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ABSTRACT 

Background: Identifying structural heart diseases (SHDs) early can change the 

course of the disease, but their diagnosis requires cardiac imaging, which is limited 

in accessibility. 

Objective: To leverage images of 12-lead ECGs for automated detection and 

prediction of multiple SHDs using an ensemble deep learning approach. 

Methods: We developed a series of convolutional neural network models for 

detecting a range of individual SHDs from images of ECGs with SHDs defined by 

transthoracic echocardiograms (TTEs) performed within 30 days of the ECG at the 

Yale New Haven Hospital (YNHH). SHDs were defined based on TTEs with LV 

ejection fraction <40%, moderate-to-severe left-sided valvular disease (aortic/mitral 

stenosis or regurgitation), or severe left ventricular hypertrophy (IVSd > 1.5cm and 

diastolic dysfunction). We developed an ensemble XGBoost model, PRESENT-SHD, 

as a composite screen across all SHDs. We validated PRESENT-SHD at 4 US 

hospitals and a prospective population-based cohort study, the Brazilian Longitudinal 

Study of Adult Health (ELSA-Brasil), with concurrent protocolized ECGs and TTEs. 

We also used PRESENT-SHD for risk stratification of new-onset SHD or heart failure 

(HF) in clinical cohorts and the population-based UK Biobank (UKB).  

Results: The models were developed using 261,228 ECGs from 93,693 YNHH 

patients and evaluated on a single ECG from 11,023 individuals at YNHH (19% with 

SHD), 44,591 across external hospitals (20-27% with SHD), and 3,014 in the ELSA-

Brasil (3% with SHD). In the held-out test set, PRESENT-SHD demonstrated an 

AUROC of 0.886 (0.877-894), sensitivity of 90%, and specificity of 66%. At hospital-

based sites, PRESENT-SHD had AUROCs ranging from 0.854-0.900, with 

sensitivities and specificities of 93-96% and 51-56%, respectively. The model 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 7, 2024. ; https://doi.org/10.1101/2024.10.06.24314939doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.06.24314939
http://creativecommons.org/licenses/by-nc-nd/4.0/


generalized well to ELSA-Brasil (AUROC, 0.853 [0.811-0.897], sensitivity 88%, 

specificity 62%). PRESENT-SHD performance was consistent across demographic 

subgroups and novel ECG formats. A positive PRESENT-SHD screen portended a 

2- to 4-fold higher risk of new-onset SHD/HF, independent of demographics, 

comorbidities, and the competing risk of death across clinical sites and UKB, with 

high predictive discrimination. 

Conclusion: We developed and validated PRESENT-SHD, an AI-ECG tool 

identifying a range of SHD using images of 12-lead ECGs, representing a robust, 

scalable, and accessible modality for automated SHD screening and risk 

stratification. 
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CONDENSED ABSTRACT 

Screening for structural heart disorders (SHDs) requires cardiac imaging, which has 

limited accessibility. To leverage 12-lead ECG images for automated detection and 

prediction of multiple SHDs, we developed PRESENT-SHD, an ensemble deep 

learning model. PRESENT-SHD demonstrated excellent performance in detecting 

SHDs across 5 US hospitals and a population-based cohort in Brazil. The model 

successfully predicted the risk of new-onset SHD or heart failure in both US clinical 

cohorts and the community-based UK Biobank. By using ubiquitous ECG images to 

predict a composite outcome of multiple SHDs, PRESENT-SHD establishes a 

scalable paradigm for cardiovascular screening and risk stratification.  
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BACKGROUND 

Structural heart diseases (SHDs) represent a spectrum of prevalent cardiac 

disorders with a long presymptomatic course and with substantially elevated risk of 

heart failure (HF) and premature death.1 The detection of these disorders has 

traditionally required advanced cardiac imaging, including echocardiography and 

cardiac magnetic resonance imaging, which are resource-intensive and, therefore, 

not suitable for large-scale disease screening.2,3 Consequently, these conditions are 

often diagnosed after the development of clinical symptoms, leading to poor health 

outcomes.4–6 Moreover, there are no strategies to identify individuals at risk of 

developing SHDs, despite the presence of evidence-based interventions that can 

alter the course of patients.6–8 Thus, there is an urgent need for the development of 

an automated, accessible, and scalable strategy for the screening and risk 

stratification of SHDs.1,9 

Previously applications of artificial intelligence for electrocardiograms (AI-

ECG) have shown potential to detect signatures of SHDs.10–18 A key challenge of AI-

ECG models in detecting specific cardiac disorders using ECGs is the low precision 

driven by the low prevalence of individual disorders.10–12 To overcome this limitation, 

ensemble models for detecting a composite of multiple SHDs have been proposed.19 

Nonetheless, these models use raw ECG voltage data as inputs, which are 

inaccessible to clinicians at the point of care and often require modifications to the 

technical infrastructure to account for vendor-specific data formats.19 This precludes 

the widespread use of AI-ECG approaches for broad cardiovascular screening, as 

these data integrations are not commonly available. Further, most AI-ECG 

approaches focus on cross-sectional detection and do not quantify the risk of new-

onset disease in those without SHD, which would identify a group for continued 
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monitoring. Thus, there is a critical unmet need for an AI-ECG-based strategy to 

enable cross-sectional detection and longitudinal prediction of multiple SHDs 

simultaneously using ubiquitous, interoperable, and accessible data input in the form 

of ECG images.  

 In this study, we report the development and multinational validation of an 

ensemble deep learning approach that uses an image of a 12-lead ECG, 

independent of the format, for the accurate detection and prediction of multiple 

SHDs.  

 

METHODS 

The Yale Institutional Review Board approved the study protocol and waived the 

need for informed consent as the study involves secondary analysis of pre-existing 

data. An online version of the model is publicly available for research use at 

https://www.cards-lab.org/present-shd.  

 

Data Sources 

For model development, we included data from the Yale New Haven Hospital 

(YNHH) during 2015-2023. YNHH is a large 1500-bed tertiary medical center that 

provides care to a diverse patient population across Connecticut. For external 

validation of our approach to detect SHDs, we included multiple clinically and 

geographically diverse cohorts: (i) 4 distinct community hospitals in the Yale-New 

Haven Health System, the Bridgeport Hospital, Greenwich Hospital, Lawrence + 

Memorial Hospital, and Westerly Hospital, and (ii) a community-based cohort of 

individuals in Brazil with protocolized concurrent ECG and TTE assessments, the 

ELSA-Brasil study.  
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To evaluate the longitudinal prediction of SHD in people without baseline 

disease, in addition to serial monitoring data from hospitals in the Yale-New Haven 

Health System, we included data from the UK Biobank (UKB). UKB is the largest 

population-based cohort with protocolized ECG assessments and clinical encounters 

derived from the integrated EHR of the National Health Service in the UK. An 

overview of all data sources is included in the Supplementary Methods. 

 

Study Population for SHD Detection 

At YNHH, we identified all adults (≥18 years) who underwent a 12-lead ECG within 

30 days of a transthoracic echocardiogram (TTE), excluding those with prior cardiac 

surgery to replicate the intended use of these models in a screening setting 

(Supplementary Figure 1). In the internal validation and internal held-out test sets, 

and all external validation sites, one ECG was randomly selected from one or more 

ECGs performed within 30 days of a TTE for each individual. In ELSA-Brasil, all 

participants who underwent both ECG and TTE at their baseline study visit were 

included. 

 

SHD Outcome 

The study outcome of SHD was defined as any LVSD, moderate-or-severe left-sided 

valve disease, or sLVH. All conditions were ascertained based on established 

guidelines from the cardiologist’s interpretation of the TTE.20 The left ventricular 

ejection fraction (LVEF) was primarily measured as a continuous variable using the 

biplane method. When the LVEF measurement using the biplane method was 

unavailable, measurements using the three-dimensional or visual estimation 

methods were used. LVSD was defined as an LVEF < 40%. Left-sided valve 
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diseases included aortic stenosis (AS), aortic regurgitation (AR), mitral regurgitation 

(MR), or mitral stenosis (MS), graded as mild to moderate, moderate, moderate to 

severe, or severe, based on established echocardiographic guidelines.21,22 We 

defined sLVH by a combination of an interventricular septal diameter at end-diastole 

(IVSd) of greater than 15 mm, along with moderate to severe (grade II and grade III) 

LV diastolic dysfunction.23 

 

Signal Processing and Image Generation 

We used a strategy for developing models that can detect SHD from images from 

ECGs regardless of their layout. This was done using a custom waveform plotting 

strategy where ECG signals are processed and plotted as images in a format 

randomly chosen from 2880 formats, encapsulating variations in lead layouts, image 

color, lead label font, size and position, and grid and signal line width 

(Supplementary Figure 2). We also included non-conventional variations in ECG 

lead placements, with the chest leads on the left and limb leads on the right side of 

the plotted ECGs. The plotted signals were processed using a standard 

preprocessing strategy described previously (and included in Supplemental 

Methods). For evaluation, ECG images were plotted in standard clinical layout from 

signal waveform data, with a voltage calibration of 10 mm/mV, with the limbs and 

precordial leads arranged in four columns of 2.5-second each, representing leads I, 

II, and III; aVR, aVL, and aVF; V1, V2, and V3; and V4, V5, and V6 (Supplementary 

Figure 3). A 10-second recording of the lead I signal was included as a rhythm strip. 

We further evaluated the model on 4 novel image formats that were not encountered 

during model training (Supplementary Methods; Supplementary Figure 4). All 

images were converted to greyscale and down-sampled to 300x300 pixels using 
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Python Image Library.24 Examples of ECG images in used for model training and 

evaluation are presented in Online Supplement 2.  

 

Model Development for Individual SHDs 

We trained six independent CNN models to detect individual components of SHD. 

We randomly divided individuals at YNHH into training, validation, and test sets 

(85:5:10) without any patient spanning these sets (Supplementary Figure 1). We 

retained multiple ECGs per person in the training set to ensure the adequacy of 

training data. However, in evaluating the model in the internal validation, held-out 

test, and external validation sets, only one ECG was randomly chosen for every 

individual. Of note, none of the patients in the external validation sets were in the 

model development population. 

We used CNN models built upon the EfficientNet-B3 architecture, which has 

384 layers and over 10 million trainable parameters.11,25 To enable label-efficient 

model development, we initialized the CNNs with weights from a model pretrained to 

recognize individual patient-specific patterns in ECGs, independent of their 

interpretation, using a self-supervised, contrastive learning framework (Figure 1).26 

None of the ECGs on the self-supervised pretraining task represented individuals in 

the SHD model development.  

Each ECG in the training set was plotted using one of the randomly assigned 

plotting formats described above. We used an Adam optimizer, gradient clipping, 

and a minibatch size of 128 throughout training, with sequential unfreezing of the 

final layers (learning rate, 0.001), and all layers (learning rate, 10-5), with training 

stopped when validation loss did not improve in 5 consecutive epochs. A custom 
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class-balanced loss function (weighted binary cross-entropy) based on the effective 

number of samples was used, given the case and control imbalance. 

The CNNs for the individual components of SHD had the same model 

backbone but differed in the populations for training. Five of the six models, 

specifically for those detecting LVSD, the presence of any moderate to severe left-

sided valvular heart diseases, and those for moderate-to-severe AR, AS, or MR, 

were trained using all ECGs in the training set, spanning those with and without each 

disease. However, given the low prevalence of sLVH (<1%), we age- and sex-

matched cases and controls for model development. Each case, representing an 

ECG corresponding to an individual with sLVH, was matched to 10 control ECGs 

without sLVH from someone of the same sex and within 5 years of age as the case. 

These individual models were combined in an ensemble model to detect the 

presence of any SHD. As a sensitivity analysis, we used the same training strategy 

and model architecture to develop a classifier CNN model directly detecting the 

presence of SHD. For each SHD component, we also trained corresponding signal-

based models within the same label and training population (Supplementary 

Methods). 

 

Ensemble Learning Strategy 

Following CNN development, output probabilities from the 6 component SHD CNN 

models, along with a person's age and sex, were used as input features for an 

extreme gradient boosting (XGBoost) model, PRESENT-SHD (Practical scREening 

using ENsemble machine learning sTrategy for SHD detection; Figure 1). The 

XGBoost model was exclusively trained using data from the same training sets as 

the CNN models. Before being included as features, age and the CNN model output 
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probabilities were standardized to a mean of 0 and a variance of 1 to improve 

learning stability and ensure consistent feature contribution across different datasets. 

To prevent data leakage, standardization at the time of inference in the testing sets 

was done based on the distribution of these variables in the training set. 

 

Prediction of new-onset SHD 

To evaluate the use of the model for stratifying the risk of new-onset disease across 

data sources, we identified a population without evidence of SHD or HF at baseline. 

In YNHH, we identified the first recorded encounter for all individuals within the EHR 

and instituted a 1-year blanking period to define prevalent diseases (Supplementary 

Figure 5). Among 204,530 patients with ECGs following a one-year blanking period, 

we excluded 6,909 individuals with prevalent SHD, 1,197 with a prior valvular repair 

or replacement procedure, and 13,632 with prevalent HF (Supplementary Table 1). 

Those included in the model training set (n = 55,245) were also excluded from this 

analysis. We used a similar strategy across the hospital-based external validation 

sites to identify patients at risk for new-onset disease – a one-year blanking period to 

identify prevalent diseases and exclude those with prevalent SHD/HF, prior valvular 

procedures. Across sets, new-onset SHD/HF was defined as the first occurrence of 

any SHD detected on the TTE, any valvular replacement or repair procedure, or 

hospitalization with HF. Data were censored at death or loss to follow-up. 

 Further, we identified participants with ECGs in the UKB. We used the 

national EHR linkage to identify those who had not undergone any hospitalizations 

with HF and had not undergone valvular procedures before their baseline ECG. We 

followed these individuals till their first encounter with an SHD or HF diagnosis code 

or a left-sided valve replacement or repair procedure (Supplementary Table 1).  
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Statistical Analysis 

We reported continuous variables as median and interquartile range (IQR), and 

categorical variables as counts and percentages. Model performance for detecting 

SHD was reported as area under the receiver operating characteristic curve 

(AUROC) and area under the precision-recall curve (AUPRC), with 95% confidence 

intervals (CI) for these computed using bootstrapping with 1000 iterations. Additional 

performance measures included sensitivity, specificity, positive predictive value 

(PPV), negative predictive value (NPV), and F1 score with 95% CIs using the 

standard error formula for proportion. Finally, we calculated the model’s PPV in 

simulated screening scenarios with different prevalences of composite SHD using 

the model’s sensitivity and specificity corresponding to the probability threshold with 

sensitivity above 90% in the internal validation set.  

Among those without SHD at baseline, the predictive role of PRESENT-SHD 

for new-onset SHD/HF was evaluated in age- and sex-adjusted Cox proportional 

hazard models. The time-to-first SHD/HF event was the dependent variable and the 

PRESENT-SHD-based screen status – presumably “false positive” or “true negative” 

status – was the key independent variable. Further, to account for the competing risk 

of death while evaluating new-onset SHD, we used age- and sex-adjusted multi-

outcome Fine-Gray subdistribution hazard models.28 The discrimination of the model 

for SHD prediction was assessed using Harrell’s C-statistic.29,30 The statistical 

analyses were two-sided, and the significance level was set at 0.05. Analyses were 

executed using Python 3.11.2 and R version 4.2.0. Our study follows the 

Transparent Reporting of a multivariable prediction model for Individual Prognosis Or 
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Diagnosis + Artificial Intelligence (TRIPOD + AI) checklist from the EQUATOR 

network (Supplementary Table 2).31  

 

RESULTS 

Study Population 

There were 261,228 ECGs from 93,693 unique patients in the training set, and the 

validation and internal held-out test sets had a single ECG per person from 5,512 

and 11,023 patients, respectively (Supplementary Figure 1). The development 

population (model training and validation sets) had a median age of 67.8 (IQR, 56.1-

78.3) years, 49,947 were (50.3%) women, 13,383 (13.8%) non-Hispanic Black, and 

7,754 were (8.1%) Hispanic (Supplementary Table 3). In the development 

population, 60,096 (22.5%) ECGs were paired with TTEs with an SHD, including 

25,552 (9.5%) with LVSD, 42,989 (16.1%) with moderate or severe left-sided 

valvular disease, and 1,004 (0.4%) with sLVH.  

 At the external hospital sites, 18,222 patients at Bridgeport Hospital, 4,720 

patients at Greenwich Hospital, 17,867 patients at Lawrence + Memorial Hospital, 

and 3,782 patients from Westerly Hospital were included (Supplementary Figure 

1), with 44,591 ECGs, randomly one chosen per person, across these sites for 

model evaluation. Across hospital sites, the median age at ECG ranged from 66 to 

74 years, with cohorts comprising 48.3% to 50.5% women, 1.5% to 19.4% Black, 

and 1.4% to 15.9% Hispanic individuals. The distribution of SHDs across these 

cohorts are described in Supplementary Table 4. 

 Of the 15,105 participants in ELSA-Brasil, 3,014 who underwent ECG and 

TTE during their baseline visit were included. The median age of the cohort was 62.0 

(IQR, 57.0-67.0) years, 1,596 (53.0%) were women, 1,661 (55.1%) were White, 455 
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(15.1%) were Black, and 753 (25.0%) were Pardo (or mixed race) individuals. A total 

of 88 (2.9%) individuals had SHD, with 37 (1.2%) with LVSD, 55 (1.8%) with 

moderate or severe left-sided valvular disease, and 6 (0.2%) with sLVH 

(Supplementary Table 4).  

 

Detection of Structural Heart Disease  

The ensemble XGBoost model, PRESENT-SHD, demonstrated an AUROC of 0.886 

(95% CI, 0.877-0.894) and an AUPRC of 0.807 (95% CI, 0.791-0.823) for the 

detection of the composite SHD outcome in the held-out test set (Table 1). At the 

probability threshold for sensitivity above 90% in the internal validation set, the 

model had a sensitivity of 89.8% (95% CI, 89.0-90.5), specificity of 66.2% (95% CI, 

65.0-67.4), PPV of 57.4% (95% CI, 56.1-58.6), and NPV of 92.8% (95% CI, 92.1-

93.4) for detecting SHD in the held-out test set in YNHH (Table 2; Supplementary 

Figure 6). PRESENT-SHD performed consistently across subgroups of age, sex, 

race, and ethnicity (Table 1), and generalized well to novel ECG formats not 

encountered during training (Supplementary Table 5). Moreover, the model had 

consistent performance across subsets where TTEs were performed before, on the 

same day as, or after the ECG (Supplementary Table 6) and had high 

discrimination for detection of the severe SHD phenotype (LVSD, severe left-sided 

valve disease, or sLVH; Supplementary Figure 7). Notably, the performance of 

PRESENT-SHD was higher than the CNN models trained to directly detect SHD and 

other XGBoost ensemble strategies (Supplementary Tables 7 and 8). PRESENT-

SHD performance was similar to the corresponding signal-based model for detecting 

SHD (Supplementary Table 9).  
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 Further, PRESENT-SHD generalized well to the external validation cohorts at 

Bridgeport (AUROC, 0.854 [95% CI, 0.847-0.862]), Greenwich (AUROC, 0.900 [95% 

CI, 0.888-0.913]), Lawrence + Memorial (AUROC, 0.871 [95% CI, 0.864-0.878]), and 

Westerly (AUROC, 0.887 [95% CI, 0.874-0.902]) Hospitals, with sensitivities and 

specificities ranging 88-96% and 51-66%, respectively. PRESENT-SHD also 

generalized well to the population-based ELSA-Brasil, with an AUROC of 0.853 

(95% CI: 0.811-0.897) and a sensitivity and specificity of 87.5% and 61.9%, 

respectively (Table 2). Across validation sites, model performance was consistent 

across demographic subgroups (Supplementary Tables 10-14). The F1 scores, 

PPVs, and NPVs for a range of putative prevalences of SHDs representing different 

screening scenarios are presented in Supplementary Table 15. 

  

Detection of Individual Diseases  

The models for LVSD, moderate or severe valvular disease, and sLVH had AUROCs 

of 0.914 (95% CI, 0.904-0.924), 0.805 (95% CI, 0.793-0.817), and 0.903 (95% CI, 

0.850-0.946; Figure 2), respectively. The performance of CNN models for individual 

valvular heart diseases varied, with an AUROC of 0.722 (95% CI, 0.784-0.824) for 

moderate or severe AR, 0.804 (95% CI, 0.784-0.824) for AS, and 0.792 (95% CI, 

0.776-0.807) for MR. The CNN model AUPRCs varied with individual disease 

prevalence (Supplementary Tables 16-21). The performance for individual disease 

CNNs was consistent across external validation cohorts (Supplementary Figure 8; 

Supplementary Tables 16-21).  

 

Prediction of SHD and Cardiovascular Risk 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 7, 2024. ; https://doi.org/10.1101/2024.10.06.24314939doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.06.24314939
http://creativecommons.org/licenses/by-nc-nd/4.0/


Of the 127,547 individuals at risk in YNHH, 5,346 (4.2%) had new-onset SHD/HF 

over a median of 4.0 (IQR 1.7-6.4) years of follow-up. Across the hospital-based 

external validation sites, there were 63,748 individuals without SHD/HF at baseline 

and 4,593 (7.2%) developed incident SHD/HF over a median of 3.1 years (IQR, 1.3-

5.0) of follow up (Supplementary Table 22). In UKB, 413 (1.0%) of 41,800 

individuals developed SHD/HF over 3.0 (IQR 2.1-4.5) years of follow-up.  

 A positive PRESENT-SHD screen portended a 4-fold higher risk of new-onset 

SHD/HF in YNHH (age- and sex-adjusted HR [aHR], 4.28 [95% CI, 3.95-4.64], 

Harrell’s C-statistic, 0.823 [95% CI, 0.817-0.828]) and every 10% increment in model 

probability was progressively associated with a 36% higher hazard for incident 

SHD/HF (aHR, 1.36 [1.35-1.38]). A similar pattern was observed across all external 

validation hospital sites (Supplementary Tables 23 and 24). This association 

remained consistent after adjusting for comorbidities at baseline and the competing 

risk of death (Supplementary Table 23).  

In the UKB, a positive vs. negative PRESENT-SHD screen was associated 

with twice the hazard of developing SHD/HF (aHR, 2.39 [95% CI, 1.87-3.04], 

Harrell’s C-statistic, 0.754 [95% CI, 0.728-0.780]). Across all sites, higher model 

probabilities were associated with progressively higher risk of new-onset SHD/HF 

(Supplementary Table 25; Figure 3). 

 

DISCUSSION  

We developed and validated PRESENT-SHD, an ensemble deep learning model that 

uses an ECG image as the input to detect a range of SHDs. PRESENT-SHD had 

excellent performance in detecting SHDs across five distinct US hospitals with 

unique patients and in a population-based cohort study from Brazil. Model 
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performance was consistent across demographic subgroups and similar to the 

corresponding signal-based models. Further, in individuals without SHD at baseline, 

PRESENT-SHD identified those with an up to 4-fold higher risk of developing new-

onset SHD/HF, across both health system-centered cohorts in the US and in a 

community-based cohort in the UK. The model was well calibrated to the risk of new-

onset disease, such that higher PRESENT-SHD probabilities were associated with 

progressively higher risk of developing SHD/HF. Thus, an image-based AI-ECG 

approach is a scalable and accessible strategy for screening for SHDs and 

identifying those at high risk for developing SHDs.   

 Prior studies have reported the use of deep learning on 12-lead ECGs to 

detect individual structural cardiovascular conditions, including LVSD,10,11,13 

hypertrophic cardiomyopathy,16,32,33 cardiac amyloidosis,34,35 aortic stenosis,12 

among others.15,35–37 While these models provide a strong foundation for the role of  

ECG-based detection of SHDs, the low prevalence of these individual diseases, their 

potential implementation for broad screening is limited by the low PPVs of the 

proposed models.10–12,16,32–34 The simultaneous detection of multiple SHDs increases 

the composite disease prevalence and improves model precision19 Through a focus 

on detecting any of the clinically relevant SHDs that require TTE for confirmation, 

PRESENT-SHD enables efficient screening by limiting false discovery. Moreover, 

the direct use of ECG images as the input, and a flexible strategy that allows for 

varying formats, supports the scalability of the approach across resources settings.38  

Our work has additional features that build upon the studies reported in the 

literature. A focus on developing PRESENT-SHD in diverse populations enabled its 

consistent performance in demographic subgroups across validation sites. Moreover, 

in addition to the accurate detection of cross-sectional disease, PRESENT-SHD also 
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predicted the risk of new-onset disease in those without baseline SHD, representing 

a novel strategy for cardiovascular risk stratification. The model was well calibrated 

to predict the risk of SHD, suggesting that those with high PRESENT-SHD scores 

can benefit from surveillance, evaluation, and management of risk factors.7,39–41  

The application of PRESENT-SHD has important implications for 

cardiovascular screening. Since early disease detection and intervention can alter 

the trajectory and outcomes of patients with SHDs, an AI-ECG-based approach that 

leverages ECG images can enable opportunistic screening through automated 

deployment across clinical settings where ECGs are obtained.42,43 The focus on a 

composite model that detects a broad range of SHDs simultaneously reduces the 

burden of false positive screens and downstream testing, which is a major concern 

for AI-ECG models developed for individual cardiovascular conditions. This high PPV 

can allow for a sensitive threshold to be selected during implementation to identify 

those who should be referred for further imaging. Given that the individual 

components of SHD share a common diagnostic test, a TTE, screening with 

PRESENT-SHD can help triage the use of TTE testing. Those with a positive AI-ECG 

screen can be prioritized for cardiac imaging, which is especially helpful in settings 

where access may be limited.1,38,44  

 Our study has limitations that merit consideration. First, the development 

population represented a selected set of patients with a clinical indication for an ECG 

and a TTE. The consistent validation of the model across populations with a broad 

range of clinical subpopulations seen in community as well as referral hospitals 

suggests that the model learned generalizable signatures of the SHDs. This is 

further supported by the consistent validation of PRESENT-SHD in the ELSA-Brasil 

study, where individuals underwent protocolized ECGs and echocardiograms 
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concurrently at enrollment without any confounding by indication. Nonetheless, 

continued prospective validation studies are necessary before broad use in a 

screening population. Second, although we developed the model using a novel 

approach that generates a broad range of ECG image formats and demonstrated 

consistent performance across previously unseen formats, further evaluation of 

PRESENT-SHD with scanned ECG images and photographs, along with 

implementing image quality control measures, is necessary before wider clinical use. 

Third, while we used age- and sex-matched controls for the development of the CNN 

model for sLVH detection, we did not evaluate alternative approaches that 

additionally use clinical risk factors for case-control matching.  

Fourth, although the development of the model focused on plotted images, 

the signal preprocessing before image plotting represented standard steps used in 

ECG machines before ECG images are generated or printed. Thus, any processing 

of ECG images is not required for the real-world application of PRESENT-SHD, as 

also demonstrated in the publicly accessible application of the model. Fifth, model 

performance was lower in individuals aged 65 and older, potentially limiting reliability 

as a standalone tool to rule out the need for cardiac imaging. Adjusting model 

thresholds or developing age-specific models could be evaluated to improve 

performance. Sixth, we did not evaluate the cost-effectiveness of PRESENT-SHD 

use in clinical settings. However, the model had a high PPV for cross-sectional 

disease detection and identified individuals at high risk of developing SHD/HF, 

representing features favorable for deployment. Finally, in the predictive evaluation 

of the model, despite broad geographic coverage, some outcome events may have 

occurred outside the YNHH and the community hospitals, potentially resulting in 

incomplete capture of longitudinal outcomes. Nonetheless, the model risk 
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stratification was consistent in the UKB, where the ECGs were protocolized and 

outcomes were ascertained using national EHR linkage.  

 

CONCLUSION 

We developed and validated a novel approach for the detection and the prediction of 

a range of SHDs using images of 12-lead ECGs, representing a scalable and 

accessible tool for SHD screening and risk stratification. 
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Figure 1. Model Development Strategy and Study Design. Abbreviations: AR, 
aortic regurgitation; AS, aortic stenosis; CNN, convolutional neural network; ECG, 
electrocardiogram; FC, fully-connected layers; LVSD, left ventricular systolic 
dysfunction; MR, mitral regurgitation; SHD, structural heart diseases; sLVH, severe 
left ventricular hypertrophy; TTE, transthoracic echocardiogram; XGBoost, extreme 
gradient boosting 
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Figure 2. Model discrimination for the detection of composite structural heart 
disease and individual components in the held-out test set. Abbreviations: AR, 
aortic regurgitation; AS, aortic stenosis; CI, confidence intervals; LVEF, left 
ventricular ejection fraction; LVH, severe left ventricular hypertrophy; LVSD, left 
ventricular systolic dysfunction; MR, mitral regurgitation; SHD, structural heart 
diseases 
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Figure 3. Cumulative hazard for new-onset structural heart disease or heart 
failure hospitalization in individuals without structural heart disease or heart 
failure at baseline.  
 

 
 
*Footnote: The scale of the y-axes varies across cohorts. 
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Table 1. Performance metrics for detecting structural heart disease across demographic subgroups in the held-out test 
set.  
Abbreviations: AUPRC, area under the precision-recall curve; AUROC, area under the receiver operating characteristic curve; 
NPV, negative predictive value; PPV, positive predictive value. 

 

Subgroup Total 
Number 

Diagnostic 
OR AUROC AUPRC F1 Score Prevalence Sensitivity Specificity PPV NPV 

Overall 6203 17.2 (14.7-
20.1) 

0.886 
(0.877-
0.894) 

0.807 
(0.791-
0.823) 

0.7 33.60% 89.8% (89.0-
90.5) 

66.2% (65.0-
67.4) 

57.4% (56.1-
58.6) 

92.8% (92.1-
93.4) 

Age ≥ 65 years 2897 8.0 (6.1-
10.5) 

0.822 
(0.807-
0.838) 

0.839 
(0.820-
0.857) 

0.735 53.20% 95.7% (94.9-
96.4) 

26.6% (25.0-
28.2) 

59.7% (57.9-
61.5) 

84.3% (83.0-
85.7) 

Age < 65 years 3306 16.2 (13.1-
20.2) 

0.873 
(0.856-
0.889) 

0.679 
(0.641-
0.716) 

0.595 16.50% 73.2% (71.7-
74.7) 

85.6% (84.4-
86.8) 

50.1% (48.4-
51.8) 

94.2% (93.4-
95.0) 

Women 3150 17.5 (14.1-
21.7) 

0.884 
(0.873-
0.896) 

0.778 
(0.752-
0.804) 

0.689 30.80% 88.5% (87.3-
89.6) 

69.5% (67.9-
71.1) 

56.4% (54.7-
58.1) 

93.1% (92.2-
94.0) 

Men 3052 16.7 (13.3-
20.9) 

0.886 
(0.874-
0.898) 

0.830 
(0.810-
0.851) 

0.71 36.50% 90.9% (89.9-
92.0) 

62.4% (60.7-
64.2) 

58.2% (56.4-
59.9) 

92.3% (91.3-
93.2) 

Non-Hispanic White 3966 16.7 (13.7-
20.5) 

0.882 
(0.871-
0.892) 

0.824 
(0.805-
0.841) 

0.711 37.40% 91.7% (90.9-
92.6) 

60.2% (58.7-
61.7) 

58.0% (56.4-
59.5) 

92.4% (91.6-
93.2) 

Non-Hispanic Black 834 17.2 (11.4-
25.9) 

0.877 
(0.852-
0.902) 

0.774 
(0.724-
0.823) 

0.697 31.50% 87.8% (85.6-
90.1) 

70.4% (67.3-
73.5) 

57.8% (54.4-
61.1) 

92.6% (90.9-
94.4) 

Hispanic 537 15.8 (9.7-
25.8) 

0.882 
(0.846-
0.916) 

0.786 
(0.720-
0.844) 

0.666 25.50% 81.0% (77.7-
84.3) 

78.8% (75.3-
82.2) 

56.6% (52.4-
60.8) 

92.4% (90.1-
94.6) 

Others 866 18.1 (11.9-
27.5) 

0.893 
(0.868-
0.918) 

0.740 
(0.668-
0.803) 

0.648 23.10% 84.0% (81.6-
86.4) 

77.5% (74.7-
80.3) 

52.8% (49.5-
56.2) 

94.2% (92.6-
95.7) 
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Table 2. Model performance characteristics for PRESENT-SHD for detection of structural heart disease across the held-
out test set and external validation cohorts.  
Abbreviations: AUPRC, area under the precision recall curve; AUROC, area under the receiver operating characteristic curve; NPV, 
negative predictive value; PPV, positive predictive value. 
 

Cohort Type Site Name Total 
Number 

Diagnostic 
OR AUROC AUPRC F1 Score Prevalenc

e Sensitivity Specificity PPV NPV 

Held-out test set 
Yale New 
Haven 
Hospital 

6203 17.2 (14.7-
20.1) 

0.886 
(0.877-
0.894) 

0.807 
(0.791-
0.823) 

0.7 33.60% 89.8% 
(89.0-90.5) 

66.2% 
(65.0-67.4) 

57.4% 
(56.1-58.6) 

92.8% 
(92.1-93.4) 

External validation 
– Hospital sites 

Bridgeport 
Hospital 8944 14.8 (12.9-

16.9) 

0.854 
(0.847-
0.862) 

0.834 
(0.823-
0.845) 

0.751 46.60% 93.2% 
(92.6-93.7) 

52.0% 
(51.0-53.1) 

62.9% 
(61.9-63.9) 

89.7% 
(89.1-90.3) 

Greenwich 
Hospital 2271 30.6 (22.2-

42.1) 

0.900 
(0.888-
0.913) 

0.894 
(0.878-
0.910) 

0.798 49.80% 96.0% 
(95.2-96.8) 

55.9% 
(53.9-58.0) 

68.3% 
(66.4-70.2) 

93.4% 
(92.4-94.4) 

Lawrence 
+ 
Memorial 
Hospital 

11447 16.0 (14.0-
18.2) 

0.871 
(0.864-
0.878) 

0.771 
(0.757-
0.784) 

0.643 31.50% 92.5% 
(92.0-93.0) 

56.4% 
(55.5-57.3) 

49.3% 
(48.4-50.3) 

94.3% 
(93.8-94.7) 

Westerly 
Hospital 1843 19.9 (14.5-

27.3) 

0.887 
(0.874-
0.902) 

0.906 
(0.890-
0.922) 

0.81 55.60% 95.1% 
(94.1-96.1) 

50.5% 
(48.3-52.8) 

70.6% 
(68.6-72.7) 

89.2% 
(87.8-90.6) 

External validation 
– Population-based 
cohort 

ELSA-
Brasil 2988 11.4 (6.0-

21.5) 

0.853 
(0.811-
0.897) 

0.354 
(0.253-
0.460) 

0.121 2.90% 87.5% 
(86.3-88.7) 

61.9% 
(60.2-63.6) 

6.5% (5.6-
7.4) 

99.4% 
(99.1-99.7) 
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Disease Label, AUROC (95% CI)
SHD (LVSD, Moderate/Severe Left-sided Valvular
Disease, Severe LVH), 0.886 (0.877-0.894)
LVSD (LVEF <40%), 0.914 (0.904-0.924)
Moderate/Severe Left-sided Valvular Disease,
0.805 (0.793-0.816)
Moderate/Severe AR, 0.722 (0.697-0.746)
Moderate/Severe AS, 0.804 (0.784-0.824)
Moderate/Severe MR, 0.792 (0.776-0.807)
Severe LVH, 0.903 (0.854-0.948)
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