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Abstract

The spatial reconstruction of single-cell RNA sequencing (scRNA-seq) data into spatial transcriptomics (ST) is a rapidly evolving
field that addresses the significant challenge of aligning gene expression profiles to their spatial origins within tissues. This
task is complicated by the inherent batch effects and the need for precise gene expression characterization to accurately reflect
spatial information. To address these challenges, we developed SELF-Former, a transformer-based framework that utilizes multi-scale
structures to learn gene representations, while designing spatial correlation constraints for the reconstruction of corresponding ST
data. SELF-Former excels in recovering the spatial information of ST data and effectively mitigates batch effects between scRNA-seq
and ST data. A novel aspect of SELF-Former is the introduction of a gene filtration module, which significantly enhances the spatial
reconstruction task by selecting genes that are crucial for accurate spatial positioning and reconstruction. The superior performance and
effectiveness of SELF-Former’s modules have been validated across four benchmark datasets, establishing it as a robust and effective
method for spatial reconstruction tasks. SELF-Former demonstrates its capability to extract meaningful gene expression information
from scRNA-seq data and accurately map it to the spatial context of real ST data. Our method represents a significant advancement in
the field, offering a reliable approach for spatial reconstruction.
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Introduction
Single-cell RNA sequencing (scRNA-seq) technology enables the
measurement of gene expression in individual cells across mil-
lions of samples, providing detailed insights into complex cellular
landscapes and heterogeneity [1]. The task of recovering spatial
positions can provide a new spatial perspective for scRNA-seq
[2, 3]. This is because scRNA-seq methods involve dissociating
tissues into suspensions at single-cell resolution, leading to the
loss of crucial information regarding spatial localization. Such
spatial information is vital for understanding biological processes,
including cell spatial annotation [4, 5], cell states [6, 7], and cell
trajectories [8, 9]. Accurate reconstruction is essential for gaining
comprehensive insights into the spatial organization of cellular
components within tissues, facilitating a deeper understanding of
intricate biological phenomena.

In recent years, spatial transcriptomics (ST) has gained
increasing popularity due to its capability of capturing the spatial
distribution of gene expression in tissues at high-resolution
[10, 11]. However, it comes with drawbacks, including high
costs and reduced gene detection performance at single-cell
resolution compared to scRNA-seq methods, particularly for
weakly-expressed genes [12, 13]. Nevertheless, the emergence
of ST has paved the way for the potential alignment of scRNA-seq

data [14]. This facilitates knowledge transfer between the two data
modalities, enabling the recovery of inherent spatial properties
in scRNA-seq data. The adoption of effective methods for the
alignment of ST features associated with scRNA-seq data has
significantly improved the accuracy of spatial position recovery,
while reducing manual effort, resources, and computational costs
at the same time [15, 16].

The key to understanding scRNA-seq data as a reconstruction
task lies in recognizing that, while scRNA-seq provides high-
resolution information on individual cell gene expression, it lacks
the actual spatial location information of cells within tissues.
An important objective of our work is to recover the spatial
distribution of cells in tissues or organs based on scRNA-seq data,
enabling a more comprehensive understanding of tissue structure
and cell interactions. This is crucial for unveiling biological pro-
cesses, studying tissue development and comprehending disease
mechanisms. As a result, a correct understanding and effective
processing of scRNA-seq data for reconstruction will facilitate
in-depth exploration of cell spatial distribution and interactions
within tissues.

Early research typically used the construction of mapping
matrices to establish associations between scRNA-seq and ST
data, in order to obtain the positional attributes corresponding
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to scRNA-seq data. For instance, SpaOTsc [16] has devised an
optimal transport algorithm [17] to measure the distance between
two cellular data modalities for reconstruction. Previous methods
[18, 19] focused on using mapping matrices to establish the
correspondence between cells. These methods face notable
limitations. First, the correspondence between scRNA-seq and
ST data is inherently complex, and existing mapping matrices
often fail to capture this complexity effectively. These matrices
typically assume that the number of cells or spots is less than
the number of genes, which in real datasets, leads to the mapping
matrix establishing connections between cells and spots that do
not accurately reflect biological reality. This misalignment causes
the method to overly focus on the association between cells
and spots, while overlooking critical interactions between genes.
Furthermore, the contribution of each gene in the reconstruction
task varies, current approaches do not adequately account
for the distinct roles of different genes in the reconstruction
task. Therefore, it is necessary to develop more advanced
methods to manage the complex relationship between scRNA-
seq data and ST data. This will not only improve the accuracy
of data integration but also provide a more comprehensive
understanding of the functions and mechanisms within biological
systems.

To address these challenges, we employed the transformer
structure for modeling reconstruction task, and propose a single-
cell multi-scale gene filtration transformer (SELF-Former) to accu-
rately reconstruct the spatially resolved scRNA-seq data. Specifi-
cally, we introduce a self-attention mechanism in scRNA-seq data,
which emphasizes the interaction between cells to capture the
feature transformation from non-spatially resolved scRNA-seq
data to spatially resolved ST data. For each transformer block, we
introduced a gene-based filtration learning module by modifying
the attention mechanism. It automatically filters out genes with
high contribution and filters out genes with low contribution,
thereby improving the model’s reconstruction performance for ST
data. In addition, to address the problem of lack of spatial location
in scRNA-seq data, we combined spatial correlation regularization
to further impute genes for scRNA-seq data. The proposed SELF-
Former eliminates the need for additional tuning techniques,
enabling seamless training and testing across benchmarks. Sub-
sequently, we further demonstrate the biological analysis of SELF-
Former, such as the accuracy and efficiency of gene filtration,
removal of batch effects and performance evaluation.

Materials and methods
Methods
In this section, we present the details of the proposed method,
which aims to spatially recovering scRNA-seq data by assigning
spatial location for each cell. Figure 1 provides an overview of
SELF-Former for spatially alignment scRNA-seq data.

Problem Formulation
Here, we first give some notations. We are provided with scRNA-
seq data Dsc = {(xi)

nsc
i=1 ∈ R

Cp } and ST data Dst = {(xi)
nst
i=1 ∈

R
Cq |(yi)

nst
i=1 ∈ R

2}. Here, nsc and nst represent the number of cells in
scRNA-seq data and spots in ST data, respectively. And notations
Cp and Cq denote the total number of genes measured in raw
count scRNA-seq and ST data. Typically, Cq ⊂ Cp and Cp � Cq, as
scRNA-seq assays many genes without defined spatial patterning
in the tissue. We need to establish a framework for reconstruction,
aiming to extract commonalities in the data from two cellular
modalities. Overlapping genes, denoted as Co = Cq ∩ Cp, represent

the subset of genes that are present in both scRNA-seq and ST
data. These genes are biologically significant because they provide
a common ground for comparing and aligning the two datasets.
By focusing on these shared genes, we ensure that the recon-
structed ST data leverages the most relevant and consistent gene
expression information from both modalities. This reduces noise
and potential biases introduced by genes that are only present
in one dataset but not the other. Therefore, by normalizing and
subsetting to these Co overlapping genes, the raw count data can
be rewritten as scRNA-seq data Dsc = {(xi)

nsc
i=1 ∈ R

Co } and predicted
ST data D̃st = {(x̃i)

nst
i=1 ∈ R

Co |(yi)
nst
i=1 ∈ R

2}, (yi)
nst
i=1 denotes the spatial

location matrix of each cell in the ST, while (yi)
nsc
i=1 for the scRNA-

seq data is unknown. The key to this problem is how to accurately
impute scRNA-seq data to corresponding ST data while preserving
spatial positional relationships.

Design of backbone
The abundant gene expression data obtained through scRNA-
seq presents a challenge in establishing the connection between
scRNA-seq and ST data for reconstruction tasks. To address this,
we have considered the attention mechanism within the trans-
former structure. By employing the key-query-value composition
of the self-attention mechanism commonly used in computa-
tional tasks, we aim to identify rich gene expression patterns
among scRNA-seq data, thus bridging the gap for reconstruc-
tion of ST data. Before delving further into this approach, let’s
briefly review the transformer structure: for query, key and value
{Q, K, V}, we employ fully connected layers to learn non-linear
feature expressions, formulated as follows:

{Q, K, V} = �(W{q,k,v} ⊗ Dsc + b{q,k,v}), (1)

where the W{q,k,v} and b{q,k,v} are learnable model parameters, and
� and ⊗ represent the LeakyReLU activation function and matrix
multiplication. In above equation, we employ a self-attention
mechanism to learn the query, key and value for scRNA-seq data.
Allowing the network to utilize the rich gene expression from
scRNA-seq data to learn intrinsic expression patterns. The output
at each position represents the sum of values weighted by the
scaled dot-product similarity between the keys and queries. The
equation is formulated as follows:

A = Softmax(Q ⊗ K/
√

�) ⊗ V, (2)

where � denotes the number of feature channels. To under-
stand this in a biological context, we interpret the components
of this equation as follows. Query (Q) and Key (K) Matrices are
derived from the scRNA-seq data, representing gene counts. The
multiplication Q ⊗ K captures the interactions between different
genes. In a biological sense, this can be seen as quantifying the
potential relationships and dependencies among genes based
on their expression levels. Softmax Normalization: the softmax
function applied to Q ⊗K/

√
� normalizes the interaction scores to

a probability distribution, which we refer to as the self-attention
matrix. This matrix highlights the associations between genes,
assigning higher weights to more significant interactions. Bio-
logically, this means identifying which genes are more likely
to influence each other. Value Matrix (V) is also derived from
the scRNA-seq data and contains the actual expression values.
The multiplication of the attention matrix with V results in A,
where the gene expression values are weighted by their learned
importance, thus emphasizing the most biologically relevant gene
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Figure 1. The flowchart of proposed SELF-Former F. We take a random gene from the drosophila as an example: firstly, high-throughput expression data
for the gene is extracted from single-cell resolution, as shown in the left image which lacks spatial information. Secondly, the scRNA-seq data is encoded
from Fenc, primarily implemented as a self-attention transformer block. The bottom left corner illustrates an overview of gene-wise filtration learning.
Next, features are aggregated along multi-scale self-attention blocks to obtain spatially resolved predictions of ST data. The aggregated representations
are then processed through the decoder Fdec. The decoder reconstructs the ST data from these multi-scale features. The final output is the reconstructed
ST data, which includes spatial locations for each gene expression, allowing for spatial plotting and further downstream analysis.

expressions for the target ST data. The self-attention mechanism
allows our model to dynamically focus on different genes and
their interactions at each layer. By stacking multiple self-attention
blocks, the model progressively refines its understanding of the
gene expression landscape, incorporating both local and global
gene interactions. To maintain the integrity of the input features
across layers, we introduce residual connections in each self-
attention block. This ensures that the original gene expression
information is preserved and that the associations between the
predicted ST data and scRNA-seq data remain intact throughout
the network. Meanwhile, we believe that the input features to the
self-attention block should be controllable. We apply an adaptive
factor denoted as λ to adjust the influence of input data on the
output features of the attention block and the Equation 2 can be
rewritten as follows:

Ar = softmax(Q ⊗ K/
√

�) ⊗ V + λDsc. (3)

Different scales of gene expression information are equally
important. To address this, we have designed attention mod-
ules at different scales, with corresponding intermediate feature
dimensions set to 1024, 2048, and 4096. With the aggregation of
multiple transformer blocks, the proposed SELF-Former F explores
the interdependence of gene expression across various receptive
fields. The output of multiple residual blocks is then concatenated
together to build the final output Aagg as follows:

Aagg = concat(A(1)
r , ...,A(N)

r ), (4)

where N represents the number of scales, typically set to 3.
The SELF-Former employs two distinct modeling approaches for
spatial reconstruction. One is the global relationship modeling.

SELF-Former approach captures broad correlations between gene
expressions, ensuring that the model understands the overall
gene expression landscape. The other one is local relationship
modeling. Within each module stack, local modeling reshapes
the scRNA-seq data itself. By learning from the attention matrix,
the model captures finer, intrinsic correlations between genes,
enhancing its ability to reconstruct spatial data accurately.
Overall, the self-attention mechanism and multi-scale modules
enable our model to effectively capture and interpret complex
gene expression patterns, leading to accurate spatial recon-
struction. This biologically informed approach ensures that the
intrinsic relationships between genes are preserved and leveraged
throughout the modeling process.

The input data Dsc undergoes the model to obtain predictions,
and we impose a mean squared error constraint formulated as
follows: Lrecon = EF[||Dst − F(Dsc)||22]. Further, considering the
prevalence of zero values in different datasets. It indicates a
considerable sparsity in both scRNA-seq and ST data. In light of
this observation, we devise an binary mask M ∈ R

0,1 to record the
positions of gene expression in the reference ST data Dst where
values are zero. The formulation is as follows:

Lmask = EF[||M 	 (Dst − F(Dsc))||22], (5)

where notation 	 represents the element-wise matrix multiplica-
tion. By minimizing the aforementioned mean squared error loss
Lrecon, SELF-Former achieves a global estimation of the predicted
output. And simultaneously employing Lmask to facilitate the
estimation of non-zero elements, the SELF-Former is trained to
impute the spatial locations of scRNA-seq data. This enhances
the model encoding ability for scRNA-seq data in both intrinsic
and extrinsic gene expression patterns, thereby improving
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the integration predictions of spatially resolved reference
data.

However, due to the lack of constraints on the gene expression
level, such predictions do not align well with the target spatial
data distribution. Inspired by the Pearson correlation coefficient,
we designed a gene-wise correlation constraints to regularize
the correlation of gene expression for each spatial data column,
thereby imposing constraints on the overall gene expression.
Here, we first present the formula for the Pearson correlation
coefficient:

ρ(D̃st,Dst) = Cov(D̃st,Dst)

σD̃st
σDst

, (6)

where Cov denotes the covariance and σ represents the standard
deviation. Considering that the gene expression in each column
j needs to be constrained with reference to the spatial data, we
further designed the gene-wise correlation loss:

Lcorr = EF[1 − 1
n

n∑

j=1

ρ(D̃:,j
st ,D

:,j
st )]. (7)

Minimizing the loss function ensures that the latter term in
the Equation 7 approaches to 1, indicating that the gene-wise
correlation approximates the expression of the reference ST data.
The comprehensive optimization formulation, recovering all the
aforementioned regularization methods is represented as fol-
lows:

min
θF

Lrecon + α1Lmask + α2Lcorr, (8)

where hyper parameters α1 and α2 quantify the impact of each
loss function on the final optimization objective.

Gene-based filtration learning
The model receives input scRNA-seq data with abundant gene
expressions and the dimension of no is relative high. However,
among the vast number of genes, useful genes for reconstruction
have yet to be explored. For example, marker genes in the dataset
are more likely to aid in the imputation of spatial information.
While certain genes, such as other thyroid-related genes may have
a negative impact on reconstruction. Based on this observation,
we propose a gene-based filtration learning designed to filter
individual positive genes from the high-dimensional gene set
for subsequent predictions. Single negative genes are omitted to
prevent their influence on the final predictions.

We define the matrix resulting from dividing the query Q and
key K in the self-attention mechanism and then applying the
softmax as the gene correlation matrix S, whose size is [Co, Co].
Each element on the diagonal of matrix diag(S) represents the
contribution of an individual gene to the Value V. We sort the con-
tributions in descending order and employ an adaptive filtration
factor φ ∈ [0, 1] for gene selection. When φ = 0.5, it selects 50% of
the effective elements. Consequently, the shape of the filtration
matrix S
 is [Co//2, Co//2]. Subsequently, we apply the filtration
matrix S
 to the input data Dsc to obtain the gene expression
matrix Dsc
 with Co//2 genes. We use the filtration matrix as
the key KS
 and value VS
 in the self-attention mechanism. The
formulation is as follows:

{KS
 , VS
 } = �(W{kS
 ,vS
 } ⊗ Dsc
 + b{kS
 ,vS
 }). (9)

Subsequently, we continue to use the features without
undergoing the filtration, referred to as the original features.
We perform recombination learning using the filtered features

Dsc
 . We utilize unfiltered scRNA-seq features as query values.
We reassemble the input scRNA-seq features using the filtered
gene expression features, aiming to utilize the streamlined gene
expression for better imputation of target ST data. The specific
formula is expressed as follows:

A

r = softmax(QS ⊗ KS
 /

√
�) ⊗ VS
 + λDsc
 . (10)

By identifying and selecting marker genes or other informative
genes, the module prioritizes genes that contribute positively to
spatial reconstruction. This process excludes genes with negative
correlations, which might otherwise introduce noise or irrelevant
information. The adaptive filtration factor φ provides flexibility
in gene selection, allowing the model to dynamically adjust the
proportion of selected genes based on their contributions. This
adaptability ensures that the model remains robust across differ-
ent datasets and biological contexts. By recombining the filtered
gene expression features with the original unfiltered features,
the model leverages both the detailed information from selected
genes and the broader context of the complete gene set. This
balanced approach enhances the model’s overall performance in
reconstructing spatial gene expression patterns. By recombining
the filtered gene expression features with the original unfiltered
features, the model leverages both the detailed information from
selected genes and the broader context of the complete gene
set. This balanced approach enhances the model’s overall perfor-
mance in reconstructing spatial gene expression patterns.

Validation benchmarks and strategy
We selected datasets from three different biological systems
to validate the feasibility of the proposed method: drosophila
embryo, mouse cortex tissue, human breast cancer tissue, and
mouse brain anterior tissue:

(i) The single-cell resolution spatial dataset of drosophila
embryos [20] encompasses spatial data marked on 3039
locations per cell with 84 genes, while the scRNA-seq data
was detected in 1297 cells with 8924 genes.

(ii) For the mouse cortex tissue, the Smart-Seq dataset [21]
comprises 15 413 cells and 45 768 genes from the Primary
Visual Cortex (VISp) in a mouse brain slice. The correspond-
ing single-cell resolution spatial atlas is obtained from var-
ious spatial transcriptomics technologies, including multi-
plexed error-robust fluorescence in situ hybridization (MER-
FISH) [22], and spatially resolved transcript amplicon read-
out mapping (STARmap) [23]. The scRNA-seq data in MER-
FISH contains 2399 cells and 254 genes, with 254 genes
overlapping with the corresponding spatial data. The scRNA-
seq data in STARmap contains 1549 cells and 1020 genes, of
which 996 genes overlap with the corresponding spatial data.

(iii) The spatial human breast cancer tissue was obtained
from the 10x Genomics data repository https://www.10
xgenomics.com/resources/datasets/human-breast-cancer-
block-asection-1-1-standard-1-1-0. The corresponding
scRNA-seq data were downloaded from the GraphST
repository [18]. The spatial data contains 3798 spots with
36 601 genes and the processed scRNA-seq data consists of
46 080 cells with 5000 genes, of which 921 genes overlap with
the corresponding spatial data.

(iv) The mouse brain anterior (MBA) dataset was manually anno-
tated with 52 regions using the Allen Brain Atlas reference
[https://mouse.brain-map.org/static/atlas]. The correspond-
ing scRNA-seq data were downloaded from the GraphST
repository [18]. The spatial data in MBA contains 2695 spots
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with 32 285 genes, and the processed scRNA-seq data con-
sists of 116 921 cells with 22 764 genes. By taking the union
of the two datasets, we identified 1099 overlapping genes.

In terms of validation strategy, we referred to the approach
used by Tangram [21], applying a K-fold cross-validation from the
perspective of genes to quantitatively and visually validate the
effectiveness of the methods. For each benchmark, we used a
fixed parameter of K=10 for training and testing all methods.

Comparisons methods
To ensure a fair comparison, we evaluated the state-of-the-
art methods in the field, specifically STEM [24], GraphST [18],
SpaOTsc [16], NovoSpaRc [25], and Tangram [19]. Additionally, we
included the representative imputation methods gimVI [26] and
stDiff [27] in our comparison.

In our experiments, to ensure a more comprehensive and fair
comparison, we selected five metrics to quantitatively analyze
the final results: Pearson Correlation Coefficient (PCC), Spearman
Rank Correlation Coefficient (SPCC), Structural Similarity Index
Measure (SSIM), Root Mean Square Error (RMSE), and Cosine
Similarity (COSSIM).

Results
SELF-Former captures true cellular topological
structures in reconstruction results
The objective of spatial reconstruction is to better match the
distribution of ST data in the target domain. Specifically, we
performed UMAP visualization of the ST data and corresponding
scRNA-seq data to help readers understand the initial dataset dis-
tribution. We further visualized the results of seven comparison
methods as well as SELF-Former, focusing on the reconstructed
ST data using UMAP to determine whether they lie on the same
distribution manifold. The specific visualizations are shown in
Fig. 2.

Figure 2(A) presents the results on the Drosophila dataset.
Since the Drosophila dataset was pre-processed beforehand, the
original UMAP visualization shows a relatively coherent spatial
state. However, it can be observed that the imputation method
gimVI did not successfully predict the spatial locations of the ST
data. Other methods also did not achieve the expected results
in predicting the ST data. In contrast, the Tangram method par-
tially aligned the recovered spatial positions, with some points
distributed within the ST data. Our method effectively matched
the real ST data distribution after reconstruction. In Fig. 2(B), the
basic trend in STARmap dataset is more pronounced compared to
the Drosophila dataset. Almost all comparison methods predicted
the data into a subspace with tightly packed spatial distribu-
tion. SELF-Former accurately predicted the ST data and precisely
recovered the spatial positions on the spatial manifold, aligning
accurately with the ST data.

The excellent spatial recovery capability of SELF-Former is
attributed to its network training mechanism and gene-wise con-
straints. SELF-Former learns the gene-wise distribution relation-
ships of the target ST data, thereby constraining the predicted
ST data distribution and ensuring that the reconstructed data
aligns with the true ST data distribution. This strategy effectively
reconstructs the scRNA-seq data into the ST data transformation,
eliminating the misalignment between the two batches of data.
Our model effectively removes batch effects between scRNA-
seq and ST data, outperforming other spatial reconstruction and
imputation methods. In summary, SELF-Former demonstrates the

ability to correct batch effects under two different prior distribu-
tions, accurately reconstructing the predicted ST distribution with
the true ST distribution.

Accurate gene selection for training achieved by
SELF-Former
Gene selection is an essential module of our proposed SELF-
Former. Existing research methods typically use the highly vari-
able genes approach from the scanpy library as a preliminary
selection method, selecting genes from thousands to tens of
thousands of data points. This method introduces a certain degree
of non-selectivity and lacks spatial characteristics. Some exist-
ing theoretical studies focus on spatial position-based selection
methods, which are independent of reconstruction methods. To
illustrate the significance of our proposed gene selection mod-
ule, we provided comprehensive demonstrations of its diagnostic
characteristics, as shown in Fig. 3.

For the significance of variant-selected genes, we plotted a
scatter plot where the x-axis represents the Facction Variance
(FV) score, and the y-axis represents the Wilcoxon test P-value
(log-transformed) of the genes. The red horizontal dashed line
indicates the significance threshold (FV = 0.001; -log p value).
Genes above the red dashed line are considered significant for
reconstruction results. Specifically, in the Drosophila dataset,
genes marked in red are those with significant spatial positions
after activation, such as Dfd, Mes2, and ftz, which exhibit distinct
spatial patterns (striped or blocky). In the MERFISH and STARmap
datasets, the red-marked genes are classic histological marker
genes as indicated in [28]. In the BRCA dataset, the red-marked
genes are those with clear spatial boundary positions[18, 29],
eg. ERBB, CDH1, MKI67, KRT5, FOXA1, etc. It is evident that the
number of genes surpassing Wilcoxon test P-values identified by
SpatialDE is significantly fewer compared to those identified by
SELF-Former. Moreover, SpatialDE shows a disadvantage in the
selection of marker genes. For instance, notable genes such as
‘Camk4’ and ‘Vip’ in the STARmap are not identified by Spa-
tialDE. This discrepancy arises because SpatialDE assumes that
the spatial variation in gene expression is smooth and continuous.
However, gene expression patterns often exhibit more complex
nonlinear characteristics that Gaussian process models which
SpatialDE relies on, may fail to capture effectively. Additionally,
SpatialDE’s use of random effect terms to model non-spatial
variability poses challenges in handling noisy data. High levels
of noise can interfere with the identification of spatial variation
components, thereby affecting the accuracy of the results. In con-
trast, SELF-Former employs a self-attention mechanism, which
is more adept at capturing complex nonlinear spatial features.
Compared to Gaussian process models, the self-attention mech-
anism can more flexibly adapt to various expression patterns,
thereby enhancing the accuracy and comprehensiveness of gene
selection. SELF-Former selects genes based on a reconstruction
objective, which allows it to identify genes that are more ben-
eficial for reconstructing spatial gene expression patterns. This
objective-driven selection process effectively captures significant
gene expressions that are crucial for accurate spatial reconstruc-
tion by ensuring a comprehensive and systematic approach to the
analysis.

We also designed comparative experiments to demonstrate
the efficiency and effectiveness of the gene filtering module, as
shown in Table 1. We devised two metrics: Overlap Rate (OR)
and validation time. The table presents a comparative analysis of
gene filtration methods across four datasets: MERFISH, STARmap,
Drosophila, and BRCA. The methods compared include SpatialDE,
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Figure 2. Comparison of various methods and SELF-Former on UMAP visualizations of real ST data and data after spatial reconstruction. (A)/(B) show
the results on the Drosophila and STARmap. Yellow points denote spatial reconstruction data from scRNA-seq, while blue points represent the real ST
data.

Figure 3. Scatter plots of gene selection on four benchmark datasets between SELF-Former and SpatialDE. The horizontal axis represents the fraction
of variance of genes, while the vertical axis represents the Wilcoxon test P-values (log-transformed) calculated from predicted gene expression.
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Table 1. Comparison of various gene filtration methods highlighting their overlapping rates and times across different datasets. The
overlap rate is expressed as a percentage and indicates the effectiveness of each method in identifying common gene expressions. The
processing time is measured in seconds, providing insights into the computational efficiency of each approach.

Methods Drosophila MERFISH STARmap BRCA

OR(%)↑ Times(s) OR(%)↑ Times(s) OR(%)↑ Times(s) OR(%)↑ Times(s)

SpatialDE[30] 12.12 30.62 4.54 320.87 8.45 1025.23 9.45 1125.11
BayesSpace[31] 7.02 3.15 3.23 24.32 4.12 77.12 6.11 83.12
SELF-Former 18.02 0.04 25.23 0.19 33.15 0.33 35.45 0.43

BayesSpace, and SELF-Former. The metrics used for comparison
are the OR, which represents the percentage of overlap with highly
variable genes, and the time taken for the gene filtration process
in seconds. In MERFISH dataset, SELF-Former outperforms both
with an OR of 25.23% and the fastest processing time of 0.19
seconds. Also, SELF-Former again demonstrates superior perfor-
mance with an OR of 33.15% and a processing time of just 0.33
seconds in STARmap dataset. Additionally, on the BRCA dataset,
we demonstrated performance improvements in both overlap
rate and speed. SELF-Former showed a 26% (29.34%) improve-
ment in the OR metric compared to SpatialDE (BayesSpace). In
summary, SELF-Former consistently provides the highest overlap
rates across all datasets while maintaining the fastest process-
ing times, demonstrating its efficiency and effectiveness in gene
filtration.

SELF-Former outperforms state-of-the-art
models in spatial reconstruction task
Visualizations of the results and comparisons with other methods
can be found in Fig. 4. Figure 4 (A) presents the box plots of PCC
for various methods applied to the dataset. Each box plot illus-
trates the distribution of PCC values, with the box representing
the interquartile range (IQR) and the whiskers extending to 1.5
times the IQR from the lower and upper quartiles. Outliers are
shown as individual points outside the whiskers. SELF-Former
exhibits the highest median PCC, indicating strong performance in
correlating the predicted values with the true values. It also shows
a relatively compact distribution of PCC values, suggesting consis-
tent performance. Tangram and novoSpaRc follow with slightly
lower median PCC values, while GraphST, SpaOTsc, and STEM
show more variability in their PCC distributions. gimVI and stDiff
display the lowest median PCC values, highlighting their relatively
weaker correlation performance compared to other methods.

Figure 4(B) shows horizontal bar plots comparing the RMSE for
the same set of methods. The mean RMSE values are represented
by the length of the bars, with error bars indicating the standard
error of the mean. The methods are ordered in the same sequence
as in Fig. 4 (A) for consistency. SELF-Former demonstrates the
lowest RMSE, depicted by the shortest bar, which signifies its
superior performance in minimizing the prediction error. A red
star marker highlights this method as the best performer in terms
of RMSE.

In Fig. 4(C), we illustrate the spatial position reconstruction
effects on Drosophila, STARmap, MBA, and BRCA datasets. The
MBA and BRCA datasets were derived from 10x Genomics, with
corresponding tissue images provided as references. SELF-Former
effectively reconstructs the spatial expression of genes. For exam-
ple, in the Drosophila dataset, the reconstruction of strip genes
and prominently expressed bottom genes is particularly accurate.
In the STARmap dataset, SELF-Former significantly outperforms

Tangram and novoSpaRc in reconstructing genes such as Mobp
and Plp1, which are prominently expressed at the bottom posi-
tions. In the MBA and BRCA datasets, SELF-Former demonstrates
superior accuracy in the spatial positioning of genes. The recon-
structed patterns align closely with the ground truth atlas, partic-
ularly in regions with significant expression. In contrast, Tangram
and novoSpaRc lack spatial location priors for individual gene
reconstructions.

Further, Table 2 reveals that SELF-Former consistently out-
performs other methods across these metrics. For instance,
in the MBA dataset, the average cosine similarity achieved by
SELF-Former is 0.5531, significantly higher than the second-best
method. This superior performance can be attributed to the
effective gene selection and spatial position constraint losses
we introduced. These enhancements enable SELF-Former to
maintain excellent numerical performance while accurately
reconstructing the spatial expression patterns of genes.

Ablation study and implementation details
To validate the effectiveness of our proposed model architecture
and regularization constraints, we introduced four corresponding
variants and evaluated their performance on the STARmap and
MERFISH datasets. The results are summarized in Table 3.

• Module-Variant-1: removal of the multi-scale module;
• Module-Variant-2: removal of the gene filtration learning;
• Loss-Variant-1: removal of Lrecon and Lmask;
• Loss-Variant-2: removal of Lcorr.

The performance metrics used for evaluation include PCC,
SPCC, SSIM, RMSE, and COSSIM. For the STARmap dataset, SELF-
Former achieves the highest PCC (0.2359), SPCC (0.2330), SSIM
(0.1016), COSSIM (0.4387), and the lowest RMSE (1.2327), demon-
strating superior performance compared to other variants. The
other methods show varying levels of performance, with Module-
Variant-2 performing better than Module-Variant-1 and Loss-
Variant-2 performing better than Loss-Variant-1 across most met-
rics. Similarly, for the MERFISH dataset, our method also performs
best, achieving the highest PCC (0.3566), SPCC (0.2780), SSIM
(0.2493), COSSIM (0.4692), and the lowest RMSE (1.1270). Removing
Lrecon and Lmask directly leads to a decrease in performance (PCC
values) by 29.9%/30.3% in STARmap/MERFISH datasets. Regard-
ing the gene-wised spatial correlation loss Lcorr, the absence of
Lcorr significantly reduces the predicted SSIM scores, decreasing
by 0.0942 (92.7%) and 0.2306 (92.5%) in STARmap and MERFISH
datasets, respectively. In summary, the proposed method demon-
strates superior performance across both datasets, confirming its
robustness and accuracy compared to the evaluated variants.

We summarized the basic architecture of the network for
the all datasets in Table 4. All components of the network were
jointly trained from scratch. To optimize the SELF-Former, we
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Figure 4. Quantitative and qualitative results of spatial reconstruction. (A) and (B) show the PCC box plots and RMSE bar charts on four datasets,
respectively, for SELF-Former and seven comparison methods. (C) presents visualizations of genes with strong spatial localization in the Drosophila,
STARmap, MBA, and BRCA datasets. We display images from SELF-Former, novoSpaRc, Tangram, and Actual Profile, with corresponding PCC values
listed above each gene and gene names on the left side of each row.
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Table 2. Quantitative results between real ST data and reconstructed ST data by Tangram, novoSpaRc, GraphST, SpaOTsc, STEM, gimVI,
and SELF-Former on Drosophila, MBA, and BRCA.

Datasets Drosophila MBA BRCA

SPCC↑ SSIM ↑ COSSIM↑ SPCC↑ SSIM ↑ COSSIM↑ SPCC↑ SSIM ↑ COSSIM↑
Tangram 0.3641 0.3687 0.8231 0.1754 0.0998 0.4882 0.1679 0.0530 0.4144
novoSpaRc 0.2155 0.1884 0.0812 0.1544 0.0648 0.3884 0.1468 0.0015 0.4140
GraphST 0.2683 0.2483 0.8014 0.1598 0.0544 0.3845 0.1995 0.0045 0.3937
SpaOTsc 0.3936 0.4402 0.7819 0.1665 0.1002 0.4021 0.1469 0.0156 0.4119
STEM 0.2838 0.2483 0.6657 0.1845 0.1021 0.4687 0.1685 0.0531 0.4156
gimVI 0.3393 0.1058 0.8165 0.1645 0.1121 0.4517 0.1682 0.0532 0.4161
SELF-Former 0.4687 0.4830 0.8328 0.2273 0.1581 0.5531 0.2048 0.1388 0.4877

Table 3. Quantitative results of various model variants evaluated on STARmap and MERFISH datasets, focusing on performance
metrics including PCC, SPCC, SSIM, RMSE, and COSSIM. These metrics provide a comprehensive assessment of the models’ ability to
accurately reconstruct spatial gene expression patterns.

Variants STARmap MERFISH

PCC↑ SPCC ↑ SSIM↑ RMSE↓ COSSIM↑ PCC↑ SPCC ↑ SSIM↑ RMSE↓ COSSIM↑
Module-Variant-1 0.2099 0.1845 0.0842 1.2722 0.4015 0.3125 0.2514 0.2015 1.1615 0.4215
Module-Variant-2 0.2155 0.1884 0.0812 1.2451 0.4154 0.3348 0.2678 0.2248 1.1443 0.4412
Loss-Variant-1 0.1654 0.1654 0.0611 1.2978 0.3889 0.2484 0.1814 0.1872 1.2311 0.3548
Loss-Variant-2 0.1933 0.1789 0.0074 1.2845 0.3945 0.2778 0.2019 0.0187 1.2102 0.3784
SELF-Former 0.2359 0.2330 0.1016 1.2327 0.4387 0.3566 0.2780 0.2493 1.1270 0.4692

Table 4. Overview of hyper parameters utilized across different datasets, including learning rates, the number of epochs, and specific
parameter values.

Hyper parameters Datasets

Drosophila MERFISH STARmap BRCA MBA

Learning rate 1e-5 5e-5 5e-5 5e-5 5e-5
Epoch 180 400 800 400 1000
Parameters α1 0.1 0.1 0.2 0.2 0.2
Parameters α2 0.5 0.5 0.5 0.5 0.5

employed the Adam optimizer, known for its efficiency in man-
aging sparse gradients, which are prevalent in high-dimensional
gene expression data. We used the default momentum param-
eters, β1 = 0.5 and β2 = 0.999, to stabilize the training process
and accelerate convergence. The optimization strategy involves
gradient descent updates for each loss parameter, ensuring that
the model learns effectively across different datasets. Addition-
ally, we implemented an Exponential Moving Average of the model
parameters. This technique helps smooth the parameter updates
and enhances the stability and performance of the model during
training. By combining these strategies, we achieved a robust
optimization process that contributed significantly to the model
performance.

The architecture contributes to improving the
efficiency and performance of spatial
reconstruction
We conduct an evaluation to assess the impact of the multi-
scale strategy in the spatial reconstruction task. As shown
in Fig. 5(A) top, we compare the single-scale transformer and
multi-scale transformer in terms of training efficiency and
performance gain in four benchmarks. The results clearly
demonstrate that the implementation of the multi-scale strategy
significantly enhances the reconstruction process, both in terms

of efficiency and performance. This highlights the effectiveness
of incorporating multi-scale strategy within proposed model.
Further, by minimizing the mean squared error loss Lrecon, SELF-
Former achieves a global estimation of the predicted output,
ensuring that the overall gene expression patterns are accurately
reconstructed. Figure 5(A) shows a downward trend of Lrecon

converges and tends to 0, proving that SELF-Former retains critical
information well during training. Simultaneously, employing
Lmask facilitates the estimation of non-zero elements, enabling
SELF-Former to effectively reconstruct the spatial locations
of scRNA-seq data. This enhancement boosts the model’s
ability to encode scRNA-seq data, capturing both intrinsic and
extrinsic gene expression patterns. Consequently, it improves
the integration and prediction accuracy of spatially resolved
reference data.

In Fig. 5(B), we focus on the genes prd, kr, Tncm3, Cux2, Nlgn,
Sgc2, COL1A1, and HCST to analyze the significance of the cor-
relation loss Lcorr in maintaining spatial structure and improving
model performance. Four benchmarks demonstrate that the SSIM
performance of SELF-Former, which includes the correlation loss,
retains a high degree of spatial structure. The SSIM values in the
loss-variant model show a significant reduction, highlighting the
importance of correlation loss in retaining spatial information.
The inclusion of gene-wise correlation loss Lcorr plays a crucial
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Figure 5. Network structure efficiency analysis curves and visualization of spatial position correlation constraints. (A) shows two sets of curves. The first
set compares the model performance and efficiency improvements for multi-scale and single-scale structures, with the vertical axis representing the
corresponding PCC values and the horizontal axis representing the number of training epochs. The second set displays the reconstruction loss Lrecon

curves, illustrating the decrease in loss values over training epochs. (B) presents visual comparison images with actual profile, SELF-Former and w/o
loss Lcorr.

role in maintaining the spatial integrity of gene expression pat-
terns across various datasets. The substantial differences in SSIM
values between our model and the loss-variant model underscore
the effectiveness ofLcorr in enhancing spatial fidelity. This analysis
demonstrates that correlation loss significantly contributes to
preserving the intricate spatial structures of gene expression,
which is vital for accurate ST data analysis.

SELF-Former preserves the correlation of the
reconstructed data both within and between
datasets
SELF-Former demonstrates outstanding modeling capabilities for
spatial reconstruction tasks. It efficiently encodes and decodes
scRNA-seq data through transformer blocks to achieve target ST
data. Although we have previously validated that our method
effectively corrects batch effects, possesses excellent gene selec-
tion capabilities, and achieves optimal performance, the funda-
mental significance of recovering ST data still requires discussion.

For the spatial reconstruction results of each dataset by SELF-
Former, we visualized the correlation matrices at both the spot
and gene levels. Figure 6(A) visualizes the correlation matrices
between the Reconstructed ST data and the Real ST data. The left
panel presents the spot-to-spot correlation matrix, while the right
panel shows the gene-to-gene correlation matrix. These matrices
highlight high within-dataset correlations and lower between-
dataset correlations, clearly specifying the relationships within
and between the reconstructed and real data. Regarding the BRCA
dataset, the observed high spot-to-spot correlation and relatively
low gene-to-gene correlation are indeed due to its resolution,
which is at 10x rather than single-cell resolution. The resolution
impacts these correlations because at 10x resolution, each spot
captures the averaged expression of multiple cells. This averaging
process inherently increases the similarity between spots because
variations at the single-cell level are smoothed out. Consequently,
the spot-to-spot correlation appears higher because it reflects a
more aggregated signal. Conversely, gene-to-gene correlations are
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Figure 6. (A) Heatmap visualization of spot-spot and gene-gene correlations across different benchmarks. The axes represent spots/genes indices from
the datasets: Drosophila, MERFISH, STARmap, and BRCA. (B) The clustering analysis of imputed data using different methods.

lower because the detailed variations in gene expression within
individual spot are lost in the averaging process, leading to a less
precise capture of the gene expression patterns. This explains
why the BRCA dataset at 10x resolution shows high spot-to-spot
correlation but lower gene-to-gene correlation.

SELF-Former performs well in ST imputation
downstream task
We also investigated the application of reconstructed ST data for
downstream tasks, particularly the imputation of ST data. We
employed the reconstructed ST data in the recovery task, using
stDiff as a benchmark framework. Specifically, we integrated
the reconstructed ST data as conditional inputs into the stD-
iff model, sourced from various comparison methods, including
SELF-Former, and utilized AdaLN to incorporate recovery informa-
tion into the stDiff model. The performance of each model was
assessed based on this integration. Figure 6(B) presents a UMAP
visualization of scRNA-seq data, real ST data, and imputed ST
data generated by stDiff, conditioned on Tangram, novoSpaRc,
GraphST, SpaOTsc, STEM, gimVI, and the reconstructed ST data
from SELF-Former based on STARmap. The results illustrate that
stDiff’s predictions, conditioned on SELF-Former’s reconstructed

ST data, closely align with the real ST data, while predictions
based on other methods show significant deviations from the real
ST data. Furthermore, using the reconstructed ST data from these
methods as conditional inputs for downstream ST imputation
tasks revealed a persistent batch gap, indicating discrepancies
in spatial dimensions or shifts away from the actual ST data. In
contrast, the reconstructed ST data from SELF-Former provided
superior quality and more accurate spatial alignment, thereby
enhancing the performance and interpretation of downstream
tasks. This improvement highlights the superior quality of SELF-
Former’s reconstructed ST data, which closely matches real data
and mitigates batch effects, making it more suitable for various
biological applications.

SELF-Former can handle noise and variability in
scRNA-seq data
SELF-Former incorporates several strategies to manage the inher-
ent noise and variability in scRNA-seq data, ensuring robust and
reliable performance. Normalization and Preprocessing: Prior to
training, scRNA-seq data undergoes rigorous normalization and
preprocessing to reduce technical variability and batch effects.
This standardization minimizes the impact of technical noise,
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ensuring a more consistent input for the model. Self-Attention
and Multi-Scale Mechanisms: SELF-Former leverages a self-
attention mechanism to filter out noise by learning meaningful
gene associations. This approach emphasizes significant gene
relationships while suppressing spurious correlations. Addition-
ally, multi-scale attention modules capture gene expression
patterns across different scales, enhancing the model’s resilience
to noise and variability. By combining these techniques, SELF-
Former achieves a comprehensive and stable representation of
gene expression data. Gene Filtration Module: A gene filtration
module identifies and retains the most relevant genes for spatial
reconstruction. Using an adaptive filtration factor, it selects genes
with positive contributions, reducing the impact of noisy genes
and improving the quality of reconstructed spatial data. Loss
Functions: carefully designed loss functions play a crucial role
in managing noise. The reconstruction loss ensures accurate
capture of gene expression patterns, while mask loss focuses
on estimating non-zero elements. The gene-wise correlation loss
aligns predicted data with target spatial distributions, guiding
the model to produce biologically meaningful and noise-resilient
outputs. By integrating these strategies, SELF-Former effectively
mitigates the effects of noise and variability in scRNA-seq data,
producing robust and accurate spatial reconstructions.

Ethical considerations and limitations of
applying SELF-Former in clinical settings
The application of SELF-Former in clinical settings raises impor-
tant ethical considerations and potential limitations that must
be addressed to ensure responsible and effective use. Below, we
outline several key points as follows:

1. Data Privacy and Confidentiality: clinical datasets often con-
tain sensitive patient information. Ensuring the privacy and
confidentiality of such data is paramount. This requires
robust data anonymization and encryption methods to pre-
vent unauthorized access and breaches.

2. Bias and Fairness: the quality and representations of the
training data can significantly impact the performance of
SELF-Former. If the training data is biased, the model may
produce biased results, potentially leading to disparities in
clinical outcomes across different patient groups.

3. Accountability and Transparency: in clinical settings, it is
important for healthcare professionals to understand and
trust the decisions made by AI models. SELF-Former should
be designed to provide interpretable and transparent results,
allowing clinicians to understand the basis of its predictions.

While SELF-Former holds significant potential for enhancing
clinical decision-making through advanced spatial data recon-
struction, it is crucial to address the ethical considerations and
limitations associated with its application in clinical settings.
Ensuring data privacy, mitigating biases, providing model trans-
parency, and undergoing rigorous validation are essential steps to
ensure that SELF-Former can be used responsibly and effectively
in healthcare.

Conclusions
In this work, we propose the SELF-Former framework for the
task of spatial transcriptomics reconstruction from scRNA-seq
data. SELF-Former is a transformer-based framework specifically
designed for single-cell data spatial localization recovery tasks.
It integrates gene expression feature learning with an attention

mechanism to capture critical features of scRNA-seq data and cor-
rects batch effects across different domains. Additionally, SELF-
Former efficiently filters genes to select those that are mean-
ingful for predicting ST data. The proposed network structure
and spatial constraints have been thoroughly validated for their
effectiveness and efficiency.

We evaluated the spatial localization recovery capabilities
of SELF-Former across multiple datasets. SELF-Former outper-
formed existing spatial localization reconstruction and gene
imputation methods both numerically and visually. Moreover, the
correlation matrices between cells and genes further validated
the reasonableness of the reconstructed data, suggesting that
the biologically interpretable SELF-Former framework effectively
models spatial reconstruction tasks and holds potential for
downstream biological data analysis.

In the future, for the recovery of spatial positions using long
gene sequences, we can enhance the model’s performance and
interpretability by establishing gene-to-gene relationships and
efficiently filtering out irrelevant genes. This approach holds
potential value for the task of spatial localization recovery from
scRNA-seq data and introduces a novel gene selection-based
perspective to solve the spatial localization recovery task, offering
significant room for expansion.

At the current stage, all models require training a new model
for each different dataset to adapt to their respective spatial
reconstruction tasks. It is not yet feasible to use a single model
across all datasets. Future work could address this limitation by
extending the application through transfer learning and domain
adaptation, thus achieving more practical biological applications.

Key Points

• We propose a single-cell multi-scale gene filtration
transformer structure for the spatially resolved recon-
struction of scRNA-seq data. To the best of our knowl-
edge, this is the first time a transformer-based frame-
work has been utilized for modeling the intrinsic biolog-
ical relationships between scRNA-seq data and ST data.

• Recovering the corresponding spatial positions of
scRNA-seq data requires strong modeling capabilities.
SELF-Former introduces attention and multi-scale
modules to capture spatial features and mitigate batch
effects.

• SELF-Former is the first to innovate by incorporat-
ing a gene filtration module in spatial recovery tasks,
effectively filtering out less important genes in a task-
oriented manner to enhance both model performance
and efficiency.

• The performance of SELF-Former has been validated
across multiple benchmark datasets, outperforming
contemporary reconstruction, integration, and impu-
tation methods in various metrics and visualization
results. Our proposed method demonstrates significant
potential value for downstream analysis.
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