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Abstract

Plant viral infections cause significant economic losses, totalling $350 billion USD in 2021. With no treatment for virus-infected plants,
accurate and efficient diagnosis is crucial to preventing and controlling these diseases. High-throughput sequencing (HTS) enables cost-
efficient identification of known and unknown viruses. However, existing diagnostic pipelines face challenges. First, many methods
depend on subjectively chosen parameter values, undermining their robustness across various data sources. Second, artifacts (e.g.
false peaks) in the mapped sequence data can lead to incorrect diagnostic results. While some methods require manual or subjective
verification to address these artifacts, others overlook them entirely, affecting the overall method performance and leading to imprecise
or labour-intensive outcomes. To address these challenges, we introduce IIMI, a new automated analysis pipeline using machine
learning to diagnose infections from 1583 plant viruses with HTS data. It adopts a data-driven approach for parameter selection,
reducing subjectivity, and automatically filters out regions affected by artifacts, thus improving accuracy. Testing with in-house and
published data shows IIMI’s superiority over existing methods. Besides a prediction model, IIMI also provides resources on plant virus
genomes, including annotations of regions prone to artifacts. The method is available as an R package (iimi) on CRAN and will integrate
with the web application www.virtool.ca, enhancing accessibility and user convenience.

Keywords: virus diagnosis; genome mappability; machine learning; read mapping; artifacts in genomic mapping; clean plant program

Introduction
Plant virus infection causes significant economic losses every
year. It was reported that in 2014, these viruses resulted in a
global crop production loss of around $30 billion [1]. By 2021, the
crop production loss globally has increased to more than $220
billion annually [2, 3]. Since no treatments are available, a plant
infected by a virus remains infected for the entirety of its life.
Perennial crops can have long and productive lifespans if new
planting material starts virus-free and methods are employed to
detect and remove infected plants before a disease can spread.
A reliable and cost-efficient virus diagnostic method is critical
for the production and maintenance of virus-free crops in both
nurseries and production fields.

In-field visual inspections are commonly utilized to detect a
virus infection based on characteristic disease symptoms. Biologi-
cal indexing is employed in specialized facilities for more in-depth
analysis, requiring specific conditions and expert knowledge,
and is notably time-consuming [4]. Technological advancements
led to serological methods like Enzyme-Linked ImmunoSorbent
Assay (ELISA), which is favoured for its cost-effectiveness in
testing large sample volumes for a specific virus [5], and PCR
method which is known for improved sensitivity and specificity,
as well as its limited multiplexing capabilities [4]. However, both
of these methods require knowledge of the virus to be detected,

and their effectiveness is constrained by plant viruses’ diversity,
mutation rates, and quasi-species [6, 7]. Unlike bioassays, ELISA
and PCR are unable to detect a novel virus. High-throughput
sequencing (HTS) has since emerged as a superior technology,
offering the ability to quickly and cost-efficiently identify all
known and novel viruses within a sample. HTS stands out for
its comprehensive virus detection capabilities, making it an
exceptionally effective tool for plant virus screening. This is espe-
cially beneficial for crops, where tests for many virus species are
required.

Applying HTS in plant virus diagnostics involves three main
steps. Since most viruses of interest have RNA genomes, extract-
ing and enriching viral RNA is the first step after collecting plant
tissue samples. Total RNA, ribodepleted total RNA, small interfer-
ing RNAs, or double-stranded RNA (dsRNA) extraction methods
have been used for this purpose [8, 9]. The second step involves
sequencing, predominantly using technologies like Illumina and
Oxford Nanopore. Specific protocols are employed to convert the
RNA into a form that can be sequenced and varies depending
on the type of RNA extracted and the sequencing instrument.
The third and final step is data analysis, which is critical for
interpreting the information gleaned from sequencing. This step
requires the building of analysis pipelines and data interpretation
schemes.
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Various data analysis pipelines have been developed in
plant virus diagnostics using HTS technology, utilizing de novo
assembly and read mapping strategies. Fastv is a specialized tool
developed to identify SARS-CoV-2 [10], which causes COVID-19.
It generates unique k-mers (k ranging from 3 to 32, with a default
of 25) based on the virus’s reference genomes. The tool calculates
the edit distance between the sample reads and these k-mers
to assess similarities. It is considered a match when the edit
distance is less than a defined threshold. If the percentage
of reads matched to a particular virus exceeds a predefined
threshold, fastv indicates the virus’s presence. While fastv
shows high sensitivity and specificity for detecting SARS-CoV-
2, its parameters and thresholds are set explicitly for this virus,
limiting its effectiveness in identifying plant viruses. VirHunter
is a deep learning tool using convolutional neural networks
to detect new and known viruses in HTS data [11]. VirHunter
excels at identifying anomalies based on k-mer matches to
the host genome. However, its precision in identifying specific
viruses is somewhat limited, as its published results indicate.
PathoScope employs a Bayesian approach to address ambiguous
mapping issues and quantify the abundance of sequences
mapped to viral genomes [12]. Informed interpretation is required
to determine the presence of infection based on the reported
abundance by Pathoscope. Although these methods generally
provide reasonable accuracy, they all share the common challenge
of requiring subjective decision-making and human involvement,
which can lead to inconsistent outcomes and a labour-intensive
analysis process.

The Canadian Food Inspection Agency (CFIA) has created
Virtool, a web application (available at https://www.virtool.ca/)
designed to screen for plant viruses as part of a national clean
plant program [13]. Currently, Virtool utilizes Bowtie 2 [14] for
sequence mapping and Pathoscope [12] for quantifying the
abundance of sequences that map to the virus genome. Analysts
are tasked with interpreting these abundance reports and, at
times, must investigate any unusually high peaks evident in the
data visualizations. This multi-step process is not automatable
and requires significant human intervention. The research and
development described here are part of an ongoing initiative to
refine and enhance Virtool. The goal is to simplify the process of
plant virus detection used in regulatory and biosecurity contexts,
focusing on minimizing the labour required from users and
improving the reliability and accuracy of the diagnostic results.

Datasets
Two different datasets are used in this study. The first comprises
261 HTS-sequenced plant samples from a mixture of virus-
infected grapevine and fruit trees [15]. The samples contain
freeze-dried leaf or fresh leaf tissues stored at −80◦ C. The extracts
are primarily dsRNA and total RNA with a mixture of paired-
and single-end RNA-seq reads. The exceptions are 10 small RNA
extracts of less than 25 base reads. All sequences were generated
using Illumina sequencers in the FASTQ format. Part of this
dataset was used for IIMI’s model training, while the rest was
used to evaluate IIMI’s performance.

The second dataset was published by Sukhorukov et al.
[11] and accessible on the Recherche Data Gouv website
(https://entrepot.recherche.data.gouv.fr/). This data set includes
virus infection details for 12 samples across various species, such
as grapevines [16], sugar beets [17], and peaches [18]. Two samples
are omitted from the analysis due to the lack of publicly available
viral genome sequences for the several viruses infecting them.

The virus reference genomes used in this study were sourced
from Virtool’s virus database (version 1.4.0). Virtool’s virus
database presents a curated collection of genomic data from the
NCBI repository by Virtool’s developers. This database version
contains 1583 viruses, encompassing 3183 virus segments,
including viroids.

The genome of Arabidopsis thaliana (A. thaliana) with the taxon-
omy ID 3702 was obtained from Ensembl Plants and used in this
study as a generic host. It is chosen because it has the most well-
characterized plant genome and its concise and low-noise genetic
structure. A host genome is instrumental in creating mappability
profiles for virus genomes. Where a virus genome region matches
a region in the A. thaliana genome, it becomes challenging to
determine whether the reads mapped to this region are from
the plant or the virus. Consequently, such regions are deemed
unreliable for virus diagnostic purposes.

Method—IIMI
IIMI, an innovative and automated analysis pipeline utilizing
machine intelligence for plant virus diagnostics, is presented in
this section. IIMI comprises four main components, as depicted
in Fig. 1. In Component (A), IIMI aligns raw sequencing reads
against a database of plant virus genomes, in this case, taken
from the Virtool virus database, version 1.4.0, with over 1563 virus
genomes, transforming the consolidated HTS data of each sample
into approximate coverage profiles for the genomes of all targeted
viruses. Component (B) involves IIMI automatically filtering out
unreliable regions in the coverage profiles, utilizing a prebuilt
mappability profile and the proportions of nucleotides A, T, C, and
G in all mapped reads. In Component (C), IIMI extracts features
from these coverage profiles, which are crucial for determining
whether a specific virus infects a sample. Finally, in Component
(D), IIMI builds supervised machine-learning models based on the
observed virus infection labels and the features extracted in the
previous step. This machine learning model, refined over time, is
intended to predict virus infections in future HTS samples. Fur-
ther details of each component are discussed in the subsequent
sections.

Create coverage profiles (Component A)
While common approaches rely on identifying k-mer reads in a
sample that match a reference virus genome or host genome, our
method differs. Reads are mapped to virus reference genomes,
generating coverage profiles for diagnosing infection with the
corresponding virus.

A coverage profile is a numeric vector of physical coverage,
representing the count of sequencing reads from an HTS sample
aligned to each region or base of a virus reference genome. Regions
with high sequence coverage, which is the number of unique reads
mapped to a position, are characterized by more aligned reads,
while those with low sequence coverage have fewer. The likelihood
of a virus infecting a sample increases with more reads mapping
to its genome. Thus, sequence coverage plays a pivotal role in
developing IIMI because it carries information on the possibility
of infection by a virus to differentiate between infected and non-
infected plant samples, which helps determine what machine-
learning features should be extracted.

Creating a coverage profile involves the following four steps: (1)
converting reference virus genomes in the Virtool virus database
from JSON to FASTA format; (2) mapping HTS reads from the
sample to the converted reference genome using Bowtie 2 (version
2.4.4) [14] through employing the -amode to report all alignments
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Figure 1. Architecture of IIMI analysis pipeline. The workflow of IIMI
is separated into three components: Component (A). Create coverage
profiles; Component (B). Eliminate untrustable areas; Component (C).
Feature extraction and machine learning model training. Each compo-
nent is illustrated in a box with a grey background. Inside the box, a
diagram represents the workflow for that component.

and outputting in SAM format; and (3) using SAMtools [19] to
convert SAM output to BAM format, a binary version of SAM. This
format includes detailed alignment information, such as each
read’s location and mapping score and its alignment to the virus
segment [20]. BAM files are also indexed for easy extraction of
coverage profiles. Finally, (4) coverage profiles are extracted from
the BAM file using the GenomicAlignments R package [21]. The
final coverage profile is saved in a Run-Length Encoding (RLE) for-
mat, efficiently compressing data sequences without loss. These
RLE-formatted coverage profiles are then ready for visualization
or as inputs for machine-learning algorithms in diagnosing viral
infections.

Figure 2 displays logarithmic-scale coverage profiles for HTS
reads from infected and non-infected samples aligned to the
genomes of four distinct viruses: Asian prunus virus 2 (APV2), Asian
prunus virus 3 (APV3), Broad bean mottle virus (BBMV) RNA 3, and
Fusarium poae virus 1 (FpV1) RNA 2. Only the infection with APV2
is confirmed in the plant. The figure illustrates that the coverage
profile from an infected sample typically exhibits higher values

than those from non-infected samples. Note, to illustrate the
idea, coverage profiles visualized in Fig. 2 are selected to have
apparent signals. Many other coverage profiles are less clear than
those shown above, making diagnosing virus infection a non-
trivial work.

Automatically eliminate unreliable regions in
coverage profiles (Component B)
In Fig. 2, false peaks in the coverage profiles are also evident.
These peaks, which arise from factors such as genomic similar-
ities or repetitive sequences, could lead to erroneous infection
classifications if not addressed. The coverage profile in Fig. 2(a)
corresponds to the known infection by APV2, with extensive map-
ping across most portions of the virus genome and relatively
uniform GC content. Conversely, profiles in Fig. 2(b–d) correspond
to viruses not identified in the sample, showing sparse coverage
except for sporadic peaks. Specifically, Fig. 2(b) highlights an area
in red, pinpointed through mappability profiling as ambiguous
due to similarity with other viruses or the host genome. The peak
in Fig. 2(c) aligns with an increase in ’A’ nucleotides, while the
peak in Fig. 2(d) aligns with a rise in GC content. These misleading
peaks must be removed from the initial coverage profiles to
reduce false positives.

Component B is designed to automatically eliminate unreliable
regions from the coverage profiles, functioning without manual
intervention. Effectively eliminating bad signals prior to con-
structing a predictive model is a straightforward yet more pow-
erful strategy, offering more advantages than creating intricate
machine learning methods to handle such noise. This preliminary
step can greatly enhance the accuracy and efficiency of virus
diagnostics. Identifying unreliable regions relies on three pieces
of precalculated information for each virus reference genome:
(1) the proportions of adenine (A), (2) combined cytosine-guanine
(CG) contents, and (3) mappability profiles. Next, it is important
to explain why these factors can compromise the reliability of
coverage profiles in certain genomic regions and describe our
approach to automatically identifying them.

Coverage profiles in regions with a high concentration of repet-
itive adenine (A) sequences or elevated GC content are deemed
unreliable, as highlighted by several studies in the field. This
unreliability stems from various challenges in sequencing and
data analysis. Difficulties in aligning these repetitive sequences
can lead to misalignments or coverage gaps [22]. Additionally,
interpreting long sequences of a single nucleotide is complicated
and often inaccurate [23]. In regions with repetitive A’s or strong
GC bonding, PCR amplification, a standard step in sequencing
preparation, may be biased due to secondary structure formation,
which could inhibit DNA polymerase activity [24] or interfere with
sequencing [25]. Specific limitations of sequencing technologies,
like determining run lengths in homopolymeric sequences for
Illumina or base calling accuracy for Oxford Nanopore, add to
these challenges [26]. Mononucleotide repeats are particularly
susceptible to sequencing errors, resulting in incorrect insertions
or deletions [27]. Furthermore, GC-rich areas will likely encounter
sequencing issues, typically manifesting as lower coverage or
erroneous reads [28].

A sliding window technique was employed to identify unreli-
able regions stemming from high percentages of A nucleotide and
GC content. A sliding window of 75 bases was employed for each
virus reference genome, moving in increments of 1 base across the
genome. Windows are labelled as unreliable when the percentage
of A or GC content exceeds a set threshold. After completing
the scan, all overlapping unreliable windows are consolidated to
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Figure 2. Log-scaled coverage profiles of four viruses from the same infected plant sample. The y-axis is the number of mapped reads in the logarithmic
scale, and the x-axis indicates the position of the virus segment. The red (thicker horizontal) lines at $y$ = 0 in the upper part of the panels indicate the
ambiguous regions denoted by the mappability profile. The solid lines at the bottom represent the GC content and the percentage of nucleotides G and
C. The dashed lines denote A%, the percentage of A nucleotide. Both GC content and A% are calculated for a series of 75-base k-mers and a step of 1.

define the final unreliable regions. This process results in a two-
column matrix for every reference virus genome, where each row
corresponds to an unreliable region, and the columns indicate the
start and end positions of these regions. The threshold value to
define a high percentage is 60% for GC content and 45% for A
percentage, which is empirically selected and will be activated
and updated using new samples generated in the near future.
These threshold values are similar to the ones already used in the
past [29].

Ambiguous mapping in genomic sequencing, a challenge stem-
ming from the repetitive nature and similarity between regions of
different genomes, significantly impacts the accuracy of coverage
profiles. In this scenario, a single read might align to multiple sites
across various genomes, leading to uncertainty in pinpointing its
true origin. Such uncertainty can result in either overestimating
or underestimating coverage in specific genomic regions [30, 31].
Beyond affecting the reliability of coverage profiles, this ambi-
guity complicates variant identification and introduces poten-
tial biases in comparative genomic analyses [22, 32]. Accurately
identifying these problematic regions in reference genomes is

crucial for mitigating false peaks or valleys in coverage data,
enhancing the overall accuracy of genomic studies. Precalculating
unmappable regions of each reference genome can save com-
putational resources and enhance the precision of analyses. The
success of this approach has been demonstrated in past studies
[33, 34]. While these studies address repetitive sequences within a
single reference genome, our task extends across a full database
of virus genomes, introducing a higher level of complexity.

Identifying unmappable regions in all reference virus genomes
unfolds in the following steps: initially, parameters are set,
defining the window size as 75 bases and the step size as 1 base.
A sliding window of 75 bases moves along the genome for each
reference genome, extracting overlapping 75-mer sequences at
each step. These sequences are then mapped to all other genomes,
including a self-mapping step, using Bowtie 2. The regions where
each 75-mer sequence maps are recorded. After this mapping
process, each genome is analyzed to identify ‘unmappable’
regions where a 75-mer sequence maps to multiple locations.
Any overlapping 75-mer unmappable regions are merged within
each genome. Finally, the algorithm compiles a comprehensive
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list of these unmappable regions for all reference genomes.
This meticulous process results in creating an output file or
database, which details the unmappable regions of each genome,
tailored for seamless integration into further genomic studies and
pipelines. The process is summarized in Algorithm 1.

Algorithm 1 Identify Unmappable Regions in Many Reference
Virus Genomes
Result:Create a database of unmappable regions for 1,583 refer-
ence virus genomes

1: Initialize Parameters:
2: Set window size to 75 bases (75-mer)
3: Set step size to 1 base (1-mer)
4: for each of the 1,583 reference virus genomes do
5: Slide 75-mer window along the genome
6: for each position in the genome do
7: Extract a 75-mer sequence
8: Align reads and record regions:
9: Use Bowtie 2 to map 75-mer to all 1,583 genomes,

including self
10: Record regions where 75-mer sequences map
11: end for
12: Make unmappable regions:
13: Mark regions as ’unmappable’ where 75-mer sequences

map to multiple locations
14: Merge overlapped unmappable regions into one region.
15: end for
16: Make mappability profile:
17: Compile unmappable regions for all genomes into a list;
18: Output a file or database of unmappable regions for each

genome

The described method produces unmappable profiles by com-
paring virus genomes within the Virtual database. However, it is
crucial to incorporate a corresponding host genome into the com-
parative analysis to diagnose virus infections in various samples.
This can be achieved by adapting the process to compare each
virus genome exclusively with the host genome, thus generat-
ing host-specific unmappable regions. Subsequently, these host-
specific unmappable regions need to be integrated with the initial
set of unmappable regions derived from the virus-to-virus com-
parisons. This merged dataset of unmappable regions is essential
for the final analysis of virus diagnostics, ensuring accuracy and
reliability in detecting virus infections in different host samples.

Please note that executing this algorithm demands consid-
erable computational power, attributed to the sheer volume of
genomes and the extensive nature of the mapping procedure.
To accommodate this, precalculated mappability profiles using
Compute Canada’s high-performance clusters are provided, and
these results are integrated into our R package, IIMI. This package
offers two distinct versions of unmappable regions: one derived
from the Virtool virus database and another that includes the
host genome of A. thaliana. These pre-computed profiles in IIMI
facilitate efficient and resource-effective analysis for users.

Feature extraction and training machine learning
models (Component C)
Coverage profiles, conceptualized as curves or high-dimensional
vectors, are not ideal for direct use as inputs in machine learn-
ing models, particularly when training data sizes are limited or
moderate. Extracting key features from these coverage profiles

Table 1. Features extracted from mappability-profile processed
coverage profiles for the machine-learning process. The median
variable importance is summarized from all models trained in
experiments described in the Results section. The top 5 features
of each method are highlighted in bold font

Categories Features Median Variable Importance

IIMI-RF IIMI-X

Basic overall
summaries of the
virus genome

average coverage 0.1003 0.0324
maximum
coverage

0.1189 0.0294

length of genome 0.0917 0.0716

Nucleotide
composition
percentages

% of A 0.0482 0.0361
% of C 0.0417 0.0203
% of T 0.0557 0.0285
GC content 0.0559 0.0359

Percentage of
coverage exceeds a
certain threshold (K
reads) across the
whole virus genome

K = 2 0.1894 0.6699
K = 3 0.0967 0.0081
K = 4 0.062 0.0012
K = 5 0.0484 0.0179
K = 6 0.0367 0.0064
K = 7 0.0295 0.0009
K = 8 0.0363 0.0057
K = 9 0.0475 0.0034
K = 10 0.0657 0.0323

for machine learning algorithms is more practical for effectively
training robust models.

Three types of features are considered for describing cover-
age profiles (after removing unreliable regions): (1) basic overall
summaries, including average and maximum values of coverage
profiles and the length of each virus segment. (2) Nucleotide
composition percentages, including A, C, T, and GC content in
each virus segment. (3) The proportion of the genome with high
coverage is vital in minimizing false positives arising from sparse
yet high peaks. This is measured as the percentage of the virus
genome where the mapped read count exceeds a predetermined
threshold, K. Since the optimal threshold for ‘high coverage’ is
uncertain, features are extracted at various thresholds (i.e. K =
2, 3, . . . , 10), allowing the machine learning models to select the
most effective one automatically. Table 1 outlines these features
with a summary of their importance metrics from various clas-
sification models, which will be discussed in detail in the Results
section.

Using features extracted from coverage profiles and each
profile’s observed virus infection status, we train several widely
used supervised machine learning models as part of the IIMI
pipeline. Specifically, we consider classification tree [35], random
forest [36], XGBoost [37], and elastic net [38]. These four models
are separately named IIMI-CT, IIMI-RF, IIMI-X, and IIMI-EN. All
models’ predictions are made at the virus segment level. To
predict if the plant is affected by a virus, a result is considered
positive if at least one virus segment is indicated as positive in
the detection.

The rationale for selecting these four machine learning meth-
ods is their proven performance in numerous evaluations: ran-
dom forest, XGBoost, and elastic net are well-known top perform-
ers, and the classification tree serves as the building block for
the first two methods. We also explored other machine learning
methods, including gradient boosting machine [39], naive Bayes
[40], logistic regression [38], support vector machine [41], linear
discriminant analysis [42], and quadratic discriminant analysis
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[42]. Complete results for all 10 models are provided in S1 of the
Supplementary Material.

Validation of IIMI
To evaluate the performance of IIMI, we conducted computational
experiments using real-world data, comparing four variations of
IIMI against state-of-the-art methods such as fastv and Patho-
scope. Our evaluation consists of two parts: (1) cross-validation
with in-house data and (2) independent validation using data
from VirHunter. Detailed descriptions of the design and execution
of the computational experiments are provided in the rest of the
section. The results of these experiments will be discussed in the
Results section.

In data analysis using fastv, we adhere to its default set-
ting. Pathoscope only provides coverage profile without binary
diagnostic results. We follow the Virtool web application guide-
lines, which are provided by the CFIA and used for their rou-
tine diagnostic works to determine if a virus infects a sam-
ple through a two-step process. Initially, the application applies
deterministic rules with set thresholds concerning genomic cov-
erage, depth, and weight. A virus is flagged as positive if the
genomic coverage exceeds 0.3 and the weight is greater than
0.000006, followed by checking if any virus segment has genomic
coverage of at least 0.9 with a median depth over 0.5. Here,
genomic coverage represents the virus genome fraction covered
by sequencing reads, depth signifies the read count at a particular
genome location, and weight is the reads’ proportion mapped to a
virus, totalling 1. Subsequently, a manual review is conducted to
ensure no cross-contamination, such as confirming the absence
of a virus in a plant sample that could be a contaminant from
other samples processed in the same or previous sequencing
batches, NGS libraries, or RNA extractions. The second step is
omitted because it requires manual checks, which are impossible
when more than 3000 viruses need to be diagnosed for more
than 200 plant samples and replicate such experiments many
times.

We use a five-fold cross-validation method to evaluate the
methods. Our in-house data is divided into five folds; in each of
the five iterations, four folds are used to train IIMI models, while
the remaining fold is used as the testing dataset. This ensures that
each fold serves as the testing set exactly once.

These five models were then applied to make predictions on
two datasets: the in-house test set (assessing performance in
similar training and test conditions) and the VirHunter-provided
data (evaluating performance across different studies and HTS
protocols). The binary infection status predictions were compared
with actual infection statuses in both test datasets to construct
confusion matrices. From these matrices, four performance met-
rics were calculated: accuracy (the overall correctness of the
model), precision (the correctness of positive predictions), recall
(the model’s ability to identify all positive cases), and the F1 score
(a balance between precision and recall). Their definitions and
formulas are as follows:

Accuracy = TP + TN
TP + TN + FP + FN

Precision = TP
TP + FP

Recall = TP
TP + FN

F1 = 2 × Precision × Recall
Precision + Recall

= 2 × TP
2 × TP + FP + FN

where TP (True Positive) is the count of positive cases correctly
predicted, FP (False Positive) is the count of negatives incorrectly
labelled as positive, TN (True Negative) is the count of negatives
correctly identified, and FN (False Negative) is the count of pos-
itives incorrectly labelled as negative. These elements form the
confusion matrix, quantifying correct and incorrect predictions.
For all four metrics, larger values indicate better classification
performance.

The experiment is conducted 100 times to determine the reli-
ability of our results, each time using different random divisions
of training and test data. This process results in varying sets of
training and test data sourced internally, while the data from
external studies (VirHunter) remains unchanged. Consequently,
100 values for each evaluation metric across each test data set
are obtained. Note that VirHunter’s results are excluded from
the visualization below due to its significantly lower performance
than other methods, as including it would diminish the visual clar-
ity in distinguishing the remaining methods. Although VirHunter
can diagnose known viruses, it is primarily developed to detect
novel viruses, partly explaining why its performance on known
viruses is not as effective.

Results
Figure 3(a) displays the evaluation results on our internally
sourced test data. Each boxplot in the figure is derived from
100 data points gathered across the experiments of 100 different
random data splits, with these points also depicted as scatter
plots. Among the methods, fastv is noted for identifying the
highest number of positives, leading to the highest detection
rate in this analysis. However, this comes at the cost of a high
false positive rate, resulting in the lowest precision. Consequently,
fastv’s F1 score suffers due to its poor precision, ranking it the
lowest. In contrast, Pathoscope adopts a more cautious approach,
yielding the lowest recall but the second-highest precision. IIMI-
CT, which employs a singular classification tree, balances fastv
and Pathoscope regarding precision and recall F1. The ensemble
methods IIMI-RF and IIMI-X, which use multiple classification
trees through bagging and boosting techniques, respectively,
demonstrate superior performance over the single-tree IIMI-CT
in all four metrics. According to the in-house data assessment,
these two methods perform comparably and emerge as the most
effective. The linear model IIMI-EN produces a sparse prediction
model, differing largely from other IIMI variants, and its F1 ranks
are not impressive. The ranks of methods in their accuracy
are very similar to their ranks in F1 score, suggesting the same
winning methods.

Figure 3(b) presents the validation results using external data.
The test data provided by VirHunter were created using protocols
markedly different from those used for our in-house data. This led
to a notable shift in performance rankings. In this external valida-
tion, IIMI-X has been identified as the best model. Its consistent
good performance from in-house and external data demonstrates
it as the best method for virus detection. IIMI-EN ranks as the
second-best performing model among the methods, similar to
Pathoscope’s performance. IIMI-EN’s performance ranks higher
in external validation than it did in the cross-validation of in-
house data. This is because the elastic net aims to provide a
parsimonious model with few predictors and a simple linear
relationship. Simpler models sacrifice prediction accuracy to gain
better robustness. Therefore, IIMI-EN is a great alternative method
when applied to test data that is quite different from the training
data.



Virus diagnosis algorithm using HTS data | 7

Figure 3. Boxplots of evaluation metrics comparing virus detection pipelines based on cross-validation using our in-house HTS data and independent
validation using the VirHunter’s HTS data. The y-axis represents the method: fastv, Pathoscope, IIMI-CT, IIMI-EN, IIMI-RF, and IIMI-X. The x-axis
represents the values for the metrics. The smaller lighter dots show the score for each replication. The larger darker dots are outliers of the boxplots.
Panel (a) shows the evaluation metrics based on the in-house HTS dataset. Panel (b) shows the evaluation metrics based on the VirHunter HTS dataset.

To discern which features are more helpful in enhancing virus
diagnostic performance, the importance of features is assessed
using two distinct metrics: for IIMI-RF, the non-scaled mean
decrease in accuracy; for IIMI-X, the percentage contribution
of each feature to the model. For both metrics, higher metrics
represent more importance.

Table 1 presents the median values of feature importance
obtained from models built using 100 random data splits.
The top 5 features for each method are highlighted in bold.
Complementing this, Fig. 4 offers a detailed visual representation
of feature importance. It includes boxplots that capture the range
and distribution of feature importance across the models from
the 100 random splits, with individual points plotted to denote
the importance scores for features within each unique data split.
Overall, each feature contributes to the predictive capability
of both models to varying extents. The genome-wide coverage
percentage of positions with at least K = 2 reads and the length of
the virus genome have a more pronounced impact on all methods
than other features. The coverage percentages of positions with
at least K = 3 reads are also important for IIMI-RF. The three
variables of the basic overall summary of virus genomes rank
in the top 5 in their median values for IIMI-RF, whereas two of
these variables rank in the top 5 in the median values for IIMI-X.
IIMI-X and IIMI-RF are both ensemble methods based on decision
trees, but their behaviour in feature selection is quite different. A
few variables dominate IIMI-X, while the contributions of the
variables in IIMI-RF do not differ dramatically, which can be
explained by how these two methods aggregate the trees. The
percentage of A nucleotide also emerges as one of the top 5
predictors in IIMI-X. Random Forest averages many deep trees
to reduce the model’s variance; hence, deep trees tend to utilize
more predictors. In contrast, XGBoost adds up many small trees
to sequentially reduce bias; hence, it could involve few predictors
(if most trees share common predictors).

The results above demonstrate IIMI’s outstanding performance
in accurately diagnosing viral infections. To highlight IIMI’s ability
to process a large number of samples within a reasonable time
frame in a real-world setting, we summarize the computing time
of IIMI in Table 2. Note that runtime does not include time used

Figure 4. Boxplots of variable importance using IIMI-RF and IIMI-X based
on the in-house HTS dataset. Three models use different calculation met-
rics. IIMI-RF uses mean decrease in accuracy; IIMI-X uses the proportion
of contribution to the model. The grey points are each replication of the
feature’s importance.

in the alignment step since that depends on the standard aligners
such as Bowtie and minimap. The second column shows the
time needed to train IIMI methods using 261 in-house samples.
The two tree-based approaches (IIMI-RF and IIMI-X) take less
than 4 seconds, and IIMI-EN takes 82 seconds using a standard
personal computer. The third column of Table 2 shows the average
testing speed on VirHunter samples. It takes 0.0146 (IIMI-EN) to
0.0627 seconds (IIMI-RF) to diagnose the infection status of 1538
viruses in one sample. That is, within 1 second, IIMI can diagnose
16 (IIMI-EN) to 68 (IIMI-RF) samples. In addition to computing
time, we also investigate the maximum memory requirement for
running IIMI. Because most aligners (such as Bowtie 2) can process
the sequences one by one without loading all of them in the
memory, IIMI’s memory requirements are primarily decided by
the need to fit machine learning models with the given samples.
We investigated the memory usage of running one sample in
the in-house data, which takes up to 100 MB for each sample.
Processing each sample of our in-house data from the BAM file
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Table 2. Runtime of IIMI (excluding runtime of alignment step)
on a personal computer. We trained the in-house plant data with
IIMI-RF, IIMI-X, and IIMI-EN and tested on the external data one
sample at a time with all three methods

Method Training time (sec) Mean testing time (sec)

IIMI-RF 3.5744 0.0249
IIMI-X 2.6796 0.0627
IIMI-EN 81.6809 0.0146

(output of Bowtie) into RLE format requires up to 500 MB. The
feature engineering step for converting RLE data into 16 features
requires 2 MB of memory. Hence, the maximum memory require-
ment is determined by sample sizes and the machine learning
model (e.g., IIMI-RF or IIMI-X). When training our model with 261
samples, the maximum memory usage for IIMI-RF is around 400
MB, for IIMI-X, it is around 30 MB, and for IIMI-EN, it is 600 MB.
Thus, we recommend having more memory available than the
maximum memory usage. Once the model is trained, applying
it to classify new samples requires very little memory. If a huge
number of new samples need to be classified, we can batch this
job to reduce memory requirements (when needed). These results
highlight IIMI’s potential for rapid and efficient virus detection in
a large number of plant samples, even with limited computational
resources.

Discussion and conclusion
In the computer experiments, accuracy as an evaluation metric
was included in the analysis; however, it may not always be the
most insightful metric, particularly in the context of this work.
This is because the dataset exhibits a significant imbalance, with
samples infected with only a small subset of the 1583 viruses in
the database that was used. Therefore, a method could achieve
high accuracy with reasonable false positive rates but not fully
capture the method’s effectiveness. Metrics like precision, recall,
and F1 score, which directly evaluate the positive detections of
methods, are more suited to our situation.

The results indicate that the IIMI models have a significant
edge over other methods in terms of performance. When ana-
lyzing test samples with sequencing data generated using pro-
tocols similar to the training samples, such as in our internal
data cross-validation, it is recommended to use IIMI-RF or IIMI-
X. For test data derived from different protocols, results from our
external data validation indicate that IIMI-X is the best choice.
Alternatively, IIMI-EN is also a good option when test data is quite
different from training data due to its robustness. In addition to
their superior precision in diagnosis, the IIMI models offer other
benefits over alternative methods. They use coverage profiles
rather than k-mer sequences and leverage pre-trained models,
enabling the rapid and simultaneous diagnosis of many sam-
ples against a large virus reference database. This starkly con-
trasts with methods like VirHunter, which are limited to process-
ing one sample at a time. Furthermore, IIMI models proactively
identify and precalculate unreliable regions in virus reference
genomes. This foresight eliminates the need for manual interven-
tion to judge false peaks or valleys, a requirement in methods like
Pathoscope, thus providing more consistent results and reducing
the labour intensity of the diagnostic process.

However, it is important to note a limitation of IIMI. The method
is not well-suited for detecting viroids due to their extremely
short length and circular structure. We evaluate IIMI on only
viroids, which is included in S2 in the Supplementary Materials,

revealed that while IIMI performs well in detecting viroids in our
in-house data, we cannot confidently claim that IIMI works well
on viroids detection when it comes to external data. We need more
data in in-house data to train IIMI on viroids to guarantee good
performance. Thus, IIMI is currently optimized for virus detection
rather than viroid detection. In future work, if we have more plant
data infected with viroids, we can expand IIMI by building another
model specifically targeting viroids. Since the current version of
IIMI is based on a supervised machine learning model, it cannot
detect infections of uncharacterized viruses. We have several
ideas to address this problem, which is part of our ongoing work.
It is always challenging to detect viral sequences that have many
variations. IIMI has made efforts to address this issue by focusing
on the detection model at the segment level. We report infection
of a virus if any segment on its genome is detected as positive.
Thus, IIMI is robust to variations at the segment level (i.e. when
the virus genome has three segments, and two of them show up
in the infected sample). However, if substantial variation occurs
within a segment, the performance of IIMI can be compromised.

After extensive in-house testing, the three trained models—
IIMI-EN, IIMI-RF, IIMI-X—will be integrated into the Virtool web
analysis platform. Users will be able to upload sequencing data
for diagnosis, benefiting from fastv, batch processing capabilities
due to the pre-trained nature of the models. The R package IIMI
will further refine these models with a broader range of sam-
ples and host-specific information, enhancing Virtool’s diagnostic
accuracy. Both the Virtool web platform and the IIMI package are
publicly accessible.

This research utilized the A. thaliana genome as a generic host.
Employing specific host genomes, where available, could refine
the annotation of unreliable regions on virus reference genomes,
thereby improving diagnostic accuracy. Two versions of these
regions are offered in IIMI: one derived solely from virus genomes
and another combining A. thaliana and virus genomes.

In conclusion, this work yields three significant outcomes: (1)
pre-trained models with excellent classification performance for
immediate virus diagnosis; (2) an analysis pipeline and R package
for updating these models with more diverse samples and host
information; and (3) a database of 1583 virus reference genomes
with annotated unreliable regions, a valuable standalone resource
for other research. Our dedication to open research and global
resource sharing is fundamental to our approach. To facilitate
this, our analytical tools and database are publicly accessible,
with detailed access information provided in the availability sec-
tion at the end of this paper.

This research is part of the CLEan plAnt extractioN SEquencing
Diagnostics project, aimed at safeguarding Canada’s wine and
grape industry [43]. The findings will be employed for grapevine
virus screening of domestic, imported, and exported grapevines.
IIMI will be integrated into Virtool, a web-based application with
an established user base, for plant virus detection in multiple
crops, including grapevine.

Key Points

• We proposed IIMI, a system that leverages machine
learning algorithms to streamline the process of diag-
nosing viral infections using genome sequencing data.

• IIMI is designed to automatically correct artifacts in
genomic data, thereby enhancing diagnostic accuracy,
and ensuring more reliable, consistent decision-making
while also reducing the demand for manual labor.
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• The IIMI package has a built-in extensive, easily accessi-
ble database of curated virus genomes, streamlining the
diagnostic process for plant samples and accommodat-
ing the batch processing of multiple samples.

• IIMI offers a distinct mappability profile for each virus
genome, generated by our algorithm. This resource is
crucial for other researchers, as it highlights areas where
coverage profiles may be unreliable.
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