds at the study site stayed well above ground level and appeared unre-

sponsive to people below.

Results. Fig 9 plots the observer speeds versus actual and J-adjusted bird detection

frequencies.

Prior to movement rate compensation, detection numbers per observer speed class

decreased significantly with increasing observer speed (fantail: Pearson r = −0.79, p = 0.006,

n = 10; wattlebird: r = −0.71, p = 0.004, n = 14). After compensation, neither correlation was

statistically significant (fantail: r = −0.002, p = 0.99, n = 10; wattlebird: r = −0.361, p = 0.161,

n = 14), suggesting that the movement compensation procedure was effective.

Test 3: A difficult population (low visibility, low density, high relative

movement)

Method. WildlifeDensity was next applied to a scenario that is challenging to study by dis-

tance sampling—a low-density population of a small, highly mobile forest bird. We again stud-

ied the grey fantail, a small (9 g; [25]), actively mobile (ū = 116 m/min; unpubl. data),

Fig 9. Relationships between observer speed and detection numbers during transect surveys of two highly mobile birds: the grey fantail (a) and red wattlebird

(b). Star-like symbols represent adjusted numbers (after division by J). The trendlines for unadjusted data are logarithmic and steeply decreasing, while those

for the adjusted data are approximately linear and flat (with gradients not significantly different to zero), showing that adjustment by J can compensate for the

effect of relative movement.

https://doi.org/10.1371/journal.pone.0310020.g009
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territorial, arboreal insectivorous species that captures much of its food on the wing. The pop-

ulation was sampled within a small floodplain containing open eucalypt forest in the Otway

Ranges, Victoria, Australia. The area is bounded by a creek on one side and a hillside on the

other, forming a flat, well-defined 10-ha area. Two roughly parallel transects, each 600 m in

length, were walked in consistent weather conditions several times per month in the October–

December breeding seasons [23] of 2016–2019 using the survey protocol (Section A survey
protocol). Detections per survey day were few (0–16), so the data were combined into monthly

sets, which is reasonable as the survey conditions and observer were consistent. Even so, num-

bers were still quite low, with only 5–44 detections per month (mean = 21.6/mo). Densities

were again estimated using the methods of Test 1.

Because the true population densities were unknown, they were approximated by the best esti-

mates obtainable. These were based on intensive observations of fantail nesting, their nests recog-

nisable by their distinctive “wine glass” shape. All fantails observed at the site during the breeding

season were found to be associated with nests in pairs. Consequently, detailed searches and map-

ping were conducted to locate all active nests (those with recently laid eggs, brooding fantails or

fledglings), with the number of fantails assumed to be double the number of nests. The numbers

of nesting pairs in the 10-ha site were estimated as two in 2016, three in both 2017 and 2018, and

zero in 2019, giving fantail densities of 0.4, 0.6, 0.6 and 0.0 per ha, respectively. We used these den-

sities as “best estimates” of the true densities. We consider them informative rather than definitive;

a better demonstration could be made when a suitable dataset becomes available.

We assumed that each observation of incubation activity was associated with one of the

breeding pair being largely undetectable (i.e., stationary on the nest). The numbers undetect-

able were divided by the likely total number of birds (number detected on survey plus number

undetectable) to estimate the proportions of the population readily observable in each month

and breeding season. These ranged between 0.43 and 1 for the monthly estimates, and were

0.98, 0.72, 0.91 and 1.00 for breeding seasons of 2016, 2017, 2018 and 2019, respectively. These

proportions were entered in the corresponding WildlifeDensity and Distance analyses using

the options proportion observable and sampling fraction, respectively, which increased both

types of density estimates to similar extents.

Results. Shapiro-Wilk tests showed that WildlifeDensity’s monthly density estimates

(n = 12) had an approximately normal (Gaussian) distribution (mean = 0.255 SD = 0.098,

W = 0.949, p = 0.615 for radial data; mean = 0.266, SD = 0.158, W = 0.926, p = 0.336 for per-

pendicular), whereas Distance estimates were only marginally so (mean = 0.988, SD = 0.623,

W = 0.864, p = 0.055). A related-samples Friedman’s two-way analysis of variance by ranks

was therefore used to test the hypothesis that the three distributions were the same. No signifi-

cant difference was found between the densities estimated by WildlifeDensity using radial and

perpendicular data (Friedman statistic = 0.167, p = 0.683); however, both radial and perpendic-

ular estimates were significantly less than those estimated by conventional Distance (Friedman

statistics = −1.583 and −1.417, respectively, with both p< 0.001).

With the nesting densities of grey fantails in the survey area known approximately (0.4, 0.6,

0.6 and 0.0 per ha in 2016, 2017, 2018 and 2019, respectively), and the Distance estimates

showing only marginal normality, the nonparametric Wilcoxon signed-ranks test was then

used to compare the fantail nesting densities with the estimates from the three line transect

methods. The nesting results showed fairly large but non-significant differences from the

WildlifeDensity radial estimates (n = 12, W = 12 (12,54), p = 0.067, effect size r = 0.6, skewness

= –0.22) and perpendicular estimates (n = 12, Z = 1.8, W= 16 (16,62), p = 0.077, r = 0.5, skew-

ness = 0.32). In contrast, Distance estimates showed large differences that were statistically sig-

nificant (n = 12, W = 0 (78,0), p< 0.001, r = –1.0). The results are shown graphically for the

twelve nesting months (Fig 10A) and after pooling across each nesting season (Fig 10B). The
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Fig 10. Comparison of grey fantail densities (with 95% confidence intervals) estimated by four methods. Data are pooled a) monthly and b) for October–

December breeding seasons. No nests were completed in 2019.

https://doi.org/10.1371/journal.pone.0310020.g010
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fit of the two WD estimators was judged to be acceptably close, especially in view of the vari-

ability in the contributary data (e.g., detection distances, fantail and observer movement

speeds), the low samples sizes and the semi-closed structure of the habitat.

Discussion

The three tests demonstrate that WildlifeDensity can use distance sampling data to estimate

wildlife population density with acceptable accuracy. On the benchmark datasets (Test 1),

WildlifeDensity estimates were similar to those of Distance, suggesting that both approaches

are based on realistic models. However, the assumptions required for these models differ

somewhat.

Measurement accuracy

With the benchmark datasets, the estimates produced by WildlifeDensity using radial distances

were at least as good as those of WildlifeDensity and Distance using perpendicular distances.

Radial distances are preferred as they have a number of advantages; primarily, being simple

and accurate to measure using a laser rangefinder. Perpendicular distances, meanwhile,

require measurements of radial distance and lateral angle, the latter typically being measured

by sight using a protractor and/or compass in relation to the transect line, which is usually

unmarked. This increases the observer’s workload and the potential for measurement error

[26], particularly when animals are moving and/or numerous. Also, use of the search protocol

(Section A survey protocol) is intended to reduce error by promoting uniform observer behav-

iour in scanning and measurement. Surveys conducted this way may also be analysed in Dis-
tance if lateral angles are recorded. Conversely, data collected for Distance purposes may be

analysed in WildlifeDensity only if the search protocols are consistent, noting that a Distance
protocol may bias scanning the area directly ahead to avoid missing detections on the transect

line, with other search behaviours largely left up to the researcher [2].

Detection certainty on the transect line

Previous distance sampling approaches have found it difficult to model radial data, with the

result that perpendicular models have prevailed [6]. These require a detection function that

peaks at zero distance (i.e., at the transect), where detectability must be assumed to be com-

plete. This is a problematic assumption, as detectability is more closely related to the direct-

line distance from the observer, not the transect line. Numerous techniques for compensating

for incomplete detection on the transect have been devised for use with the Distance method,

such as double-observer methods [27]. Furthermore, detections near the transect line, where

perpendicular distances are short and radial distances are often relatively high, can be particu-

larly prone to measurement error, distorting the detection function and causing bias [28].

WildlifeDensity overcomes these issues by modelling direct-line detection probability based on

system geometry, animal conspicuousness and visual attenuation.

Movement

Conventional Distance is a “snapshot” method based on an assumption that animals do not

move. In reality, animals do move, although many move slowly enough to have little effect on

density estimates (particularly when the animal’s speed is less than half the observer’s [29]).

Those that are highly mobile (many birds) may produce density overestimates [13], thereby

preventing such animals from being accurately surveyed by distance sampling. The data col-

lected in Test 3 show the scale of density overestimates that can result when movement is not
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considered. The fantail detection rate, represented by the value of the movement correction

factor J, varied between 3.5 and 6.4 times the numbers expected if the birds were immobile,

which is consistent with the differences between the WildlifeDensity and Distance estimates.

The relative movement problem has prompted modified distance sampling techniques for

specific situations. For example, seabird surveys may divide sea-surface line transects into a

series of “snapshot” point surveys [30] or adjust density estimates based on vector analysis of

seabird–observer relative speed and direction [31]. These techniques require the point or strip

half-width to be significantly limited (typically to 300 m) so that complete detectability within

the strip can be assumed, which is unrealistic for some seabirds and reduces the sample size

[32].

In [13], simulations of movement effects on detectability predicted a comparable although

different relationship between animal–observer relative speed and detection rate bias to that

reported in the present study (Fig 8). An R software package was devised to implement it in

analyses of distance sampling with movement; interestingly, it uses radial detection data [33].

This approach is computationally intensive and somewhat complex to use. In comparison, to

compensate for movement, the WildlifeDensity application simply requires input of the popu-

lation speed and transect lengths and durations. Test 2 showed how this approach can com-

pensate quite precisely and relatively easily for the effect of animal–observer movement on

detection frequency. Together, the three tests show that WildlifeDensity can provide a useful

tool for researchers of mobile wildlife. While we have also used WildlifeDensity over many

years in surveys of a wide variety of species and habitats, data on mobile populations of known

density have always been lacking. Further study of such populations is needed to comprehen-

sively validate WildlifeDensity in different scenarios.

Fitting detection functions

The Nelder-Mead function minimization approach used in WildlifeDensity is a direct search

simplex method that has been criticised for being unable to prove convergence mathematically

[20] or, sometimes, failing due to convergence to a non-stationary point (e.g., [34]). However,

failure has been shown to occur mainly where the number of dimensions is high and the sim-

plex shape is unduly distorted during expansion and contraction [35]. The method performs

well with small-dimensional real-life problems such as those solved by WildlifeDensity, which

employs only 2–3 dimensions. We have not encountered any failures to model detection prob-

ability using this method.

Summary

In summary, WildlifeDensity can use radial distances, does not require complete detectability

on the transect, and compensates for animal–observer movement. WildlifeDensity also has

other applications not discussed here due to space limitations. For example, its modelling of

direct-line distances allows more accurate estimates in three-dimensional scenarios (e.g., flying

birds, tall forests), whereas conventional techniques model distances as if on a horizontal

plane. In WildlifeDensity, the mean population elevation difference can be entered to compen-

sate for differences between direct-line and horizontal radial distances. It can also be used in

fixed-point and aerial surveys, with observer altitude and speed entered into the program.

When repeated surveys of a site are required, such as for population monitoring, these can be

performed without distance measurement if the detectability (detectability coefficient S) is

known and assumed to be temporally constant. This further simplifies fieldwork by making

animal counts the only necessary data. These benefits expand the potential applications of dis-

tance sampling, making WildlifeDensity a useful conservation tool.
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