
A Suite of Foundation Models Captures the Con-
textual Interplay Between Codons

Mohsen Naghipourfar1, 2, Siyu Chen2, Mathew K. Howard5, 7, Christian B. Macdonald5, Ali Saberi9, 10,
Timo Hagen2, Mohammad R. K. Mofrad1, †, Willow Coyote-Maestas5, 6, †, Hani Goodarzi2, 3, 4, †

1 Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineer-
ing, University of California, Berkeley, Berkeley, CA, USA
2 Arc Institute, Palo Alto, CA, USA
3 Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco,
CA, USA
4 Department of Urology, University of California, San Francisco, San Francisco, CA, USA
5 Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San
Francisco, CA 94158, USA
6 Quantitative Biosciences Institute, University of California, San Francisco, USA
7 Tetrad Graduate Program, UCSF, San Francisco, CA, USA
8 Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA, USA
9 Department of Electrical and Computer Engineering, McGill University, Montreal, Canada
10 Victor P. Dahdaleh Institute of Genomic Medicine, Montreal, QC, Canada

† Correspondence to:
hani@arcinstitute.org
mofrad@berkeley.edu
willow.coyote-maestas@ucsf.edu

Abstract1

In the canonical genetic code, many amino acids are assigned more than one codon. Work by us and2

others has shown that the choice of these synonymous codon is not random, and carries regulatory3

and functional consequences. Existing protein foundation models ignore this context-dependent role of4

coding sequence in shaping the protein landscape of the cell. To address this gap, we introduce cdsFM,5

a suite of codon-resolution large language models, including both EnCodon and DeCodon models, with6

up to 1B parameters. Pre-trained on 60 million protein-coding sequences from more than 5,000 species,7

our models effectively learn the relationship between codons and amino acids, recapitualing the overall8

structure of the genetic code. In addition to outperforming state-of-the-art genomic foundation models9

in a variety of zero-shot and few-shot learning tasks, the larger pre-trained models were superior in10

predicting the choice of synonymous codons. To systematically assess the impact of synonymous codon11

choices on protein expression and our models’ ability to capture these effects, we generated a large12

dataset measuring overall and surface expression levels of three proteins as a function of changes in13
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their synonymous codons. We showed that our EnCodon models could be readily fine-tuned to predict14

the contextual consequences of synonymous codon choices. Armed with this knowledge, we applied15

EnCodon to existing clinical datasets of synonymous variants, and we identified a large number of16

synonymous codons that are likely pathogenic, several of which we experimentally confirmed in a cell-17

based model. Together, our findings establish the cdsFM suite as a powerful tool for decoding the18

complex functional grammar underlying the choice of synonymous codons.19

1 Introduction20

The canonical genetic code, the blueprint that links nucleic acid instructions to proteins, is highly21

degenerate. 18 of the 20 amino acids are encoded by more than one codon. These synonymous codons22

were long thought to be interchangeable as they encode the same amino acid. However, codon usage23

bias (CUB), which refers to the non-uniform use of synonymous codons, has long been known and24

studied [9, 35, 43, 49, 50, 64, 73]. Increasing evidence consistently shows organism-specific [35, 43, 50]25

or tissue-specific [6, 20, 65] patterns of codon usage in numerous species. In addition, a number of26

studies revealed an important role for codon usage in the regulation of gene expression and protein27

folding through various mechanisms[3, 7, 8, 13, 71, 78]. To name a few, synonymous codons have been28

shown to be influenced by the levels of cognate tRNA and tRNA gene copy numbers and therefore29

differentially impact translation elongation speed [43, 50, 64]. Moreover, more than 60 synonymous30

variants (mutations that do not alter the amino acid sequence) associated with diseases [19, 45], and31

over 450 linked to tumors [72], have been reported in ClinVar, highlighting the rich information encoded32

within nucleotide sequences beyond what is reflected in the amino acid sequence.33

Protein language models have revolutionized our understanding of protein structures and functions34

by learning from a large number of protein sequences [1, 30, 33, 41, 46, 56, 68]. These models have35

become invaluable tools in fields such as protein engineering, synthetic biology and cancer therapeutics.36

However, the choice of synonymous codons that encode the protein sequence falls in the blind spot37

of these models. By ignoring these, protein language models miss critical regulatory and structural38

information present in coding sequences. There has also been a growing interest in developing language39

models that operate directly on DNA and RNA sequences [4, 17, 29, 39, 44, 60, 62, 90]. Both genomic and40

protein language models leverage self-supervised learning objectives to capture the underlying biological41

grammar of nucleotide and protein sequences , respectively, encompassing both coding information and42

regulatory elements. By doing so, they can be effectively deployed in downstream tasks where labeled43

data are limited, such as variant effect prediction [14, 22, 38, 88], gene expression prediction [2, 61], open44

reading frame (ORF) localization [57], protein function prediction [47, 83], and many other applications45

[36, 37, 48, 79–81].46

To address the gap in our understanding of codon usage and better measure the impact of synonymous47

codons on protein expression and function, we generated a dataset of synonymous variants across three48

human surface proteins, and observed that while the amino acid sequence is conserved, the choice of syn-49

onymous codons can impact overall and surface expression of proteins. This is consistent with our earlier50
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work demonstrating the link between codon usage, tRNA abundance and translation [26]. Therefore,51

synonymous codons are not always interchangeable; however, the underlying contextual grammar that52

governs the choice synonymous codons is not well-explored. In this study, we asked whether foundation53

models trained on coding sequences can capture the contextual interplay of synonymous codons that54

gives rise to these biological variations. For this, we developed a large suite of transformer models, in-55

cluding encoder and decoder architectures called EnCodon and DeCodon, respectively, at various scales.56

We pre-trained all models on a large corpus of 60 million coding sequences (CDS) from more than 500057

species aggregated from the NCBI Genomes database (referred to as NCBI CDS throughout the paper).58

We studied these pre-trained models to explore the biological concepts they capture at different scales.59

We also evaluated their performance on a variety of zero-shot and few-shot learning tasks related to60

gene function and post-transcriptional regulation. We then turned our focus to tasks related to the61

choice of synonymous codons. Our results both reflect the importance of synonymous codons on pro-62

tein expression and the ability of our pre-trained large language models to capture their influence. By63

applying EnCodon and DeCodon models, zero-shot, to somatic variations observed in human cancers,64

we have nominated many synonymous variants that are likely cancer drivers; a form of pathogenicity65

that current protein-based therapeutic strategies cannot address. Taken together, our findings showcase66

the power of EnCodon and DeCodon models to capture the context-dependent function of synonymous67

codons and better represent the coding sequence beyond what is captured by existing DNA and protein68

models.69
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2 Results70

Figure 1: Overview of EnCodon and DeCodon: a) Over 60 million coding sequences from 5000
species has been extracted from NCBI Genomes database and used to pre-train EnCodon and DeCodon
foundation models. b) An overwhelming majority of the data (98.7%) is comprised of bacterial coding
sequences. Pie chart depicting division makeup of non-bacterial coding sequences in NCBI is shown. c)
Histogram of coding sequence lengths (number of codons) in NCBI Genomes database. We used 2048
as maximum sequence length supported by EnCodon and DeCodon based taking the shown distrbu-
tion into account to cover more than 99.8% of sequences. d) We pretrained EnCodon using masked
language modeling (MLM) objective where parts of sequences were corrupted/masked and the model
has to predict the true token at the positions given the rest of tokens (i.e. context). DeCodon is a
conditional generative transformer model which provides controllable coding sequence generation by
querying sequence organism as the very first input token. We pre-trained DeCodon with causal (autore-
gressive) language modeling objective on aggregated corpus of coding sequences where each sequence is
prepended with a special organism token. Rotary Positional Self-Attention was used in both EnCodon
and DeCodon blocks. e) 3 EnCodons and 2 DeCodons, differing in scale (i.e. number of trainable
parameters) have been pre-trained for more than 1,000,000 optimization steps on the aggregated corpus
from NCBI Genomes database.

2.1 Leveraging self-supervised learning to pre-train EnCodon and DeCodon71

Both encoder and decoder transformer architectures can be effectively applied to coding sequences.72

Although bidirectional encoder transformers (BERT) are frequently the preferred choice for biological73

sequences [18, 29, 39, 44, 62, 90], causal language models have also demonstrated remarkable zero-shot74

and few-shot capabilities in this field [59, 60, 70]. Given this, along with the fact that translation is75
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inherently directional, we chose to evaluate both architectures. We developed EnCodon and DeCodon76

models, codon-level language models using encoder and decoder architectures, respectively. These mod-77

els were pre-trained on an aggregated dataset of 60 million coding sequences from 5,000 species, primarily78

composed of bacterial sequences (98.7%, or 59.4 million sequences), but also including mammals and79

primates (Figure 1a,b,c). Based on the length distribution of the coding sequences (Figure 1c), we set80

the maximum context size to 2048 codons for both EnCodon and DeCodon, ensuring that over 99.5%81

of all sequences would fit within this context window.82

During pre-training, two special tokens were added to each sequence: a <CLS> token (for EnCodon)83

or an organism-specific token (for DeCodon) was prepended and a <SEP> token was appended (Figure84

1d). EnCodon was trained using the self-supervised objective of Masked Language Modeling (MLM),85

where a subset of codons was randomly masked, and the model was tasked with predicting the original86

codons using the contextual information provided by the unmasked tokens. In contrast, DeCodon used87

Causal Language Modeling (CLM), where the model generated the next codon based on the preceding88

context (Figure 1d). To evaluate the impact of model size on performance, we pre-trained three versions89

of EnCodon with 80 million, 620 million, and 1 billion parameters, and two versions of DeCodon with90

200 million and 1 billion parameters. As shown in Figure 1e (and Supplementary Figure 3), the larger91

models achieved better performance, as indicated by lower MLM loss for EnCodon and lower perplexity92

for DeCodon. Furthermore, we observed that the sequencing embedding space learned by all models93

separate by domains of life, as visualized in Supplementary Figure 1. To address the significant imbal-94

ance in the training data—where 98.7% of the data consisted of bacterial sequences, while eukaryotic95

sequences were underrepresented, we conducted a second stage of pre-training focused on eukaryotic96

sequences to better adapt the models to these coding sequences. This adaptation significantly improved97

performance and generalizability for eukaryotic organisms, as demonstrated in subsequent experiments98

(Supplementary Figure 2,4). The eukaryotic-adapted versions of each pre-trained model are denoted99

with a superscript “Ada”, e.g., EnCodon (1B)Ada (see Methods 5.2).100
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Figure 2: Codon Embedding Space Analysis for pre-trained EnCodons and DeCodons: a)
PCA visualization of codon embeddings learned by EnCodon (80M), EnCodon (1B), and DeCodon (1B)
colored by Amino Acid. b) Violin plots of two cosine distance between pairwise synonynous against
non-synonymous codons for the 3 models. c) Violin plot of two codon distance metrics i.e. cosine
distance in learned embedding space and hamming distance between codon sequences for all possible
pairs of codons annotated with spearman correlation between the two metrics. d) PCA visualization
codon embeddings colored by their corresponding amino acid’s Hydrophobicity Index. e) Scatter-plot
of pair-wise cosine distance between amino acids and their corresponding PAM250 entry score for pre-
trained models.

2.2 Codon embeddings learned by EnCodon and DeCodon reflect the structure of101

the canonical genetic code102

To better understand the biological principles learned by EnCodon and DeCodon models, we focused on103

their learned codon embeddings. We assessed the relationship between codons and the amino acids they104

encode (Figure 2a and Supplementary Figure 5a). As shown in Figure 2b and Supplementary Figure105

5b, synonymous codons are embedded substantially closer to each other relative to non-synonymous106

pairs. In other words, the EnCodon and DeCodon models have learned the structure of the genetic107

code. Beyond synonymous codon embeddings, we observed that all pre-trained EnCodon and DeCodon108

models exhibited a consistently strong correlation (See Figure 2c and Supplementary Figure 5c) between109

the pairwise cosine distance of codon embeddings and the pairwise Hamming distance of their nucleotide110

sequences. This notable correlation indicates that all of our models have inherently captured "load111

minimization" [23, 25, 58], a key property of the canonical genetic code, without explicit supervision.112

Load minimization refers to the ability of the canonical genetic code to reduce the detrimental effects113

of mutations by ensuring that common mutations are less likely to cause significant changes in protein114

structure or function. This is measured and demonstrated using the physicochemical properties of amino115
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acids, such as hydrophobicity, or directly from "Point Accepted Mutation" (PAM) matrices. As shown116

in Figure 2d-e and Supplementary Figure 5d-e, the learned codon embeddings and the cosine distances117

between them very well capture this load minimization principle.118

As mentioned earlier, the larger models are more adept at distinguishing synonymous codons. This119

is reflected in their codon embeddings as well (See Figure 2a, Supplementary Figure 5f,g). Smaller120

EnCodon and DeCodon models showed better amino acid KNN purity scores (particularly for K values121

between 3 and 5) (Supplementary Figure 5f,g), indicating that synonymous codons are embedded closely122

together, and are therefore hard to distinguish. Conversely, larger models achieved significantly lower123

(better) Masked Language Model (MLM) losses during pre-training (See Figure 1e, Supplementary124

Figure 2a), by better distinguishing synonymous codons, in general moving beyond the simple structure125

of the genetic code. In other words, the smaller models have largely learned the mapping between126

the codons and the amino acids they encode, and therefore act as small protein language models with127

difficulty distinguishing synonymous codons. For instance, the Spearman correlation between the top 10128

PC components of codon embeddings and the codon’s amino acid hydrophobicity index reveals that this129

information is captured in the first two PCs in smaller models. In contrast, the embedding space learned130

by larger models are less dominated by simple amino acid properties, with amino acid hydrophobicity131

captured in PC3 and beyond (See Supplementary Figure 2c). This observation highlights that larger132

models have learned a more sophisticated understanding of context-dependent usage of synonymous133

codons, and are expected to perform better in downstream tasks related to synonymous variants.134
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Figure 3: DeCodon generates functional and organism-specific coding sequences: a) DeCodon
takes organism as input and generates a coding sequence specific to the queried species. We generated
10,000 coding sequences (CDS) for Human and E. coli species. Scatter plots of codon usage frequencies
of wild-type (y-axis) and generated (x-axis) is shown for human annotated with spearman correlation
and associated p-value. b) To further compare the generated CDS population with the wild-type, we
generated two groups of randomly sampled CDSs and computed sequence embeddings of wild-type, De-
Codon generated, and randomly generated groups. PCA visualization of sequence embeddings is shown
for human-related coding sequences. c) Finally, we used protein functional annotation tools to test the
functional enrichment of the sequence clusters in EnCodon embedding space. We used InterProScan
to predict functional domains of human-generated CDSs by DeCodon (1B)Ada. T-SNE visualization of
functionally annotated generated sequences by DeCodon (1B)Ada is shown where generated sequences
were colored by their enriched biological pathway.

2.3 DeCodon generates functional organism-specific coding sequences135

Since DeCodon models are generative, we sought to assess their learned knowledge of coding sequences136

by comparing model-generated sequences to natural ones. For this, we generated 10,000 coding se-137

quences each for human and E. coli, respectively. Comparing average codon frequencies of wild-type138

and generated coding sequences, both DeCodon models showed strong Spearman correlations between139

the reference and generated sequences for both human (Figure 3a) and E. coli (Supplementary Figure140

6c,d); two species with significantly different codon usage patterns. We then used our pre-trained En-141

Codon models to compare reference and generated sequence embeddings and we observed that sequences142

generated by DeCodon (1B) are notably better mixed with the reference cluster relative to randomly143

generated sequences (Figure 3b and Supplementary Figure 6a). Finally, we used a protein functional an-144

notation tool called InterProScan to predict functional regions of the generated coding sequences. Using145

the computed sequence embeddings by EnCodon, we clustered the generated sequences, extracted en-146

riched biological pathways in each cluster and annotated each cluster based on the most specific enriched147

pathway (Figure 3c, Supplementary Figure 6e,f,g). This observation highlights the ability of DeCodon148
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models to generate coding sequences that capture a variety of learned protein sequence patterns.149
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Figure 4: Downstream Benchmark of state-of-the-art nucleotide language models: a) We
tested zero-shot predictive capability of the language models on 48,042 filtered variants from ClinVar.
For Encoder models like EnCodon, we masked the position of variant in coding sequences and computed
the log-likelihood ratio (LLR) between mutated and wild-type codon/nucleotide/token. Concerning
generative models like DeCodon, we defined the pathogenicity score of variant as difference between
wild-type and mutated sequence likelihoods. The Area under the ROC curve (AUC) is shown as
bars for each model colored by the architecture family used in the language model. b) We further
compared the zero-shot capability of the language models on deep mutational scan studies (DMS).
Spearman correlation is reported for each model as the correlation between the reported "fitness" score
and predicted sequence likelihood (pseudolikelihood for encoder models). 197 Human DMS studies
across 72 genes were used to assess the language models shown in the barplot where each dot is a single
human DMS study. The bars are colored according to the architecture family used in the language
model. c) We further tested the foundation models’ discriminative capability of sequence embedding
space in localization of open-reading-frames (ORFs). We use a recently published collection of 7624
open-reading frames (ORFs) where sequences were annotated based on their genomic location. KNN
Purity scores (using different Ks) of the extracted sequence embeddings were shown in bar plot where
bars represent means showing as bars and lines as standard deviations. d) We used LoRA [34] technique
for parameter-efficient fine-tuning of the language models on mRNA-related downstream tasks namely
mRNA stability and mRFP expression prediction. For each downstream task, a barplot of Spearman
correlation of the hold-out test set for all fine-tuned models on mRFP Expression (E. coli) and mRNA
stability (Human and Mouse) tasks.
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2.4 Codon Foundation Models perform zero-shot function prediction across DNA150

and RNA modalities151

2.4.1 Clinical variant effect classification in human genome152

One of the key benefits of foundation models is their ability to apply their learned principles to new153

tasks without the need for retraining. We therefore evaluated the zero-shot capabilities of our codon154

language models in a variety of biologically relevant downstream tasks. As the first task, we examined155

the ability of our models to identify pathogenic variants annotated for the human proteome. The as-156

sessment of variant pathogenicity is considered a suitable challenge due to the large combinatorial space157

of all potential variants and their interactions. Furthermore, the majority of clinically analyzed variants158

are classified as benign, thereby limiting the number of positive instances to learn from. Recently, lan-159

guage models trained on corpora of nucleotide or protein sequences (exclusively utilizing self-supervised160

learning objectives) have demonstrated exceptional predictive performance in downstream tasks such161

as variant pathogenicity classification.162

To perform zero-shot variant pathogenicity prediction, we calculated the pseudolikelihood (or sequence163

likelihood for decoder models) (See Methods 5.15.5) of 48,283 single nucleotide variants (SNVs) doc-164

umented in ClinVar (see Figure 4a and Supplementary Figure 8, 9) using our language models and165

state-of-the-art nucleotide language models, including CaLM [62], CodonBERT [44], HyenaDNA [60],166

Nucleotide Transformer [18], and DNABERT 2 [90]. Upon evaluating the zero-shot pathogenicity pre-167

diction capabilities of the proposed language models on these clinically validated variants, we observed168

that, as expected, the Eukaryotic-adapted EnCodon and DeCodon exhibited superior performance rel-169

ative to all other evaluated models (Figure 4a).170

2.4.2 Predicting mutational effects on protein function measured by deep mutational scan171

(DMS) studies172

We applied our CDS foundation models to predict the effect of mutations on protein function, utilizing173

data from deep mutational scanning (DMS) studies. These studies introduce comprehensive sets of174

mutations to protein sequences and experimentally measure their impact on fitness – a study-specific175

metric that quantifies protein functionality ([21]). To predict experimental fitness scores, similar to the176

previous task, we used pseudolikelihoods (or likelihoods for autoregressive models, See Methods 5.15.5)177

of codons or nucleotides generated by the models (Figure 4b). Our analysis was restricted to DMS stud-178

ies that provided nucleotide information for wild-type sequences and their corresponding mutations.179

Therefore, we evaluated the foundation models on DMS studies across 7 different organisms (includ-180

ing human, E. coli, house mouse, chicken, etc), covering approximately 58,262 and 16,403 mutations,181

respectively (Figure 4b, Supplementary Figure 10 and 11).182

The Eukaryotic-adapted codon language models consistently placed as the top five performers, showcas-183

ing the highest correlations for both human and E. coli datasets (Figure 4b, Supplementary Figure 10).184

This outcome indicates the efficacy of our adaptation technique and the versatility of our pre-trained185
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models to specific organismal contexts. All coding sequence models, including CodonBERT (which186

ranked 6th), surpassed HyenaDNA and nucleotide transformer models. As expected, both the adapted187

and pretrained versions of our codon foundation models excelled in the E. coli benchmark (Supplemen-188

tary Figure 10a). When comparing EnCodons with DeCodons, we consistently noted an increase in189

performance with larger DeCodon models, although the scale of improvement for both models were the190

same when the model size was fixed. These findings underscore the potential of our codon-level large191

language models in forecasting mutational impacts on protein functionality.192

2.4.3 Evaluation of Nucleotide Language Models for Human Open Reading Frame (ORF)193

Classification194

We next sought to focus on tasks centered on the translational capacity of the transcriptome. Ribosome195

profiling (Ribo-seq) has significantly broadened our understanding of the translational output of the cell196

by uncovering numerous open reading frames (ORFs) in regions previously believed to be untranslated,197

such as long non-coding RNAs (lncRNAs) and untranslated regions (UTRs) of protein-coding genes198

[5, 12, 40, 52, 66, 84]. Mudge et al. [57] described a standardized, spatially-classified, and filtered199

collection of translated ORFs, integrating previously reported ORF databases. Given the multiple200

interpretative approaches possible for ORFs, the sequences were systematically classified based on their201

spatial relationships with existing gene annotations. Our objective was to evaluate our models’ predictive202

accuracy in classifying ORFs without further supervision (i.e., training). To this end, we employed the203

standardized catalog of 7,264 human Ribo-seq ORFs to assess the proficiency of embeddings from various204

models in ORF classification (Figure 4c). Accordingly, we reported the statistics of purity scores of the205

K-Nearest Neighbors (KNN) algorithm for each model across different K values, ranging from 5 to 50206

(Figure 4d). The results indicated that our codon foundation models consistently outperformed all207

other tested language models, with DeCodon (200M) achieving the highest average KNN purity score of208

24.57%, whereas the Nucleotide Transformer (2.5B, multi-species) achieved an average score of 21.45%,209

representing the best performance among the existing state-of-the-art language models.210

2.4.4 Codon language models show superior performance on various mRNA downstream211

tasks212

We further compared the foundation models’ performance across a few supervised mRNA prediction213

tasks namely mRNA stability (Human and Mouse) [2] and mRFP expression (E. coli) [61] prediction.214

Similar to zero-shot benchmarks, we benchmarked Nucleotide Transformer[11], HyenaDNA [60], CaLM215

[62], and CodonBERT [44] as prior methods alongside with two convolutional baselines i.e. NucCNN216

and CodonCNN (See 5.12). We used low-rank adaptation technique (LoRA) [34] to fine-tune the217

language models in the downstream tasks. Our benchmark shown in Figure 4d shows our EnCodon218

and DeCodon models outperform their counterparts in both mRNA stability and mRFP expression219

prediction tasks. More specifically, DeCodon (1B)Ada showed 5% improvement in mRNA stability220

prediction over Nucleotide Transformer (2nd best model), underscoring its superior understanding of221
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mRNA dynamics.222

Figure 5: EnCodon (1B)Ada generalizes well across unseen synonymous variants in mem-
brane proteins a) We re-purposed the pre-trained language modeling classifier head for synonymous
mutation effect modeling. Specifically, given a synonymous codon variant, we first compute the codon
likelihoods (i.e. logits) for the variant’s position. Next, the log-ratio of wild-type codon against mu-
tated codon is considered as the final variant’s effect prediction – protein abundance level or surface
expression in this experiment. Notably, using no additional weights, the mutation’s effect on protein’s
abundance measurement is modeled as the log-likelihood ratio between mutated and wild-type codon
given the wild-type coding sequence in input. b) Spearman correlation between predicted and observed
abundance (left bar plot) or surface expression (right bar plot) were shown for test synonymous variants
in KCNJ2, SLC22A1, and GPR68 proteins. c) An test set of synonymous variants applied on SLC22A1
were held-out from the training data of the EnCodons. The scatter plot of predicted vs. observed abun-
dance is shown for eukaryotic adapted EnCodon (1B) which showed as the top-performed compared to
other fine-tuned EnCodons. d) After fine-tuning, we performed in-silico synonymous mutagenesis with
the best-performing EnCodon model. We selected "critical" synonymous variants for which the pre-
dicted abundance was above 95-th (green) or below the 5-th quantile (pink). Next, extracted SLC22A1
extreme variants were overlayed in the protein’s 3D structure which is shown from 3 different angles.

2.5 EnCodon captures the effect of synonymous codon mutations on protein abun-223

dance levels224

While most synonymous variations are considered neutral, there is mounting evidence that synonymous225

variations can also carry functional consequences [19, 71, 78]. Being able to discriminate between syn-226

onymous codons and better capture their possible context-dependent role in the translational output was227
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a major motivation behind training EnCodon and DeCodon models. However, there are few instances of228

functional synonymous variants, and we currently lack large datasets evaluating synonymous codons. To229

address this gap, we generated a dataset of 1054 synonymous coding variants across three membrane pro-230

teins with directly comparable phenotypes, namely SLC22A1, GPR68, and KCNJ2 [32, 51, 89]. While231

all datasets are on membrane proteins, they represent distinct protein architectures and functions, in-232

cluding a tetrameric 2 transmembrane cardiac potassium channel associated with defects associated with233

developmental disorders [82]; KCNJ2, a monomeric 12 transmembrane polyspecific cation transporter234

that has genetics variants associated with differential effects on drug metabolism [27]; and a proton235

sensing receptor, GPR68, a seven transmembrane with variants associated with chemotherapy-induced236

neuropathy [42]. We then systematically measured the overall abundance and surface expression of237

these variants. To test our models’ predictive performance, we held out 513 variants from SLC22A1238

from the training dataset of the foundation models. Figure 5a depicts the fine-tuning procedure where239

the model takes wild-type sequence as input and log-likelihood ratio between wild-type and mutated240

codon at the mutated position is used to predict the abundance level of the protein (See 5.14). In other241

words, without the need to introduce any additional parameters to the pre-trained model, we repur-242

posed the MLM head to model the variant’s effect. Comparing different pre-trained EnCodons (with or243

without adaptation) on holdout test variants in SLC22A1, consistent improvement in test performance244

is observed as the model gets larger (Supplementary Figure 12a and Supplementary Figure 13). As245

expected, the eukaryotic adaptation of the EnCodons also outperformed their non-adapted same-size246

model resulting in adapted EnCodon (1B) being the best performer which performed well across ex-247

perimented proteins and hold-out test set (Figure 5b,c, Supplementary Figure 12a,b). The fine-tuned248

EnCodon model performs slightly better on surface expression than protein abundance in the one gene,249

KCNJ2, in which we have both measures for abundance and surface expression. This is likely because250

surface expression is dependent upon protein abundance but also includes effects that change whether251

the protein makes it to the surface.252

We employed our top-performing fine-tuned EnCodon model to conduct in-silico synonymous codon253

mutagenesis, predicting the abundance levels for all possible synonymous coding variants within the254

protein sequences. Variants with exceptionally high or low abundance scores (i.e., critical variants) were255

selected for further analysis. To evaluate the spatial distribution of these critical variants within the256

3D structures of the proteins studied, we applied Ripley’s K function [67], a well-known function that257

determines a spatial pattern (i.e. random, dispersed, or clustered) of certain points (in 3D structure)258

at a certain distance cut-off (See Methods 5.16). More specifically, the results revealed significant259

clustering of the identified "critical" variants for KCNJ2 and SLC22A1 at distances below 10 Å and260

8 Å, respectively (Supplementary Figure 12d). The calculated p-values from Ripley’s test, compared261

against a null distribution (see Methods 5.16), indicate regions where the observed clustering significantly262

deviates from being randomly spread (i.e., p < 0.05, Supplementary Figure 12d).263

Using a 9Å cutoff radius in the Ripley’s K function test, we demonstrated significant clustering of264

extreme variants in the 3D structures of SLC22A1 and KCNJ2 (see Methods 5.16). Despite having no265

information on protein folding and structure, the "critical" variants identified by EnCodon are predom-266

inantly located in functional elements of the 3D structure, such as α-helices or β-sheets, emphasizing267
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the sequence-structure relationships that EnCodon captures in its learned representations (Figure 5d,268

Supplementary Figure 12c). The significant clustering observed at these short distances suggests that269

these variants are not randomly distributed.270

2.6 Leveraging CDS foundation models to nominate and validate novel pathogenic271

synonymous variants272

As previously shown and demonstrated here, synonymous codon usage can impact protein structure273

and gene expression through effects on translation efficiency, kinetics, elongation, mRNA stability,274

and co-translational protein folding [3, 7, 8, 13, 43]. Given the zero-shot performance of our CDS275

foundation models in predicting variant pathogenicity, and the ability of our models in distinguishing276

synonymous codons in mutational scans in the previous section, we set out to nominate previously277

unknown pathogenic synonymous variants. To this end, we computed pathogenicity scores (see Methods278

5.15.5) for all synonymous coding variants in ClinVar that were previously labeled as variants of uncertain279

significance (VUS), using our best-performing codon foundation models (in zero-shot benchmarks),280

including EnCodon (1B)Ada and DeCodon (1B)AdaFigure 6a). We then selected four synonymous coding281

variants with extremely low predicted pathogenicity scores (less than the 5th percentile, i.e., within282

the highly pathogenic region) and two control variants with extremely high predicted scores (greater283

than the 95th percentile, i.e., within the highly benign region) for experimental testing (see Methods284

5.8). Our experimental results demonstrated significant changes in protein expression levels for two of285

the four nominated synonymous variants with extreme predicted pathogenic scores by our DeCodon286

(1B)Ada model: NM_006412.4(AGPAT2):c.702C>T and NM_002872.5(RAC2):c.501C>T (Figure 6b,c287

and Supplementary Figure 12a). These findings provide compelling evidence not only revealing the post-288

translational roles of synonymous codon variants but also underscoring the broader significance of these289

variants in regulating protein expression. Furthermore, this demonstrates the caability of our DeCodon290

models to capture such nuanced patterns in synonymous codon usage, emphasizing the potential utility291

of our model in guiding future research and clinical interpretations of synonymous variants, offering new292

insights into their functional consequences.293

2.6.1 Pathogenic synonymous variants identified by cdsFMs are predominantly enriched294

in cancer-related genes295

To expand our dataset of predicted synonymous variants, we scored COSMIC Census Mutation database296

[75], focusing on those with extreme pathogenic variants predicted by all our CDS foundation models (See297

Figure 6a). Specifically, we isolated 3365 synonymous coding variants with extremely high pathogenicity298

scores and performed gene-set enrichment analysis on their associated genes. Given that COSMOS299

reports on somatic variations in cancer, we expect identifying synonymous mutations that are enriched300

in known drivers. As expected, the analysis revealed a significant enrichment in cancer-related pathways301

(Figure 6c), underscoring the potential impact of these synonymous variants on cancer biology.302

For instance, BCR and MYC, which are well-established oncogenic drivers across many cancers [10,303

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.10.617568doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.10.617568
http://creativecommons.org/licenses/by-nc-nd/4.0/


24, 28, 31, 74], harbor 64 of these extreme variants. Lollipop plots, annotated with InterPro domains,304

illustrate the distribution and functional implications of these variants. The observed spatial clustering305

of these synonymous mutations further highlights their biological function on the expression of these306

proteins (Figure 6d, Supplementary Figure 14b,c,d,e,f). Using this approach, we have significantly307

expanded the list of likely pathogenic synonymous mutations in cancer.308

Figure 6: Pathogenic synonymous variants predicted by codon foundation models cause
notable changes in gene expression levels: a) We use different scoring fashions for pathogenicity
of synonymous variants. Specifically, we report log likelihood ratio between wild-type and mutated
codons for EnCodon and log ratio of wild-type and mutated sequence likelihoods for DeCodon models.
To nominate variants for experimental validation, We fetched all synonymous variants from ClinVar
and COSMIC Census Mutations databases and computed pathogenicity scores for all of our pre-trained
EnCodons and DeCodons. Next, we selected synonymous variants with extremely pathogenic scores
(above 99th quantile of the distribution). b) Experimental measurement of gene expression levels for
AGPAT2 and RAC2 are shown for wild-type vs. mutated coding sequence. Each dot denotes an
individual replicates and bars show the average expression across replicates. c) Immunoblots of FLAG-
tagged AGPAT2 and RAC2 protein variants expressed in HEK293T cells, showing three biological
replicates for both wild-type (Ref) and mutated (Mut) sequences. β-tubulin signal is used as a loading
control. d) Geneset Enrichment Analysis of top 20 abundant genes with highest number of "pathogenic"
variants with extreme scores. d) Lollipop plot of extreme variants predicted for BCR and MYC are
shown across protein sequence annotated by functional domains extracted from InterPro.
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Discussion309

Synonymous codons are often underappreciated and underexplored. Although the vast majority of syn-310

onymous variants are silent, many are likely pathogenic and functional. Similarly, synonymous codons311

are not interchangeable in synthetic biology and can be used to tune the expression of the same under-312

lying protein. The absence of reliable machine learning models to help elucidate the context-dependent313

role of codons was the main motivation for building EnCodon and DeCodon models. As we embarked314

on this, other groups have also released codon-resolution or codon-aware models. CodonBERT, with315

its ability to handle codon-level inputs, has shown strong potential in certain tasks, particularly those316

involving sequence-level transformations. cdsBERT, on the other hand, has demonstrated proficiency317

in capturing protein-level semantic information from coding sequences. However, these models are an318

order of magnitude smaller than our largest models, are trained on fewer tokens, and are limited to the319

BERT architecture. As we demonstrated here, the larger models are crucial to capture the context de-320

pendence of synonymous codons. More importantly, the DeCodon models perform superior to EnCodon321

models in a number of key downstream tasks.322

In this study, we have demonstrated the versatility and effectiveness of our suite of codon-based foun-323

dation models, EnCodon and DeCodon, in comparison to a wide range of genomic language models324

of various scales (i.e., differing in the number of trainable parameters) across a variety of downstream325

tasks relevant to coding sequences. Synonymous codons fall in the blind spot of protein language models326

and as we demonstrated here, genomic foundation models have not capture the codon structure in the327

coding regions. This is likely because coding sequences are a small minority of sequences that the ge-328

nomic models are trained on. Here, we showed that codon-resolution large-scale language models extend329

beyond the basic codon-amino acid associations to capture more intricate codon-codon relationships,330

which proved highly beneficial for tasks like synonymous variant effect prediction.331

In this study, we successfully confirmed two out of four synonymous variants predicted as pathogenic332

by our EnCodon and DeCodon models. This 50% confirmation rate is likely an underestimate given333

the variety of ways beyond expression by which synonymous variants may impact protein function,334

e.g. by impacting the folding dynamics. Our broader data generation effort for measuring the impact335

of synonymous codons on protein expression, further highlights the importance of capturing the func-336

tional consequences synonymous variants. Our results not only highlight the potential of EnCodon and337

DeCodon in practical genomic applications but also provide additional evidence for the heterogeneous338

effects of synonymous codons on gene regulation and expression.339

In this study, we included both masked and causal language modeling, and found that the latter showed340

superior performance particularly in downstream few-shot tasks. This suggests that the causal modeling341

approach of DeCodon offers more flexible and informative context-aware representations. At first glance,342

this may be counterintuitive as having access to the entirety of the sequence context should provide343

more information. However, other models, such as Evo [59] or LoRNASH [70], have similarly shown344

success in learning biological sequences via causal language modeling. The added benefit of these models345

is that they are generative in nature, and the coding sequences they generate can be studied to further346
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understand the biological concepts the models have internalized.347

In conclusion, our suite of codon foundation models, namely EnCodon and DeCodon, provides a powerful348

toolkit for advancing our understanding of synonymous codons. Given the challenges of generating deep349

mutational scanning at scale for synonymous codons, these models are essential for better nomination350

of likely functional variants. This knowledge, and the extent to which it impacts human diseases, will351

also reshape how we consider therapeutic modalities, as some mutations will not have an impact on352

protein sequence, yet it can still impact expression level or activity.353

3 Code Availability354

Code and models are accessible at https://github.com/goodarzilab/cdsFM. Additionally, pre-trained355

models have been made available on HuggingFace [87].356
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Foundation Model # layers Emb. dim. Inter. dim. LR WD warmup steps
EnCodon (80M) 12 1024 2048 1e-4 1e-2 10,000
EnCodon (620M) 12 2048 8192 5e-5 1e-2 10,000
EnCodon (1B) 18 2048 8192 1e-5 1e-2 10,000
DeCodon (200M) 12 1024 2048 1e-4 1e-2 10,000
DeCodon (1B) 18 2048 8192 1e-5 1e-2 10,000

Supplementary Table 1 | Hyperparameters used for each of our pre-trained codon foundation models (cdsFMs).
Emb. dim.: codon-level embedding dimensionality, Inter. dim.: Intermediate layers’ dimensionality, LR: learning
rate, WD: weight decay

Supplementary Figure 1: T-SNE visualization of sequence embedding space learned by a) EnCodon
(80M), b) EnCodon (620M), and c) EnCodon (1B) where each dot is a sequence and they are colored
by sequence’s organism division (top row) and domain (bottom row).
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Supplementary Figure 2: a) Representation of MLM loss distribution for pre-trained and adapted
EnCodon models across taxonomy divisions with mean bars and standard error lines. b) Scatter plots
of KNN Purity scores against numbers of nearest neighbors, using organisms’ Division as clustering
labels. c) Spearman correlations bar plot between the top 10 principal components (PC) of the pre-
trained/adapted EnCodons and the hydrophobicity index of codon’s amino acid. d) KNN Purity scores
of the codon embedding space of EnCodons with amino acid labels against the number of neighbors
(K).
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Supplementary Figure 3: a) Masked language modeling confusion matrix of pre-trained EnCodon (1B)
model. We use sequences in the pre-training test split and randomly masked each codon in the sequence
with 0.15 probability. The shown confusion matrix is computed from EnCodon’s prediction on the
masked positions. b) Difference plot of synonymous codon confusion per amino acid is shown for the
purpose of comparing pre-trained EnCodons – EnCodon (80M), EnCodon (620M), and EnCodon(1B).
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Supplementary Figure 4: T-SNE visualization of sequence embedding space learned performing eukary-
otic adaptation on a) EnCodon (80M), b) EnCodon (620M), c) EnCodon (1B), d) DeCodon (200M),
and e) DeCodon (1B) where each dot is a sequence and they are colored by sequence’s organism division
(top row) and domain (bottom row).
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Supplementary Figure 5: Codon Embedding Space Analysis for pre-trained EnCodons and
DeCodons: a) PCA visualization of codon embeddings learned by EnCodon (620M) and DeCodon
(150M) colored by Amino Acid. b) Violin plots of two cosine distance between pairwise synonynous
against non-synonymous codons. c) Violin plot of two codon distance metrics i.e. cosine distance
in learned embedding space and hamming distance between codon sequences for all possible pairs of
codons annotated with spearman correlation between the two metrics. d) PCA visualization codon
embeddings colored by amino acid’s Hydrophobicity Index. e) Scatter-plot of pair-wise cosine distance
between amino acids and their corresponding PAM250 entry score for pre-trained models. Scatter plot of
KNN purity scores of clusters of synonymous codons in learned codon embedding space by f) EnCodon
and g) DeCodon models against different numbers of neighbors.
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Supplementary Figure 6: Analysis of DeCodon-generated coding sequences: a) PCA visualiza-
tion of EnCodon (1B)Ada’s sequence embedding space to compared generated coding sequences with
wild-type and random cohorts in E. coli. b) Accuracy bar plots of start and stop codon grammar
checks on the generated coding sequences for human and E. coli. c) Scatter plot of observed codon
usage (in wild-type sequences) against codon usage in generated coding sequences (x-axis) for E. coli.
d) Comparison of the GC content distribution between generated sequences and natural coding se-
quences from E. coli (top) and human (bottom), where each distribution is compared with two sets of
10K randomly generated sequences. e) Louvain clustering performed on 10,000 sequences generated by
DeCodon (1B)Ada, with a t-SNE visualization colored by cluster ID. f) Functional region prediction of
generated sequences using InterPro and PANTHER, highlighting the top 20 most common Gene Ontol-
ogy (GO) terms as bars representing log-transformed number of annotated sequences colored by their
namespace. g) Fisher’s Exact Test for GO term enrichment across Louvain clusters, with a heatmap
showing significant enrichments (p_adjusted < 0.05) based on the GO namespaces: biological process
(BP), molecular function (MF), and cellular component (CC).
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Supplementary Figure 7: DeCodon organism embedding space: PCA visualization of pre-trained De-
Codon’s organism embedding space for a) DeCodon (200M) and b) DeCodon (1B)

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.10.617568doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.10.617568
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 8: Receiver Operating Characteristic (ROC) curve depicting the True Positive
Rate (TPR, y-axis) versus the False Positive Rate (FPR, x-axis) for the foundation models evaluated
in predicting ClinVar variant pathogenicity. The comparison was standardized by calculating the TPR
and FPR on a common set of 48,000 shared missense variants across all models.
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Supplementary Figure 9: Distribution of missense variant scores for all the models used in the zero-shot
ClinVar benchmark. Missense Variant scores distribution colored by the consequence of the variant where
P/LP and B/LB represents Pathogenic/Likely Pathogenic and Benign/Likely Benign variants. The score
distribution is shown for a) EnCodon (80M), b) EnCodon (620M), c) EnCodon (1B), d) DeCodon
(200M), e) DeCodon (1B), f) EnCodon (80M)Ada, g) EnCodon (620M)Ada, h) EnCodon (1B)Ada,
i) DeCodon (200M)Ada, j) DeCodon (1B)Ada, k) Nucleotide Transformer (2.5B, 1000G), l) Nucleotide
Transformer (500M, 1000G), m) Nucleotide Transformer (2.5B, MS), n) Nucleotide Transformer (500M,
MS), o) DNABERT 2 (117M), p) HyenaDNA (medium 450K), q) HyenaDNA (large 1M), r) HyenaDNA
(tiny 1K), s) CaLM (85M), and t) CodonBERT (87M).
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Supplementary Figure 10: Distribution of absolute Spearman correlations (x-axis) for the tested foun-
dation models (y-axis) across different organisms in the Zero-shot MaveDB benchmark: a) Chicken, b)
E. coli, c) House mouse, d) Pig, e) Ocean pout, and f) Fruit fly.

Supplementary Figure 11: Relationship between model size (log-scaled number of trainable parameters,
x-axis) and Zero-shot MaveDB performance, reported as the distribution of absolute Spearman corre-
lations (y-axis) for each organism: a) Chicken, b) E. coli, c) House mouse, d) Pig, e) Ocean pout, and
f) Fruit fly.
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Supplementary Figure 12: a) 3D structure visualization of KCNJ2 protein from 3 different angles where
critical variants identified by EnCodon (1B) are colored in pink and green. b) Performance of EnCodon
(1B)Ada in abundance prediction for KCNJ2 (left) and SLC22A1 (right) variants in the validation set.
c) Bar plot of Speraman correlations of fine-tuned EnCodon models on the external set of SLC22A1
variants. d) Line plot of computed p-values at different distance cut-offs for KCNJ2 and SLC22A1
proteins.
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Supplementary Figure 13: Scatter plot of all 6 fine-tuned EnCodon models on the external test set of
SLC22A1 variants. 3 pre-trained (bottom row) and 3 eukaryotic adapted EnCodon models (top row)
were fine-tuned.
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Supplementary Figure 14: a) Barplot of observed gene expression levels of 4 other tested synonymous
variants (2 controls and 2 predicted as pathogenic). b) Immunoblots of FLAG-tagged RRAS and
YWHAG protein variants expressed in HEK293T cells, showing three biological replicates for both
wild-type (Ref) and mutated (Mut) sequences. β-tubulin signal is used as a loading control. Lollipop
plots showing potential synonymous variants with extremely pathogenic score for c) SMARCA4, d)
RET, e) STK11, and f) SRC.
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5 Methods364

5.1 Pretraining data365

For pretraining, we aggregated coding sequences (CDS) from all available species in the NCBI Genomes366

database. We utilized the most recent genomic annotation files (GTF files) available for each organism367

to ensure accuracy and completeness. The resulting dataset, which we refer to as NCBI CDS data,368

comprises a total of 60 million sequences from over 5,000 species. This comprehensive collection serves369

as a robust foundation for training models on a diverse set of genetic sequences.370

5.2 Eukaryotic adaptation data371

Due to overwhelming representation of bacterial coding sequences in the NCBI CDS dataset, we curated372

a separate dataset of eukaryotic coding sequences for adaptation of our pre-trained models. The dataset373

contains 567,281 coding sequences from 227 eukaryotic species, including human, mouse, fruit fly, and374

zebrafish. This dataset was used to fine-tune the pre-trained models on eukaryotic sequences, enabling375

them to better capture the nuances of eukaryotic codon usage.376

5.3 ClinVar dataset377

We obtained the latest variant summary file in TSV format (variant_summary.txt.gz) from the ClinVar378

database, which initially contained 2,366,650 GRCh38-aligned variants. From this dataset, we extracted379

coding single-nucleotide variants (SNVs) with a review status of 2+ stars, indicating higher confidence380

in clinical interpretation. These SNVs were then mapped to the GRCh38 RefSeq reference genome to381

extract corresponding coding sequences. Two versions of the preprocessed ClinVar dataset were created:382

v0.1 and v0.2. Version v0.2 includes all variants from v0.1 and additional variants with uncertain383

clinical significance (VUS). v0.1 was employed for zero-shot benchmarking of language models, while384

v0.2 was used to identify candidate synonymous variants for experimental validation. Detailed statistics385

of the dataset versions are provided in Supplementary Table 2.386

Version # Variants # P/LP # B/LB # VUS
v0.1 76,051 27,760 48,291 0
v0.2 1,120,127 81,465 98,755 939,907

Supplementary Table 2 | Summary statistics of the different versions of the preprocessed ClinVar dataset. P/LP:
Pathogenic/Likely Pathogenic; B/LB: Benign/Likely Benign; VUS: Variant of Uncertain Significance.

5.4 MaveDB Collection387

We retrieved 3,153 experimental datasets from the MaveDB database using its API, which included388

their corresponding score set CSV files. To focus on coding sequences, we filtered out experiments389
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lacking nucleotide-level information for the target sequence or its variants. Additionally, we restricted390

the dataset to single-nucleotide variants (SNVs), resulting in a final collection of 1,911,200 variants391

across 13 species. The species included Human (n = 519,771), Chicken (n = 122,460), Ocean pout (n392

= 73,578), House mouse (n = 27,608), E. coli (n = 14,831), Thale cress (n = 14,817), Fruit fly (n =393

9,192), Antarctic eel pout (n = 8,229), African clawed frog (n = 4,347), Viviparous blenny (n = 4,089),394

Pig (n = 3,969), Norway rat (n = 3,768), and Ocean sunfish (n = 3,639).395

5.5 Membrane protein abundance and surface expression deep mutational scanning396

Deep mutational scanning datasets for membrane proteins were generated as previously reported in397

more detail within manuscripts [32, 51, 89]. However, in all cases, the oligo-based library generation398

pipeline, DIMPLE, is used to make variant libraries, and these libraries are BxBI-mediated integrated399

in stable landing pad cell HEK293T cell lines [54, 55]. These library containing cell lines were into400

four populations by fluorescent cell sorting based on a massively parallel measure for protein abundance401

and/or surface expression. For the protein abundance assay, cells containing mutational libraries were402

sorted based on a split fluorescent protein complementation [53], whereas for surface expression screens403

cells were sorted based on fluorescent antibodies that recognize extracellular exposed epitopes [16]. Once404

these cells are separated, DNA is extracted, PCR-amplified, fragmented, and prepared for sequencing405

by Illumina Nextera kits and sequenced on an Illumina Novaseq 6000 short sequencer. Variant effect406

scores were generated using Enrich2 [69].407

5.6 Open Reading Frame (ORF) Data408

We obtained a collection of 7,264 translated open reading frames (ORFs) from the supplementary409

material provided by [57], which were filtered and derived from Ribo-seq studies. Specifically, we410

concatenated ORFs from two Excel sheets titled S2. PHASE I Ribo-seq ORFs and S3. Single-411

study Ribo-seq ORFs. The ORF locations were then mapped to the GRCh38 RefSeq genome to412

ensure consistency with our other datasets.413

5.7 mRNA Stability Dataset414

For the mRNA stability downstream benchmark, we utilized a preprocessed collection of mRNA decay415

rate datasets provided by [2]. This dataset encompasses 39 human and 27 mouse transcriptome-wide416

studies, collectively containing 26,725 mRNA sequences (12,981 for human and 13,744 for mouse) with417

reported half-life measurements. This data is crucial for understanding mRNA stability and its impli-418

cations in gene expression regulation.419
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5.8 Synonymous protein variants Dataset420

5.8.1 Cloning of plasmids expressing synonymous protein variants421

For restriction enzyme cloning, custom double-stranded DNA sequences (Twist Biosciences) encoding422

synonymous protein variants were designed as follows: 5’-AAGCTG-GCTAGC (NheI)-GCCACC (Kozak423

sequence)-Variable Coding Sequence-GGT GGA GGC GGT AGC (GGGS linker)- GACTACAAGGAC-424

CACGACGGCGATTATAAGGATCACGACATCGACTACAAAGACGACGATGACAAG (3xFLAG)- XXX425

(Gene-specific Stop Codon)-GAATTC (EcoRI)-TGCAGA-3’. The exact DNA sequences for every syn-426

onymous protein variant used for cloning can be found in Supplemntary Table (other details can be427

found in Supplementary Table 3). DNA was double-digested with NheI-HF (New England Biolabs,428

#R3131L) and EcoRI-HF (New England Biolabs, #R3101L) for 30 min at 37°C, and heat-inactivated429

for 20 min at 80°C. pcDNA3.1 vector (Thermo Fisher Scientific, #V79020) was double-digested with430

NheI-HF and EcoRI-HF for 30 min at 37°C, dephosphorylated by addition of Quick-CIP (New Eng-431

land Biolabs, #M0525L) (10 min at 37°C), and heat-inactivated for 20 min at 80°C. For ligation in432

1x rCutSmart™ Buffer (New England Biolabs, #B6004S) supplemented with 1 mM ATP, 50 ng crude433

digested pcDNA3.1 vector was combined with a 7-times molar excess of crude digested insert and in-434

cubated for 30 min at room temperature after addition of 1 µ L Quick Ligase (New England Biolabs,435

#M2200). NEB stable competent E. coli (New England Biolabs, #C3040H) were transformed according436

to manufacturer’s instructions. Bacteria were grown on LB-agar plates supplemented with 0.1 mg/mL437

carbenicillin overnight at 37°C. LB supplemented with 0.1 mg/mL ampicillin was inoculated with single438

colonies and incubated in a shaking incubator at 37°C overnight. Plasmid DNA was extracted using439

ZymoPURE™ Plasmid Miniprep Kit (Zymo Research, #D4210) and eluted in nuclease-free water. The440

plasmid DNA concentration was measured using a NanoDrop™ One spectrophotometer (Invitrogen) by441

measuring the absorbance at 260 nm, and the plasmids were fully sequenced by Nanopore sequencing442

(Quintara Biosciences).443

5.8.2 Western blotting of synonymous protein variants444

HEK293T cells (ATCC, #CRL-3216) were maintained in DMEM (Gibco, #11965-092) supplemented445

with 10% FBS (Avantor, #97068-085), under standard tissue culture conditions (37°C, 5% CO2) and446

were passaged every 2–3 days. To express synonymous protein variants, HEK293T cells were seeded in447

a 24-well format (75,000 cells per well), and after 24 hours transfected with 0.5 µ g variant-encoding448

plasmid using TransIT transfection reagent (Mirus Bio, #MIR6606). 24 hours after transfection, the449

cell culture media was changed, and cells were harvested after incubating for another 24 hours. Cells450

were lysed in RIPA buffer (Thermo Fisher Scientific, #89901) supplemented with 1x Halt protease451

inhibitor cocktail (Thermo Fisher Scientific, #78425) by shaking for 30 min at 4°C. After centrifugation452

for 30 min (4◦C) at 14,000 x g, the supernatant was collected and the protein concentration was453

determined by BCA assay (Thermo Fisher Scientific, #23225). Protein samples were stored at -20°C.454

After denaturing samples for 5 min at 95°C in 1x NuPAGE LDS loading buffer (Invitrogen, #NP0007)455

supplemented with 50 mM DTT, 5 µ g of total protein per sample and a pre-stained protein ladder456
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(LI-COR Biosciences, #928-60000) were separated on a NuPage Bis-Tris Mini Protein Gel, 4–12%457

(Invitrogen, #NP0322BOX) for 1 hour at 120 V in 1x NuPAGE™ MES SDS running buffer (Thermo458

Fisher Scientific, #NP0002). Protein bands were transferred onto a PVDF membrane (Invitrogen,459

#IB34001) using the iBlot3 Western Blot Transfer System (Invitrogen). After blocking the membrane460

in SuperBlock blocking buffer (Thermo Fisher Scientific, #37537) for 10 min at room temperature, it was461

incubated overnight at 4°C with rabbit anti-FLAG monoclonal antibody (Cell Signaling, #14793) and462

mouse anti-β-tubulin monoclonal antibody (Sino Biological, #100109-MM05T), both diluted 1:2,000 in463

blocking buffer. The membrane was washed three times for 10 min each in 1x TBS (Thermo Fisher464

Scientific, #J62938.K3-T) supplemented with 0.1% (v/v) Tween-20 (TBS-T), followed by incubation465

at room temperature for 30 min with anti-rabbit IgG DyLight 800 4X PEG conjugate (Cell Signaling,466

#5151) and anti-mouse IgG DyLight 680 conjugate (Cell Signaling, #5470), both diluted 1:5,000 in467

blocking buffer. Membranes were washed two times for 5 min in TBS-T, followed by a 5 min wash468

in TBS without Tween-20, and the fluorescence signal was recorded on an Odyssey DLx Imager (LI-469

COR) and analyzed in Image Studio (LI-COR Biosciences, version 5.2.5). Protein expression levels were470

calculated by normalizing the anti-FLAG signal (800 nm channel) to the corresponding anti-β-tubulin471

signal (700 nm channel).472

HGVS Gene PHRED Prediction
NM_006412.4(AGPAT2):c.702C>T AGPAT2 0.034 -3.207 (pathogenic)
NM_006270.5(RRAS):c.333C>T RRAS 1.505 -3.057 (pathogenic)
NM_002872.5(RAC2):c.501C>T RAC2 0.069 -2.928 (pathogenic)
NM_012479.4(YWHAG):c.564C>T YWHAG 0.295 -2.667 (pathogenic)
NM_001317778.2(SFTPC):c.228G>C SFTPC 0.012 0.097 (benign)
NM_000717.5(CA4):c.492G>A CA4 0.061 0.000 (benign)

Supplementary Table 3 | Nominated synonymous variants, including detailed PHRED scores and predictions
from our codon-based model (showing pathogenicity scores and corresponding predicted labels)

5.9 COSMIC Census Mutations Database473

We acquired the Mutant Census v100 file from the COSMIC database [75], which details coding muta-474

tions in genes listed in the Cancer Gene Census. The raw dataset comprised 1,949,478 coding mutations.475

We filtered the data to retain only single-nucleotide variants (SNVs) and mapped their locations to the476

GRCh38 RefSeq genome. The final processed dataset included 244,400 coding variants, forming a key477

resource for studying mutational impacts in cancer.478

5.10 Foundation Models479

5.10.1 EnCodon480

Architecture The architecture of EnCodon is inspired by the RoFormer as described in [76] (see 5.11).481

It is fundamentally based on the transformer encoder model, which incorporates multiple layers of self-482

attention mechanisms followed by position-wise feed-forward networks but similar to RoFormer, we use483
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rotary positional encoding (RoPE) instead of absolute or relative PE approaches. EnCodon is a large484

language model designed to provide contextual codon-level hidden representations (i.e., hi
j ∈ Rd where485

j = 1, . . . , L) for any given input coding sequence (i.e., xi) of length L.486

The EnCodon model comprises three primary components: a learnable vocabulary embedding layer,487

a stack of transformer encoder blocks, and a language modeling head. The input coding sequence x488

is represented as a vector of L token IDs—integers that represent either a codon or a special token.489

The EnCodon vocabulary includes 69 tokens: 64 codons and 5 special tokens, namely [CLS], [SEP],490

[PAD], [MASK], and [UNK]. [CLS] and [SEP] are control tokens prepended and appended to each input491

coding sequence, marking the start and end of the sequence, respectively. The [PAD] token is used for492

padding during batched training or inference, [UNK] is used for unknown codons, and [MASK] is used493

for masking during training. It is important to note that the model is not provided with any information494

regarding the nucleotide composition of the codons; the only input information consists of token IDs.495

Consequently, the model does not have prior knowledge of the nucleotide differences between codons496

during training. Mathematically, EnCodon model takes the tokenized input sequence xi, which contains497

L token IDs:498

x = {ID1, ID2, . . . , IDL} ∈ RL (1)

The embedding layer processes x to produce the embedding tensor E, defined as:499

E = {emb(ID1), emb(ID2), . . . , emb(IDL)} ∈ RL×d (2)

Subsequently, the embedding tensor E is passed through multiple transformer encoder blocks, which500

follow the architecture described in [76]. Each block consists of a rotary attention layer, which ap-501

plies rotary positional encoding (see 5.11) followed by a self-attention operation (see 5.10.3), and a502

position-wise feed-forward network. We employed the "Sub-LayerNorm" approach proposed by [86]503

to enhance expressivity and utilized a scalable, theoretically-derived initialization strategy. Detailed504

hyperparameters for each pre-trained EnCodon model are provided in Supplementary Table 1.505

Pretraining Procedure506

For pretraining, EnCodon uses the Masked Language Modeling (MLM) objective, defined as:507

LMLM = −
∑
i∈M

log p(xi|x\M )

where M represents the set of masked positions, xi is the true token at position i, and x\M denotes508

the input sequence with tokens at positions in M masked. This loss function encourages the model509

to accurately predict the original tokens based on the surrounding context. The EnCodon foundation510

models were pretrained on 2 NVIDIA H100 GPUs for 2 weeks. The models were implemented using511

PyTorch [63] and the HuggingFace [87] framework was used for pretraining.512
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5.10.2 DeCodon513

Architecture DeCodon is a controllable generative language model specifically designed for the codon-514

level generation of coding sequences. Similar to EnCodon, the architecture of DeCodon is similar to the515

RoFormer [76] but also utilizing Extrapolatable Position Embedding (XPOS) [77] in rotary attention516

layers (See 3a). XPOS has recently shown significant improvement in the generalization of mega-scale517

language models like PaLM[15] on very long sequences without sacrificing models’ performance on518

shorter sequences. We used sequences’ organism as the conditional information for DeCodon making519

the generation controllable. Similar to EnCodon, DeCodon operates on input sequences of codons, but520

it is optimized for sequence generation tasks rather than contextual encoding.521

The DeCodon model consists of three main components: a learnable vocabulary embedding layer, a stack522

of transformer decoder blocks, and a sequence generation head. The input to DeCodon is a sequence523

of L token IDs, where each ID corresponds to a codon, specie, or a special token from a vocabulary524

that includes the 5124 tokens: 64 codons, 5 special tokens, and 5055 organism tokens. The model is525

autoregressive, meaning that it generates each token in the sequence one at a time, conditioned on the526

previously generated tokens in addition to the organism of interest.527

Given an input sequence xi of length L:528

x = {ID1, ID2, . . . , IDL} ∈ RL (3)

The embedding layer converts this input sequence into an embedding tensor E, defined as:529

E = {emb(ID1), emb(ID2), . . . , emb(IDL)} ∈ RL×d (4)

This embedding tensor is then passed through a series of transformer decoder blocks. Each block consists530

of a masked self-attention layer, where attention is only computed over previous tokens in the sequence,531

followed by a position-wise feed-forward network. The use of rotary positional encoding (see 5.11)532

allows the model to effectively capture the sequential dependencies between codons. As in EnCodon,533

we employed the "Sub-LayerNorm" approach [86] for improved expressivity and model stability. The534

final output is produced by the sequence generation head, which predicts the next token in the sequence535

based on the transformer outputs.536

Training Procedure537

DeCodon model is trained using a standard causal (i.e. autoregressive) language modeling (CLM)538

objective, which aims to maximize the likelihood of the target sequence given the input sequence:539

LCLM = −
L∑
i=1

log p(xi|x<i, s)

where x<i denotes the sequence of tokens preceding the i-th token. s also denotes the sequence’s specie.540

This loss encourages the model to generate codon sequences that are contextually and sequentially541
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accurate. The DeCodon model was pretrained on the same dataset and hardware as EnCodon, utilizing542

PyTorch [63] and the HuggingFace [87] framework.543

5.10.3 Self-Attention Operation544

The self-attention mechanism, proposed in [85], is a data-driven operation that quantifies the information545

flow between all possible pairs of tokens in an input sequence. This mechanism forms as the core546

component of the Transformer architecture.547

Mathematically, let X = {x1, x2, ..., xN} ∈ RN×d be the input sequence of N token representations,548

where each xi ∈ Rd. The self-attention operator first transforms the input token representations into549

three different representations called query, key, and value:550

Q = XWq (5)

K = XWk (6)

V = XWv (7)

where Wq,Wk,Wv ∈ Rd×d are learned parameter matrices.551

The attention scores are then computed as:552

Attention(Q,K, V ) = softmax
(
QKT

√
d

)
V (8)

where Q,K, V ∈ RN×d represent the query, key, and value matrices derived from the input representa-553

tions. The scaling factor
√
d is introduced to mitigate the effect of large dot products in high-dimensional554

spaces.555

This mechanism allows the model to weigh the importance of different tokens within the input sequence,556

regardless of their positions. The output of the self-attention operation is a weighted sum of the value557

vectors, where the weights are determined by the compatibility between the query and key vectors.558

In practice, multi-head attention is often employed, which involves applying multiple sets of query, key,559

and value projections in parallel:560

MultiHead(X) = Concat(head1, ..., headh)WO (9)

where each head is computed as:561

headi = Attention(XW (i)
q , XW

(i)
k , XW (i)

v ) (10)

Here, W (i)
q ,W

(i)
k ,W

(i)
v ∈ Rd×d and WO ∈ Rhd×d are learned parameters, and h is the number of attention562
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heads.563

The self-attention mechanism enables the model to capture complex dependencies and relationships564

within the input sequence, contributing significantly to the success of Transformer-based models in565

various natural language processing tasks.566

5.11 Rotary Positional Encoding (RoPE)567

Self-attention is a position-invariant operation, suggesting the need to encode positional information568

explicitly. Several approaches have been proposed to incorporate positional information in self-attention569

which can be categorized into absolute, relative, and hybrid PE methods. Rotary Positional Encodings570

(RoPE), recently proposed by [76], is a positional encoding (PE) approach that is a combination of571

relative and absolute PE approaches. RoPE has showed consistent improvement in various natural572

language understanding and computer vision tasks making it a common practical choice for positional573

information encoding which motivated us to use them in EnCodon and DeCodon architectures.574

5.12 Baselines575

5.12.1 NucCNN576

NucCNN is a convolutional neural network (CNN) model with a nucleotide vocabulary embeddings. We577

used 5 convolutional layers with kernel sizes of 3, 5, 7, 9, and 11, each followed by a max-pooling layer.578

The model was trained using the same dataset as EnCodon and DeCodon in the benchmarked tasks,579

with the same hyperparameters. The model was implemented using PyTorch and the HuggingFace580

framework.581

5.12.2 CodonCNN582

CodonCNN is almost identical to NucCNN, but it uses a codon vocabulary instead of nucleotides. The583

model was trained using the same dataset as EnCodon and DeCodon in the benchmarked tasks, with the584

same hyperparameters. The model was implemented using PyTorch and the HuggingFace framework.585

5.13 Sequence Embeddings586

The proposed EnCodon and DeCodon models generate codon-level representations, where each codon587

in the input sequence is represented by a d-dimensional vector. For ‘sequence embedding,’ we calculate588

the average of all codon-level embeddings in the EnCodon models, while for the DeCodon models, we589

use the representation of the last codon in the sequence.590
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5.14 Fine-tuning scheme for synonymous variant prediction591

To fine-tune the pre-trained EnCodon language models for the synonymous variant prediction task, we592

reused the pre-trained language model head without adding any new layers or parameters. Specifically,593

for each synonymous variant, EnCodon takes the wild-type coding sequence as input and computes the594

log-likelihood ratio between the wild-type and mutated codon at the variant position (See Figure 5a).595

This log-likelihood ratio is used as the predicted score for the variant. The model was fine-tuned using596

the Huber loss function, with a learning rate of 1e-5, over 5 epochs.597

5.15 Metrics598

5.15.1 KNN Purity599

KNN purity evaluates clustering quality by measuring the homogeneity of KNN clusters with respect600

to their ground-truth labels. It uses the K-nearest neighbors algorithm to assess how well cluster points601

match their true labels. The KNN purity score is mathematically defined as P :602

P =
1

|L|
∑
l∈L

 1

|Cl|
∑
xi∈Cl

same-label neighbors of xi
K

 (11)

where L is the set of unique labels, Cl is the set of points with label l, and K is the number of nearest603

neighbors. The score ranges from 0 to 1; a higher score indicates more homogeneity. A score of 1 means604

perfect clustering (all points in a cluster share the same label), while a lower score indicates greater605

heterogeneity.606

5.15.2 Spearman correlation607

Spearman’s rank correlation coefficient is a non-parametric measure that assesses the strength and608

direction of a monotonic relationship between two variables. Mathematically, for two variables X and609

Y , the Spearman correlation coefficient, ρ , is given by the formula:610

ρ = 1− 6
∑

d2i
n(n2 − 1)

(12)

where di = rank(Xi)− rank(Yi) is the difference between the ranks of each pairs of values and n is the611

number of data points. It is important to mention that this correlation is robust to outliers and skewed612

data, making it suitable for datasets where traditional parametric assumptions do not hold.613

5.15.3 Pearson correlation614

Pearson correlation coefficient, r, is a measure of linear correlation between two random variants X and615

Y :616
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r =

∑
(Xi − X̄)(Yi − Ȳ )√∑

(Xi − X̄)2
√∑

(Yi − Ȳ )2
(13)

where Xi, and Yi are individual data points and X̄ and Ȳ are sample averages of samples drawn from X617

and Y , respectively. The correlation ranges from -1 (negative linear relationship) to +1 (positive linear618

relationship) and 0 indicates no linear relationship.619

5.15.4 Synonymous Codon Confusion620

Synonymous Codon Confusion is a amino acid level metric, measuring the how often a langauge model621

incorrectly choose synonymous codon over each other. The metric can be computed directly from the622

confusion matrix of a codon-level language model. Mathematically speaking:623

SCC =
∑
i<j

(Ĉij) (14)

where Ĉ is the row-normalized confusion matrix of a codon-level lagnuage model.624

5.15.5 variant effect predicted score (VEP)625

Focusing on the language models zero-shot applicability on variant effect prediction tasks, we used differ-626

ent formulations for encoder and decoder langauge models. Specifically, concerning encoder models, we627

computed the masked lanuage modeling (MLM) pseudolikelihood ratio between wild-type and mutated628

codon/nucleotide/token at the position of mutation. Mathematically speaking, we formulate VEP as629

follows:630

V EP (xwt, xmut) = −log(
p(xkwt)

p(xkmut)
) (15)

where xwt and xmut are wild-type and mutated coding sequences, respectively. k indicates the variant’s631

token-level position in the coding sequence depending on the tokenization used for the encoder language632

model. For example, we used variant’s codon position to compute the log-likelihood ratio (i.e. VEP)633

score with our EnCodons.634

Concerning decoder language models, we reported the difference between sequence likelihood scores635

(SL) computed for the wild-type and mutated coding sequences. In constrast to encoder language636

models, we don’t take the variant’s location information into account for computing the variant effect637

predicted (VEP) score:638

SL(x) = − 1

L

L∑
i

log(p(xi)) (16)

where xi denotes the i-th position in the input sequence of length L and p(.) is the output probability at639
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the i-th position computed by the decoder lanaguge model. Finally, we reported the difference between640

the two computed sequence likelihoods (SL) as the predicted score:641

V EP (xwt, xmut) = SL(xwt)− SL(xmut) (17)

5.16 Spatial Clustering Analysis Using Ripley’s K Functions (L)642

To investigate the spatial distribution of extreme variants within the 3D structure of various proteins,643

we applied Ripley’s K function, a statistical method designed to detect clustering or dispersion of points644

in a spatial domain [67]. Ripley’s K function in three dimensions is defined as:645

K(r) =
1

λ
E[number of points within radius r of a randomly chosen center]

where λ represents the density of points, r is the distance threshold, and E[·] denotes the expectation.646

For each protein in the experiment, we performed a radius range r from 0 to 50 Å with 100 discrete647

intervals. The statistical significance of clustering was assessed using a permutation test with 10,000648

iterations. Specifically, we generated 10,000 sets of randomly chosen variants (Vr) as the "null distri-649

bution" with the same number of points as the observed "critical" synonymous variants (Vc) for the650

protein. Then, we first extracted the Cα atom coordinates of the amino acids of each set of points651

from the protein PDB structure using the Bio.PDB module in Python. Next, we computed pairwise652

Euclidean distances between the Cα atoms and calculated normalized Ripley’s K function at various653

radius r using:654

K̂(r) =
1

nλ

n∑
i=1

∑
j ̸=i

I(dij ≤ r)

where n is the total number of points, and I(·) is an indicator function that equals 1 if the condition inside655

is true. We calculated Ripley’s K function at 10000 different distances ranging from 0 to 100Å. Finally,656

The observed K values were compared against the null distribution to compute p-values, representing657

the probability that the observed clustering occurred by chance:658

p =
1

1000

1000∑
i=1

I(K(V i
r ) ≤ K(Vc)) (18)
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