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Abstract

In modern medicine, medical tests are used for various purposes including diagnosis, disease 

screening, prognosis, and risk prediction. To quantify the performance of the binary medical 

test, we often use sensitivity, specificity, and negative and positive predictive values as measures. 

Additionally, the F1-score, which is defined as the harmonic mean of precision (positive predictive 

value) and recall (sensitivity), has come to be used in the medical field due to its favorable 

characteristics. The F1-score has been extended for multi-class classification, and two types of 

F1-scores have been proposed for multi-class classification: a micro-averaged F1-score and a 

macro-averaged F1-score. The micro-averaged F1-score pools per-sample classifications across 

classes and then calculates the overall F1-score, whereas the macro-averaged F1-score computes 

an arithmetic mean of the F1-scores for each class. Additionally, Sokolova and Lapalme1 gave 

an alternative definition of the macro-averaged F1-score as the harmonic mean of the arithmetic 

means of the precision and recall over classes. Although some statistical methods of inference for 

binary and multi-class F1-scores have been proposed, the methodology development of hypothesis 

testing procedure for them has not been fully progressing yet. Therefore, we aim to develop 

hypothesis testing procedure for comparing two F1-scores in paired study design based on the large 

sample multivariate central limit theorem.
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1 | INTRODUCTION

Medical tests are important for the early detection and treatment of disease in modern 

medicine. Tests are used for various purposes including diagnosis, disease screening, 

prognosis, and risk prediction. Some measures exist to quantify the test performance; 

sensitivity, specificity, and positive and negative predictive values are commonly used for 

binary tests. Additionally, the F1-score for binary data (binary F1-score), which is defined as 

the harmonic mean of precision (positive predictive value) and recall (sensitivity), has been 

used in the medical field.1,2

The binary F1-score is especially useful when evaluation of true negatives is relatively 

unimportant because true negatives are not included in computation of either precision or 

recall. In addition, the binary F1-score performs well for a poor diagnostic test that identifies 

majority of the data as positive. In this situation, a simple arithmetic mean of precision and 

recall may be as high as 0.50 because recall will be 1.00 if all the data are diagnosed as 

positive. However, the binary F1-score will be appropriately low in these instances: it will 

be 0.18 and 0.02 when the precision is 0.10 and 0.01, respectively, even if recall is 1.00. 

Therefore, F1-score is a better statistic to report.2

Most of measures for performance of medical tests are only applicable to binary 

classification data, and multi-class classification data need to be dichotomized to compute 

these measures. In the motivating example,3 for instance, skin cancer images were originally 

classified into six categories (malignant melanoma (MM), basal cell carcinoma (BCC), 

nevus, seborrheic keratosis (SK), senile lentigo (SL) and hematoma/hemangioma (H/H)), 

and the classification performances of board-certified dermatologists and dermatologic 

trainees were compared. The classification performance was assessed by accuracy, 

sensitivity, specificity, false negative rate, false positive rate, and positive predictive value 

after dichotomizing the six categories (MM and BCC vs. nevus, SK, SL, and H/H). 

However, evaluating the performance with the original six categories would have been 

preferable because dichotomization led to loss of information regarding the performance of 

the this classification.4,5

As measures of multi-class classification performance, a micro-averaged F1-score and a 

macro-averaged F1-score have been proposed.2 The micro-averaged F1-score calculates the 

overall F1-score by pooling per-sample classifications across classes. Contrarily, the macro-

averaged F1-score computes an arithmetic mean of the F1-scores for each class. In addition, 

Sokolova and Lapalme6 proposed an alternative macro-averaged F1-score as the harmonic 

mean of the arithmetic mean of the precisions and recalls for each class.

Although F1-scores for binary and multi-class classifications have been originally used 

for measuring the performance of text classification in the field of information retrieval 

or of a classifier in machine learning, it has become frequently used in medicine.7–14 

Some statistical methods for inference have been proposed for the binary F1-score,15 

and the methods for estimating confidence intervals of the micro-averaged F1-scores and 

macro-averaged F1-scores has been developed.16,17 However, these previous methods are for 
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inference from one-sample. To our knowledge, no method is available for hypothesis testing 

of F1-scores for paired samples as in our motivating example or two independent samples. 

Thus, we aim to provide the methods for comparing the binary F1-scores, micro-averaged 

F1-scores and macro-averaged F1-scores in the paired-design setting. For two-independent-

sample setting, the proposed method is readily applicable by setting the covariance part of 

the test statistics to 0.

The layout of this article is as follows: In Section 2, the definitions of the binary F1-score, 

micro-averaged F1-score and macro-averaged F1-score are reviewed. Test statistics for 

comparing those scores are derived in Section 3. Then, the simulation results of the proposed 

statistics and the application to the motivating example are presented in Sections 4 and 5, 

respectively. Finally, our brief discussions are provided in Section 6.

2 | REVIEW OF F1-SCORES

This section introduces notations and definitions of binary F1-score (biF), micro-averaged 

F1-score (miF), and macro-averaged F1-score (maF). Consider an r × r × r table of data for a 

nominal categorical variable with r levels r ≥ 2 . Each true class 1, … , r has an r × r table 

representing prediction frequencies of the two tests to be compared.

This arrangement of data represents the binary classification when r = 2, and the multi-class 

classification when r > 2. Table 1 shows general notations for each cell probability pijk, 

where i indicates the class of Test 1, j indicates the class of Test 2, and k indicates the 

true condition. Let Test 1 be a new medical test and Test 2 be an existing medical test. 

We consider a hypothesis testing to compare F1-scores of Test 1 and Test 2. Using these 

notations, the true positive rate TPa , the false positive rate FPa , and the false negative rate 

FNa  for each class a a = 1, … , r  in Test 1 are defined as follows:

TP1a = pa . a, FP1a =
k = 1
k ≠ a

r
pa . k, FN1a =

i = 1
i ≠ a

r
pi . a .

Note that TP1a + FP1a = pa . . , and TP1a + FN1a = p . . a. Similarly, TPa, FPa, FNa for each class 

a a = 1, … , r  for Test 2 are defined as follows:

TP2a = p . aa, FP2a =
k = 1
k ≠ a

r
p . ak, FN2a =

j = 1
j ≠ a

r
p . ja .

Note that TP2a + FP2a = p . a . , and TP2a + FN2a = p . . a.

2.1 | Binary F1-score

When r = 2, we consider the following precision biP  and recall biR  for Test 1 as:
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biP1 = TP11
TP11 + FP11

= p1.1/p1 . . ,

biR1 = TP11
TP11 + FN11

= p1.1/p . . 1 .

And binary F1-score for Test 1 biF1  is defined as the harmonic mean of biP1 and biR1, that 

is,

biF1 = 2 biP1 × biR1
biP1 + biR1

= 2 p1.1
p1 . . + p . . 1

.

(1)

Similarly, the binary F1-score for Test 2 biF2  is as follows:

biP2 = TP21
TP21 + FP21

= p . 11/p . 1 . ,

biR2 = TP21
TP21 + FN21

= p . 11/p . . 1,

biF2 = 2 biP2 × biR2
biP2 + biR2

= 2 p . 11
p . 1 . + p . . 1

.

(2)

2.2 | Micro-averaged F1-score

When r > 2 the micro-averaged precision (miP) and micro-averaged recall (miR) are 

obtained from the sum of each class of TPi, FPi, FNi. miP and miR for Test 1 can be 

written as

miP1 = a = 1
r TP1a

a = 1
r TP1a + FP1a

= ∑ pa . a
∑ pa . .

=
a = 1

r
pa . a,

miR1 = a = 1
r TP1a

a = 1
r TP1a + FN1a

= ∑ pa . a
∑ p . . a

=
a = 1

r
pa . a .

Finally, as the harmonic mean of miP1 and miR1, we have the micro-averaged F1-score for 

Test 1 miF1  as
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miF1 = 2 miP1 × miR1
miP1 + miR1

= ∑
a = 1

r
pa . a .

(3)

Similarly, the micro-averaged F1-score for Test 2 miF2  is

miP2 = a = 1
r TP2a

a = 1
r TP2a + FP2a

= ∑ p . aa
∑ p . a .

=
a = 1

r
p . aa,

miR2 = a = 1
r TP2a

a = 1
r TP2a + FN2a

= ∑ p . aa
∑ p . . a

=
a = 1

r
p . aa .

miF2 = 2 miP2 × miR2
miP2 + miR2

= ∑
a = 1

r
p . aa .

(4)

2.3 | Macro-averaged F1-score

When r > 2, to define the macro-averaged F1-score for Test 1 maF1 , first consider the 

following precision P1a  and recall (R1a) within each class, a = 1, … , r:

P1a = TP1a
TP1a + FP1a

= pa . a/pa . . ,

(5)

R1a = TP1a
TP1a + FN1a

= pa . a/p . . a .

(6)

And F1-score within each class for Test 1 F1a  is defined as the harmonic mean of P1a and 

R1a, that is,

F1a = 2 P1a × R1a
P1a + R1a

= 2 pa . a
pa . . + p . . a

.

The macro-averaged F1-score for Test 1 maF1  is the simple arithmetic mean of F1a:

maF1 = 1
r ∑

a = 1

r
F1a = 2

r ∑
a = 1

r pa . a
pa.. + p . . a

.
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(7)

Similarly, the macro-averaged F1-score for Test 2 maF2  is

P2a = TP2a
TP2a + FP2a

= p . aa/p . a . ,

R2a = TP2a
TP2a + FN2a

= p . aa/p . . a .

F2a = 2 P2a × R2a
P2a + R2a

= 2 p . aa
p . a . + p . . a

.

maF2 = 1
r ∑

a = 1

r
F2a = 2

r ∑
a = 1

r p . aa
p . a . + p . . a

.

(8)

2.4 | Alternate definition of macro-averaged F1-score

Sokolova and Lapalme6 gave an alternative definition of the macro-averaged F1. First, 

macro-averaged precision maP  and macro-averaged recall maR  for Test 1 are defined as 

simple arithmetic means of the within-class precision and within-class recall in (5) and (6), 

respectively.

maP1 = 1
r a = 1

r
P1a = 1

r a = 1

r pa . a
pa . .

,

maR1 = 1
r a = 1

r
R1a = 1

r a = 1

r pa . a
p . . a

.

And the alternate definition of macro-averaged F1-score for Test 1 (maF1
*) is the harmonic 

mean of these quantities.

maF1
* = 2 maP1 × maR1

maP1 + maR1
.

(9)

Similarly, the alternate definition of macro-averaged F1-score for Test 2 (maF2
*) is

Takahashi et al. Page 6

Stat Med. Author manuscript; available in PMC 2024 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



maP2 = 1
r a = 1

r
P2a = 1

r a = 1

r p . aa
p . a .

,

maR2 = 1
r a = 1

r
R2a = 1

r a = 1

r p . aa
p . . a

.

maF2
* = 2 maP2 × maR2

maP2 + maR2
.

(10)

3 | PROPOSED HYPOTHESIS TESTING PROCEDURE

In this section, we derive the test statistics for comparing two F1-scores (biF1 and biF2; miF1

and miF2; maF1 and maF2; and maF1
* and maF2

*). We assume that the observed frequencies, nijk

for 1 ≤ i ≤ r, 1 ≤ j ≤ r, 1 ≤ k ≤ r, have a multinomial distribution with overall sample size 

N = ∑i, j, k nijk and probabilities p = p111, …, p1r1, ⋯, prr1, …, prrr
T , where i indicates the class of 

Test 1, j indicates the class of Test 2, k indicates the true condition, and “T” represents the 

transpose. The maximum likelihood estimate (MLE) of pijk is p̂ijk = nijk/N. That is

n111, n121, …, nrrr ∼ Multinomial N; p .

By invariance property of MLE’s, the maximum likelihood estimate of 

biF , miF , maF , maF*, and other quantities in the previous section can be obtained by 

substituting pijk by p̂ijk.

3.1 | Test statistic for comparing two biFs
Let biF = biF1, biF2

T  be a vector whose components are the biFs of the two medical tests, 

and let biF  be the MLE of biF . biF  can be obtained by substituting pijk by their MLE’s in 

(1) and (2).

biF 1 = 2 p̂1.1
p̂1 . . + p̂ . . 1

= 2 n1.1
n1 . . + n . . 1

, biF2 = 2 p̂ . 11
p̂ . 1 . + p̂ . . 1

= 2 n . 11
n . 1 . + n . . 1

.

Using the delta-method and the multivariate central limit theorem, we have

N biF − biF ∼̇ Normal 0, ∂ biF
∂ p

T
diag p − ppT ∂ biF

∂ p ,
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where diag p  is an r2 × r2 × r2 diagonal matrix whose elements are the diagonal elements 

of p, and “∼̇” represents “approximately distributed as”. The Wald statistic for testing 

H0:biF1 = biF2 vs. H1:biF1 ≠ biF2, therefore, is

TbiF
W =

biF 1 − biF 2
2

V arbiFd
,

where V arbiFd is the variance of biF 1 − biF 2  with pijk  replaced by p̂ijk . Derivation 

of the variance of biF 1 − biF 2  appear in Appendix A.1. The test statistic is distributed 

asymptotically as a χ2 distribution with one degree of freedom under the null hypothesis.

As a side note, the confidence interval of biF  for each test can be derived in the same way. 

A 1 – α × 100% confidence interval of biF1 and biF2 is

biF 1 ± Z1 − α/2 × V arbF1,

biF 2 ± Z1 − α/2 × V arbiF2,

where Zp denote the 100p-th percentile of the standard normal distribution, and V arbiF1 and 

V arbiF2 are the variance of biF 1 and the variance of biF 2 with pijk  replaced by p̂ijk . These 

simple formulas based on the multinomial distribution have not been proposed yet. Wang et 

al. proposed a confidence interval of biF  based on the beta prime distribution and associated 

calculations using the bootstrap method.15,18

For the score statistic, we consider the MLE of pijk  under the null hypothesis that could 

be obtained, for example by applying the Newton-Raphson method to the log-likelihood 

equations. The score statistic for testing H0:biF1 = biF2 vs. H1:biF1 ≠ biF2 is

TbiF
S =

biF 1 − biF 2
2

V arbiFd
,

where V arbiFd is the variance of biF 1 − biF 2  with pijk  replaced by pijk , that is calculated 

from the MLE of pijk  under the null hypothesis.

3.2 | Test statistic for comparing two miFs
As shown in (3) and (4), miF1 = ∑ pa . a, miF2 = ∑ p . aa, and the MLE of miF1 and miF2 are

miF1 =
a = 1

r
p̂a . a =

a = 1

r na . a
N , miF2 =

a = 1

r
p̂ . aa =

a = 1

r n . aa
N .
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Again by the delta-method and multivariate central limit theorem (Appendix A.2), the Wald 

statistic for testing H0:miF1 = miF2 versus H1:miF1 ≠ miF2 is

TmiF
W =

miF 1 − miF 2
2

V armiFd
,

where V armiFd is the variance of miF 1 − miF 2  with pijk  replaced by p̂ijk . The test statistic 

is distributed a symptotically as a χ2 distribution with one degree of freedom under the null 

hypothesis.

Again to develop the score statistic, we consider the MLE of pijk  under the null hypothesis 

as in the case of biF . The score statistic for testing H0:miF1 = miF2 versus H1:miF1 ≠ miF2 is

TmiF
S =

miF 1 − miF 2
2

V armiFd
,

where V armiFd is the variance of miF 1 − miF 2  with pijk  replaced by pijk , that is calculated 

from the MLE of pijk  under the null hypothesis.

3.3 | Test statistic for comparing two maFs
The MLE of maF1 and maF2 can be obtained by substituting pa . a, p . aa, pa . . , p . a .  and p . . a by 

their MLE’s in (7) and (8).

maF 1 = 2
r a = 1

r p̂a . a
p̂a . . + p̂ . . a

= 2
r a = 1

r na . a
na . . + n . . a

, maF 2 = 2
r a = 1

r p̂ . aa
p̂ . a . + p̂ . . a

= 2
r a = 1

r n . aa
n . a . + n . . a

.

Again by the delta-method and multivariate central limit theorem (Appendix A.3), we have 

the Wald statistic for testing H0:maF1 = maF2 versus H1:maF1 ≠ maF2 as

TmaF
W =

maF 1 − maF 2
2

V armaFd
,

where V armaFd is the variance of maF 1 − maF 2  with pijk  replaced by p̂ijk . The test statistic 

is distributed asymptotically as a χ2 distribution with one degree of freedom under the null 

hypothesis.

For the score statistic, we consider the MLE of pijk  under the null hypothesis as in the case 

of biF  and miF . The score statistic for testing H0:maF1 = maF2 versus H1:maF1 ≠ maF2 is

TmaF
S =

maF 1 − maF 2
2

V armaFd
,
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where V armaFd is the variance of maF 1 − maF 2  replaced by pijk , that is calculated from the 

MLE of pijk  under the null hypothesis.

3.4 | Test statistic for comparing two maF*s
To obtain the MLEs of maF1

* and maF2
*, we first substitute pa . a, p . aa, pa . . , p . a .  and p . . a by their 

MLE’s to get MLE’s of maP  and maR and use these in (9) and (10):

maF 1
* = 2 maP1 × maR1

maP1 + maR1
, maF 2

* = 2 maP2 × maR2

maP2 + maR2
.

Using the delta-method and multivariate central limit theorem (Appendix A.4), we have the 

Wald statistic for testing H0:maF1
* = maF2

* versus H1:maF1
* ≠ maF2

*  as

TmaF
W =

maF 1
* − maF 2

* 2

V armaFd*
,

Again to get V armaFd*, all components of the variance of maF 1
* − maF 2

*
 are replaced by their 

respective MLE’s. The test statistic is distributed asymptotically as a χ2 distribution with 

one degree of freedom under the null hypothesis.

On the other hand, for the score statistic, we consider the MLE of pijk  under the 

null hypothesis as in the case of biF , miF , and maF . The score statistic for testing 

H0:maF1
* = maF2

* versus H1:maF1
* ≠ maF2

* is

TmaF
S =

maF 1
* − maF 2

* 2

V armaFd*
,

where V armaFd* is the variance of maF 1
* − maF 2

*
 replaced by pijk , that is calculated from the 

MLE of pijk  under the null hypothesis.

4 | SIMULATION

4.1 | Simulation setup

A simulation study was conducted to evaluate the performance of the test statistics proposed 

in Section 3. We set r = 3 (class 1, 2, 3), and generated data according to the multinomial 

distributions with p shown in Table 2. Classes 2 and 3 were combined when calculating biF . 

The total sample size, N, was set to 100, 300, 500, and 1,000. The nominal type I error 

rate was set to 0.05 (two-sided test). We used the empirical type I error rate and empirical 

power as performance measures. For each combination of the scenario and sample size, we 

performed 100,000 repeated simulations.

Scenarios 1 and 2 are set up to evaluate the empirical type I error rate of the proposed 

test statistics, while scenario 3 and 4 are designed to assess their empirical power. In 
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scenario 1, the true conditions of classes 1, 2, and 3 have the same probability (1∕3), 

and the recalls and precisions within each class are equal in the two tests (60%). Thus, 

maR1 = maR2 = maP1 = maP2 = 0.60, and F1a = F2a = 0.60 for each class, a = 1, 2, 3. Then, 

maF1 = maF2 = maF1
* = maF2

* = 0.60. Because classes 2 and 3 are combined to calculate 

biF1 = F11 = 0.60 and biF2 = F21 = 0.60. Also, pa . a = p . aa = 0 . 20 for each class a = 1, 2, 3, and 

miF1 = miF2 = 0.60.

In scenario 2, the true condition of class 1 has higher probability 

than the others (60% vs. 20%), and performances of two tests are 

equal: biF1 = biF2 = 0.69, miF1 = miF2 = 0.60, maF1 = maF2 = 0.56, and maF1
* = maF2

* = 0.58. 

Although the distributions in scenario 2 are the same as those in scenario 1 for each class, 

the value of biF , maF  and maF* are different between scenarios because TPa/ TPa + FPa  is 

large in the true class = 1 and, conversely, relatively small in the true classes 2 and 3. In 

contrast, miF  in scenario 2 is the same as that in scenario 1 because pa . a and p . aa for each 

class a = 1, 2, 3 in scenarios 1 and 2 are equal.

The true conditions of classes 1, 2, and 3 have the same probability (1∕3) in scenario 3. 

However, maR and maP  of Test 2 are lower than Test 1 (60% vs. 50%), F2a are lower than 

F1a (60% vs. 50%), and p . aa is lower than pa . a for each class a = 1, 2, 3 (20% vs. 17%). 

Therefore, biF1 = miF1 = maF1 = maF1
* = 0.60, whereas biF2 = miF2 = maF2 = maF2

* = 0.50.

In scenario 4, the true condition of class 1 has higher probability than the others (60% vs. 

20%) as in scenario 2. However, the performance of two tests are different: biF1 = 0.69
versus biF2 = 0.60, miF1 = 0.60 versus miF2 = 0.50, maF1 = 0.56 versus maF2 = 0.47, and 

maF1
* = 0.58 versus maF2

* = 0.49.

4.2 | Simulation result

Table 3 shows the empirical type I error rates of the proposed tests for scenarios 1 and 2. 

The empirical type I error rates for both test statistics were close to nominal type I error rate 

of 0.05 when the sample size is large (300, 500, 1000). When N is relatively small (100), 

the empirical type I error rates tended to be slightly larger than 0.05, especially for Wald 

statistics. Contrarily, the empirical type I error rates with score statistics are close to the 

nominal type I error rate of 0.05 for all sample sizes. Table 4 shows the empirical power of 

the proposed tests for scenarios 3 and 4. As shown in Table 4, the empirical powers increase 

with the sample size. The empirical powers of Wald statistics and score statistics are similar, 

especially when the sample size is large.

5 | EXAMPLE

We describe an application of the proposed hypothesis testing procedure to the motivating 

example.3 In this study, a skin cancer classification system with faster, region-based 

convolutional neural network algorithm (FRCNN) for brown to black pigmented skin lesions 

was developed using a deep learning method. The target diseases were malignant tumors 

(malignant melanoma (MM) and basal cell carcinoma (BCC)) and benign tumors (nevus, 

seborrheic keratosis (SK), senile lentigo (SL) and hematoma/hemangioma (H/H)), and 2000 
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images were evaluated. The 2000 images were obtained by randomly sampling 200 images 

from the 666 images 10 times. For illustration, all images were treated as independent 

in this study. The data are shown in Tables B1–B3, Appendix B. Although images were 

classified into six categories (MM, BCC, nevus, SK, SL, H/H), accuracy was the only 

performance measure computed for six-class classification data in the motivating example. 

Other performance measures, sensitivity, specificity, false negative, false positive, and 

positive predictive value, were calculated for two-class classification data after combining 

malignant tumors (MM and BCC) and benign tumors (nevus, SK, SL, and H/H). The 

accuracy of six-class classification by the FRCNN (86.2% ± 2.95%) was statistically higher 

than that of board-certified dermatologists (BCD) (79.5% ± 5.27%, p = 0.0081) and that of 

dermatologic trainees (75.1% ± 2.18%, p < 0.0001).

We compared the performance of skin cancer classification between the FRCNN and 

BCD using biFs, miFs, maFs, and maF*s with the proposed hypothesis testing procedures. 

miFs, maFs, and maF*s were calculated from six-class classification data, while biFs were 

calculated from two-class classification data (malignant tumors vs. benign tumors). The 

results are shown in Table 5. All biFs, miFs, maFs, and maF*s of six-class classification by 

FRCNN were significantly higher than those by BCD.

6 | DISCUSSION

We developed hypothesis testing procedures for comparing two F1-scores biF1 and 

biF2, miF1 and miF2, maF1 and maF2, and maF1
* and maF2

*) in paired study design. Through 

the simulation study and motivating example, we assessed the performance and feasibility 

of those testing procedures. We conclude that the method based on the score statistics 

( T biF
S , TmiF

S , TmaF
S , and TmaF*

S ) is slightly better compared to the method based on the Wald 

statistics (T biF
W , TmiF

W , TmaF
W , and TmaF*

W ) because the empirical type I error rate is closer to the 

nominal level even when the sample size is small. However, when multi-class classification 

is considered, typical sample size is much larger than 100, and both approaches perform 

equally well in such scenarios.

We did not observe a substantial disparity in the empirical powers of the two approaches.

At present, others have not studied hypothesis testing procedure of biFs, miFs, maFs, and 

maF*s, and only the point estimates of these scores were reported in most studies. Han et 

al19 applied one sample t-test for comparison of biFs; however, this approach may not be 

appropriate because biF  is the harmonic mean of precision and recall, and the distribution of 

the difference between two biFs is unlikely to follow a Student’s t-distribution.

A limitation of this work is that the proposed procedures are based on the large sample 

theory, and thus require a large sample size to provide strict control of the type I error rate. 

For future works, we are working on the exact test for comparing two biFs, miFs, maFs, and 

maF*s based on the methods presented in this article.

An R code for computing point estimates, Wald statistics, score statistics, and p-values for 

biFs, miFs, maFs, and maFs of each statistic in the paired design, is available on the lead 
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author’s GitHub page: https://github.com/kanaet52/f1score/blob/main/R/F1score_test.R. For 

two-sample designs, the F1-scores can be compared by setting the covariance part of the 

test statistic (CbiF
W , CmiF

W , CmaF
W , CmaF*

W , see Appendix A) to 0. Note that for the score statistics, 

the MLE of pijk  under each null hypothesis is obtained by applying the Newton-Raphson 

method to the log-likelihood equations in the code.
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APPENDIX A.: DERIVATION OF VARIANCES

A.1 Variance of biF
The derivation of the variance of biF 1 − biF 2  is as follows:

biF =
biF1

biF2
,

∂ biF
∂ p

T
ppT ∂ biF

∂ p = 0,

∂ biF
∂ p

T
diag p − ppT ∂ biF

∂ p = ∂ biF
∂ p

T
diag p ∂ biF

∂ p =
AbiF

W CbiF
W

CbiF
W BbiF

W ,

with

AbiF
W = 1

p1 . . + p . . 1
2 p1.1 2 1 − biF1

2 + p1.2 + p2.1 biF1
2

BbiF
W = 1

p . 1 . + p . . 1
2 p . 11 2 1 − biF2

2 + p . 12 + p . 21 biF2
2

CbiF
W = 1

p1 . . + p . . 1 p . 1 . + p . . 1
22p111 1 − biF1 1 − biF2 − 2p121 1 − biF1 biF2

−2p211biF1 1 − biF2 + p221 + p112 biF1biF2 .
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Therefore, the variance of biF1 is

1
p1 . . + p . . 1

2 p1.1 2 1 − biF1
2 + p1.2 + p2.1 biF1

2 /n,

the variance of biF2 is

1
p . 1 . + p . . 1

2 p . 11 2 1 − biF2
2 + p . 12 + p . 21 biF2

2 /n,

the variance of biF1 − biF2  is

AbiF
W + BbiF

W − 2CbiF
W /n .

A.2 Variance of miF
The derivation of the variance of miF 1 − miF 2  is as follows:

miF =
miF1

miF2
,

∂ miF
∂ p

T
ppT ∂ miF

∂ p = a = 1

r
pa . a

2

a = 1

r
pa . a

a = 1

r
p . aa

a = 1

r
pa . a

a = 1

r
p . aa

a = 1

r
p . aa

2 =
miF1

2 miF1miF2

miF1miF2 miF2
2 ,

∂ miF
∂ p

T
diag p ∂ miF

∂ p = a = 1

r
pa . a

a = 1

r
paaa

a = 1

r
paaa

a = 1

r
p . aa

=
miF1

a = 1

r
paaa

a = 1

r
paaa miF2

,

∂ miF
∂ p

T
diag p − ppT ∂ miF

∂ p =
AmiF

W CmiF
W

CmiF
W BmiF

W ,

with

AmiF
W = miF1 1 − miF1 ,

BmiF
W = miF2 1 − miF2 ,

CmiF
W =

a = 1

r
paaa − miF1miF2 .
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Therefore, the variance of miF 1 − miF 2  is

AmiF
W + BmiF

W − 2CmiF
W /n .

A.3 Variance of maF
The derivation of the variance of maF 1 − maF 2  is as follows.

maF =
maF1

maF2
,

∂ maF
∂ p

T
ppT ∂ maF

∂ p = 0,

∂ maF
∂ p

T
diag p − ppT ∂ maF

∂ p = ∂ maF
∂ p

T
(diag(p)) ∂(maF )

∂(p)

= 1
r2

AmaF
W CmaF

W

CmaF
W BmaF

W ,

with

AmaF
W =

a = 1

r
pa . a

2 1 − F1a
pa . . + p . . a

2
+

a = 1

r

b ≠ a
pa . b

F1a
pa . . + p . . a

+ F1b
pb . . + p . . b

2
,

BmaF
W =

a = 1

r
p . aa

2 1 − F2a
p . a . + p . . a

2
+

a = 1

r

b ≠ a
p . ab

F2a
p . a . + p . . a

+ F2b
p . b . + p . . b

2
,

CmaF
W =

a = 1

r
paaa

22 1 − F1a 1 − F2a
pa . . + p . . a p . a . + p . . a

−
a = 1

r

b ≠ a
paba

2 1 − F1a
pa . . + p . . a

F2a
p . a . + p . . a

+ F2b
p . b . + p . . b

+ pbaa
2 1 − F2a
p . a . + p . . i

F1a
pa . . + p . . a

+ F1b
pb . . + p . . b

+
a = 1

r

b ≠ a c ≠ a
pbca

F1a
pa . . + p . . a

+ F1b
pb . . + p . . b

F2a
p . a . + p . . a

+ F2c
p . c . + p . . c

.

Therefore, the variance of maF 1 − maF 2  is

1
r2 AmaF

W + BmaF
W − 2CmaF

W /n .

A.4 Variance of maF*
The derivation of the variance of maF*1 − maF*2  is as follows.
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maF* = maF1
*

maF2
* ,

∂(maF*)
∂(p)

T
ppT ∂(maF*)

∂(p) = 0,

∂(maF*)
∂(p)

T
diag(p) − ppT ∂(maF*)

∂(p) = ∂(maF*)
∂(p)

T
(diag(p)) ∂(maF*)

∂(p)

=
AmaF*

W CmaF*
W

CmaF*
W BmaF*

W ,

with

AmaF*
W = 22

r2 maP1 + maR1
4 a = 1

r
pa . a

pa . . − pa . a maR1
2

pa . .
2 + p . . a − pa . a maP1

2

p . . a
2

2

+
a = 1

r

b ≠ a
pa . b

pa . amaR1
2

pa . .
2 + pb . bmaP1

2

p . . b
2

2
,

BmaF*
W = 22

r2 maP2 + maR2
4 ∑a = 1

r p . aa
p . a . − p . aa maR2

2

p . a .
2 + p . . a − p . aa maP2

2

p . . a
2

2

+
a = 1

r

b ≠ a
p . ab

p . aamaR2
2

p . a .
2 + p . bbmaP2

2

p . . b
2

2
,

CmaF*
W = 22

r2 maP1 + maR1
2 maP2 + maR2

2

×
a = 1

r
paaa

pa . . − pa . a

pa . .
2 maR1

2 + p . . a − pa . a

p . . a
2 maP1

2 p . a . − p . aa

p . a .
2 maR2

2 + p . . a − p . aa

p . . a
2 maP2

2

−
a = 1

r

b ≠ a
paba

pa . . − pa . a

pa . .
2 maR1

2 + p . . a − pa . a

p . . a
2 maP1

2 p . bb

p . b .
2 maR2

2 + p . bb

p . . b
2 maP2

2

+ pbaa
p . a . − p . aa

p . a .
2 maR2

2 + p . . a − p . aa

p . . a
2 maP2

2 pb . b

pb . .
2 maR1

2 + pb . b

p . . b
2 maP1

2

+
a = 1

r

b ≠ a c ≠ a
pbca

pb . b

pb . .
2 maR1

2 + pa . a

p . . a
2 maP1

2 p . cc

p . c .
2 maR2

2 + p . aa

p . . a
2 maP2

2 .

Therefore, the variance of maF*1 − maF*2  is

AmaF*
W + BmaF*

W − 2CmaF*
W /n .

APPENDIX B.: EXAMPLE DATA

Tables B1, B2, and B3 here.
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TABLE B1

Example data.

True condition

FRCNN BCD MM BCC Nevus SK H/H SL

MM MM 289 2 20 6 2 0

BCC 9 2 2 5 0 0

Nevus 10 0 14 0 0 0

SK 14 2 4 10 0 0

H/H 3 0 2 0 1 0

SL 2 0 0 0 0 0

BCC MM 6 6 0 1 0 0

BCC 2 95 0 6 0 0

Nevus 0 2 6 0 0 0

SK 1 5 0 2 0 0

H/H 0 0 0 0 0 0

SL 0 0 0 0 0 0

Nevus MM 32 1 108 0 1 0

BCC 1 6 8 1 0 0

Nevus 11 1 789 8 1 0

SK 3 3 50 27 0 0

H/H 0 1 9 0 16 0

SL 1 0 3 0 0 0

SK MM 13 1 3 11 0 0

BCC 0 1 1 12 0 0

Nevus 1 0 11 9 0 0

SK 7 4 14 186 0 1

H/H 0 0 0 0 0 0

SL 0 0 1 5 0 2

H/H MM 0 0 0 0 6 0

BCC 0 0 0 0 1 0

Nevus 0 0 3 0 5 0

SK 0 0 0 0 1 0

H/H 0 0 0 0 44 0

SL 0 0 0 0 0 0

SL MM 0 0 0 0 0 0

BCC 0 0 0 0 0 1

Nevus 0 0 0 0 0 0

SK 1 0 0 0 0 6

H/H 0 0 0 0 0 0

SL 2 0 0 0 0 35
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TABLE B2

Example data (FRCNN only).

True condition

FRCNN MM BCC Nevus SK H/H SL

MM 327 6 42 21 3 0

BCC 9 108 6 9 0 0

Nevus 48 12 967 36 18 0

SK 21 6 30 223 0 3

H/H 0 0 3 0 57 0

SL 3 0 0 0 0 42

TABLE B3

Example data (BCD only).

True condition

BCD MM BCC Nevus SK H/H SL

MM 340 10 131 18 9 0

BCC 12 104 11 24 1 1

Nevus 22 3 823 17 6 0

SK 26 14 68 225 1 7

H/H 3 1 11 0 61 0

SL 5 0 4 5 0 37
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TABLE 1

General notations.

True condition = 1 ⋯ True condition = r

Test 2 Test 2

1 2 ⋯ r 1 2 ⋯ r

Test 1 1 p111 p121 ⋯ p1r1 p1.1 p11r p12r ⋯ p1rr p1.r p1..

2 p211 p221 ⋯ p2r1 p2.1 p21r p22r ⋯ p2rr p2.r p2..

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

r pr11 pr21 ⋯ prr1 pr.1 pr1r pr2r ⋯ prrr pr.r pr..

p.11 p.21 ⋯ p.r1 p..1 p.1r p.2r ⋯ p.rr p..r 1
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TABLE 2

Simulation study: True cell probabilities.

True class = 1 True class = 2 True class = 3

Test 2 Test 2 Test 2

Scenario 1 1 2 3 1 2 3 1 2 3

Test 1 1 40/300 10/300 10/300 5/300 10/300 5/300 5/300 5/300 10/300

2 10/300 5/300 5/300 10/300 40/300 10/300 5/300 5/300 10/300

3 10/300 5/300 5/300 5/300 10/300 5/300 10/300 10/300 40/300

biF1 = miF1 = maF1 = maF1
* = 0.60

biF2 = miF2 = maF2 = maF2
* = 0.60

True class = 1 True class = 2 True class = 3

Test 2 Test 2 Test 2

Scenario 2 1 2 3 1 2 3 1 2 3

Test 1 1 120/500 30/500 30/500 5/500 10/500 5/500 5/500 5/500 10/500

2 30/500 15/500 15/300 10/500 40/500 10/500 5/500 5/500 10/500

3 30/500 15/500 15/500 5/500 10/500 5/500 10/500 10/500 40/500

biF1 = 0.69, miF1 = 0.60, maF1 = 0.56, maF1
* = 0.58

biF2 = 0.69, miF2 = 0.60, maF2 = 0.56, maF2
* = 0.58

True class = 1 True class = 2 True class = 3

Test 2 Test 2 Test 2

Scenario 3 1 2 3 1 2 3 1 2 3

Test 1 1 30/300 15/300 15/300 5/300 10/300 5/300 5/300 5/300 10/300

2 10/300 5/300 5/300 15/300 30/300 15/300 5/300 5/300 10/300

3 10/300 5/300 5/300 5/300 10/300 5/300 15/300 15/300 30/300

biF1 = miF1 = maF1 = maF1
* = 0.60

biF2 = miF2 = maF2 = maF2
* = 0.50

True class = 1 True class = 2 True class = 3

Test 2 Test 2 Test 2

Scenario 4 1 2 3 1 2 3 1 2 3

Test 1 1 90/500 45/500 45/500 5/500 10/500 5/500 5/500 5/500 10/500

2 30/500 15/500 15/300 15/500 30/500 15/500 5/500 5/500 10/500

3 30/500 15/500 15/500 5/500 10/500 5/500 15/500 15/500 30/500

biF1 = 0.69, miF1 = 0.60, maF1 = 0.56, maF1
* = 0.58

biF2 = 0.60, miF2 = 0.50, maF2 = 0.47, maF2
* = 0.49
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TABLE 3

Simulation study: Empirical type I error rates.

Scenario N T biF
W T biF

S TmiF
W TmiF

S TmaF
W TmaF

S TmaF *
W TmaF *

S

1 100 0.057 0.050 0.053 0.049 0.055 0.051 0.057 0.053

300 0.052 0.050 0.051 0.050 0.052 0.051 0.052 0.051

500 0.051 0.050 0.050 0.050 0.051 0.050 0.051 0.050

1000 0.050 0.049 0.051 0.050 0.051 0.050 0.051 0.051

2 100 0.052 0.049 0.054 0.049 0.058 0.053 0.061 0.055

300 0.052 0.050 0.051 0.050 0.054 0.052 0.054 0.052

500 0.051 0.050 0.051 0.050 0.051 0.050 0.052 0.051

1000 0.050 0.050 0.051 0.051 0.052 0.051 0.051 0.051

Stat Med. Author manuscript; available in PMC 2024 October 17.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Takahashi et al. Page 23

TABLE 4

Simulation study: Empirical power.

Scenario N T biF
W T biF

S TmiF
W TmiF

S TmaF
W TmaF

S TmaF *
W TmaF *

S

3 100 0.192 0.174 0.304 0.289 0.309 0.297 0.310 0.300

300 0.438 0.429 0.694 0.689 0.696 0.692 0.696 0.692

500 0.641 0.635 0.890 0.888 0.889 0.888 0.889 0.888

1000 0.905 0.904 0.995 0.995 0.995 0.995 0.995 0.995

4 100 0.235 0.226 0.305 0.291 0.291 0.278 0.271 0.256

300 0.560 0.556 0.695 0.690 0.662 0.657 0.615 0.609

500 0.773 0.771 0.889 0.887 0.865 0.863 0.826 0.824

1000 0.969 0.969 0.995 0.995 0.992 0.992 0.984 0.984
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TABLE 5

Example.

FRCNN BCD Difference Test statistics p-value

biF (Wald) 0.840 0.776 0.064 19.4 < 0.001

biF (score) 0.840 0.776 0.064 18.9 < 0.001

miF (Wald) 0.862 0.795 0.067 41.9 < 0.001

miF (score) 0.862 0.795 0.067 41.0 < 0.001

maF (Wald) 0.846 0.768 0.078 26.2 < 0.001

maF (score) 0.846 0.768 0.078 24.5 < 0.001

maF* (Wald) 0.848 0.772 0.076 26.4 < 0.001

maF* (score) 0.848 0.772 0.076 23.0 < 0.001
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