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∙ Patient-derived xenografts models more closely resemble patient samples in
tumour heterogeneity and cell cycle characteristics when compared with cell
lines.
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∙ 3D organoidmodels exhibit differences inmetabolic profiles compared to their
in vivo counterparts.

∙ A valuable multimodel reference dataset that can be useful in elucidating
model differences and novel targetable pathways.
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Abstract
Background: Breast cancer’s complex transcriptional landscape requires an
improved understanding of cellular diversity to identify effective treatments. The
study of genetic variations among breast cancer subtypes at single-cell resolution
has potential to deepen our insights into cancer progression.
Methods: In this study, we amalgamate single-cell RNA sequencing data
from patient tumours and matched lymph metastasis, reduction mammoplas-
ties, breast cancer patient-derived xenografts (PDXs), PDX-derived organoids
(PDXOs), and cell lines resulting in a diverse dataset of 117 samples with 506 719
total cells. These samples encompass hormone receptor positive (HR+), human
epidermal growth factor receptor 2 positive (HER2+), and triple-negative breast
cancer (TNBC) subtypes, including isogenic model pairs. Herein, we delineated
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similarities and distinctions across models and patient samples and explore
therapeutic drug efficacy based on subtype proportions.
Results: PDXmodels more closely resemble patient samples in terms of tumour
heterogeneity and cell cycle characteristicswhen comparedwithTNBCcell lines.
Acquired drug resistance was associated with an increase in basal-like cell pro-
portions within TNBC PDX tumours as defined with SCSubtype and TNBCtype
cell typing predictors. All patient samples contained a mixture of subtypes; com-
pared to primary tumours HR+ lymph node metastases had lower proportions
of HER2-Enriched cells. PDXOs exhibited differences in metabolic-related tran-
scripts compared to PDX tumours. Correlative analyses of cytotoxic drugs on
PDX cells identified therapeutic efficacy was based on subtype proportion.
Conclusions:Wepresent a substantial multimodel dataset, a dynamic approach
to cell-wise sample annotation, and a comprehensive interrogation of models
within systems of human breast cancer. This analysis and referencewill facilitate
informed decision-making in preclinical research and therapeutic development
through its elucidation of model limitations, subtype-specific insights and novel
targetable pathways.

KEYWORDS
breast cancer, cellular heterogeneity, model limitations, preclinical research, single-cell
RNA sequencing, single-cell transcriptomics, subtype-specific insights, targetable pathways,
therapeutic drug efficacy

Key points
∙ Patient-derived xenografts models more closely resemble patient samples in
tumour heterogeneity and cell cycle characteristics when compared with cell
lines.

∙ 3D organoidmodels exhibit differences inmetabolic profiles compared to their
in vivo counterparts.

∙ A valuable multimodel reference dataset that can be useful in elucidating
model differences and novel targetable pathways.

1 BACKGROUND

In 2023, breast cancer accounted for 31% of newly diag-
nosed cancer cases in women, making it the most com-
monly diagnosed cancer and the second leading cause
of cancer-related death among women in the United
States.1–3 These malignancies exhibit extensive molecular
heterogeneity4–6 and encompass diverse subtypeswith dis-
tinct pathological responses.4,7,8 Recent advances in the
genetic distinctions between various breast cancer sub-
types have allowed for a more nuanced understanding
of the molecular landscape underlying cancer formation
and progression.8,9 Breast cancers can be clinically cate-
gorised into groups based on estrogen receptor (ER) and
progesterone receptor (PR) expression or human epider-

mal growth factor receptor 2 (HER2) overexpression, or by
PAM50 gene signature scoring into four molecularly dis-
tinct subtypes: basal-like, HER2-enriched, luminal A, and
luminal B. While subtype classification by immunohisto-
chemistry staining (IHC) and PAM50 signature scoring of
bulk tissues provide fundamentally important insights into
expected patient outcome and appropriate treatment,8–11
they provide limited insight into the functional implica-
tions of these subtypes at a cellular resolution.10,12
Alongside increasing focus on subtype classifications,

subtype-specific pharmacologic targets are gaining atten-
tion. For this reason, HER2 amplified breast cancers and
estrogen-driven malignancies are now being treated with
significant advancements due to more targeted therapeu-
tic options.13,14 Triple negative breast cancers (TNBCs),
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however, remain difficult to treat due to their lack of
identified drug targets and significant transcriptional het-
erogeneity as defined by different TNBC types [Basal-like
1 (BL1), Basal-like 2 (BL2), Luminal androgen receptor
(LAR), andMesenchymal (M) subtypes].15,16 Furthermore,
TNBCs are among the worst prognosis cancers with high
rates of metastasis and low patient survival.17–20 A deeper
understanding of themolecular diversity within these can-
cers is crucial to identifying targeted therapeutic strategies
with meaningful implications for patients.
Advancements in integrated single-cell RNA sequenc-

ing (scRNA-seq) technologies have allowed for a deeper
understanding of the fundamental biology and expression
landscapes of a variety of cell types and tumour envi-
ronments. The field of breast cancer research has greatly
benefited from these technologies, playing a key role in
elucidating potential therapeutic targets and identifying
the development and origin of cancer.21 Furthermore,
scRNA-seq can help shed light onmechanisms underlying
drug response, resistance to therapy,22–24 and cancer
relapse.25 Single-cell subtyping methodologies, such
as SCSubtype and TNBCtype, have emerged to reveal
intrinsic subtype heterogeneity within cancers.10,15,16
However, the comparative strengths of various subtyping
methodologies and their application to various model
systems is not well studied.
With these technologies, this study aims to integrate

scRNA-seq data from diverse breast cancer model sys-
tems and patient samples to delineate similarities and
distinctions across models, explore stratification of thera-
peutic drug efficacy based on subtype proportions within
tumours, and provide a dynamic approach to cell-wise
sample annotation. By leveraging this comprehensive 117
sample dataset, with 6 sample types, 7 different applied
treatments, and isogenic pairs of drug resistance/sensitive
models, we aim to contribute a high molecular resolution
transcriptional atlas comprising human breast cancer cells
from a variety of models and demonstrate the strengths of
our dataset combinedwith our dynamic subtyping strategy
to stratify and predict therapeutic treatment response.

2 RESULTS

2.1 Mapping cellular diversity in
models of human breast cancer via
scRNA-seq integration

To investigate the global variations in breast heterogene-
ity among different models, we examined scRNA-seq data
that included transcriptional profiles from normal breast
tissue, preneoplastic BRCA1+/– tissue, primary tumour
samples from three clinical subtypes (ER+, HER2+, and

TNBC),26 patient derived xenografts (PDXs), PDX-derived
organoids (PDXOs), cell lines, and several matched pri-
mary tumour associated lymph nodes. Leveraging the data
from 117 distinct tissue specimens we obtained a dataset
of over 500 000 human cells after quality control steps
including filtering out murine and dead cells.
Figure 1A illustrates the data collection approach and

analysis pipeline, providing an overview of the types
of samples and models involved in this study. Uniform
Manifold Approximation and Projection (UMAP) visu-
alisation of merged single-cell RNA from all samples
revealed distinct clustering patterns; clinically typedTNBC
samples showed distinctly separate groupings, whereas
primary HER2+ samples and primary ER+ samples were
more closely transcriptionally related and seen to cluster
together (Figures 1B, 2A and B, and S1). The positioning
of PDX samples relative to primary samples of the same
clinical type suggested an overall shared transcriptional
program of the models and patient samples. However, we
also note potential differences in transcriptional profiles
between these model types, as PDX samples, while loosely
grouped near primary samples of their shared clinical sub-
type, were seen to form distinct clusters from primary
samples in many cases, especially within ER+ annotated
samples (Figure 2A and B).
Reduced cellular heterogeneity was seen between mod-

els of breast cancer and primary/metastatic lesions, as
demonstrated by UMAP dimensionality. Cell lines demon-
strated the greatest reduction in heterogeneity with a
comparatively more homogeneous cell population, as
demonstrated by their tight clustering pattern, when
compared to other sample types. Likewise, we observed
increased heterogeneity in overall transcriptional profiles
within primary samples compared to PDX or cell lines
(Figures 1B, 2A, and S1). ER+ malignant samples from
male (XY) originwere noted to cluster with other clinically
typed ER+ malignant samples from female (XX) indi-
viduals (validated in 2 male patients), suggesting global
gene expression patterns between these cells are not
strongly influenced by sex-related differences (Figures 1B
and 2A–C).
To better define model and subtype-specific differ-

ences, we examined proliferation and heterogeneity across
diverse breast cancer models and patient samples within
our dataset. Cell cycle phase was identified from gene
expression for each cell. TNBC models tended to have
a greater proportion of actively proliferating (G2M and
S phase) cells compared to other clinical subtypes
(Figures 2D and S2). This observation aligns with existing
knowledge about the aggressive nature of TNBC, char-
acterised by increased cellular proliferation.18,27 Similar
trends for proliferation were observed betweenmodel type
within clinical subtypes. PDX, organoid, and cell line
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F IGURE 1 Data exploration schematic. (A) Diagram showing the sample processing pipeline beginning with sample collection and
visually depicting the various model types used in this study. (B) An overview of the samples included within and different integration
analysis performed, namely ER+ and TNBC typed sample mappings. Names of the samples are listed under each clustering diagram and the
total number of samples shown in parentheses. UMAP visuals of ER+ (blue) and TNBC (red) malignant sample subsets outlined here. Of
note, only malignant cell types were used when generating these subset UMAPs.
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F IGURE 2 Data set visualisation by individual cells. UMAP visualisations, coloured by (A) tissue of origin, (B) clinical type, (C) X
chromosome status, and (D) cell cycle phase.

models displayed a trend towards greater proportions
of cells in S and G2M phase compared to primary or
metastatic lesions from patients, with cell lines having the
highest proportion (Figure S2). Importantly, this informa-
tion enriches our understanding of the intrinsic character-
istics of breast cancermodel systems, comparative to direct
patient samplings.

2.2 Gene signature analysis reveals
distinct immune, normal, and malignant
cell clusters

To better define cell clusters within this merged set, we
utilised established gene signatures (Table S1) to define cell
types (Figure 3A). We first identified epithelial cells both
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F IGURE 3 Identification and removal of non-malignant cells. (A) Annotated clustering with identified cell types following gene
signature analysis. UMAP heatmaps for key genes (B) EpCAM, (C) ESR1, (D) ERBB2 and immune signatures for (E) B cells, (F) T cells, (G)
natural killer cells, and (H) combined signature for macrophages, monocyte, and myeloid-derived cells. Visualisations using log normalised
feature averages. Heatmap scale is log normalised average gene expression for each signature.

normal andmalignant by the expression of epithelial cellu-
lar adhesionmolecule (EpCAM) (Figure 3B).28 EpCAMlow

clusters primarily contained non-malignant cell types,
with the exception of the metaplastic/claudin-low29 PDX,
BCM-7482. HER2 (ERBB2) and ESR1 expression aligned
with prior clinical subtyping of samples (Figure 3C
and D).

Clusters formed by malignant cells were further val-
idated using inferCNV method to infer copy number
alterations from normal samples (Figure S3), providing
an additional layer of confidence in discerning the malig-
nant cell populations from the complex cellular milieu.
InferCNV was not used as the primary method of malig-
nant cell discernment as we noted that some primary
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ER+ and HER2 overexpressed tissue derived cells did
not differ significantly from reference samples in copy
number, despite clustering and gene expression align-
ing with malignant cell types. Normal cell clusters were
inferred based on localisation of normal breast tissue cells
(taken from reduction mammoplasties) merged into the
dataset. Cells from malignant samples, which clustered
with normal tissue cells, were assumed to be adjacent
normal cells within the malignant tissues (Figure 3A).
Leveraging previously defined immune signatures (Table
S1) we were able to identify clusters containing cells with
high expression for genes associated with several immune
cell types (Figure 3E–H).
Following preliminary identification of normal cell clus-

ters, we sought to further define these clusters. We used
previously identified gene signatures for breast epithe-
lium to identify basal (e.g., KRT5, ACTA2, MYLK, SNAI2),
luminal progenitor [TNFRSF11A (RANK), KIT], and
mature luminal cells (ESR1, PGR, FOXA1).26,30 We were
likewise able to identify clusters with low EpCAM expres-
sion which contained high expression of pericytes, fibrob-
lasts, or endothelium associated cell signatures,31 anno-
tated here as stromal cell populations within the nor-
mal cell clusters. These clusters have been annotated
as shown in Figure 3A. The integrity of these normal
cell clusters and conserved features from prior litera-
ture, provide further confidence of our normal cell cluster
identification.

2.3 Differences in immune proportions
between clinical subtypes of breast cancer

To examine transcriptional differences between tumour
cells, we removed all non-malignant epithelial, immune
and stromal cells. Clusters of cells that could not be verified
asmalignant cell types andwere in proximity to immuneor
normal cell clusters were systematically eliminated, ensur-
ing a conservative approach in defining malignant cell
clusters. This would allow for better comparison of the
transcriptional profiles between models; as PDXs, PDXOs,
and cell lines do not contain human immune or normal
cell types.
In TNBC samples we observed a trend towards higher

percentages of immune cell infiltrates in primary tumours
when compared to ER+ and HER2+ primary samples
(Figure 4A). This is not surprising as TNBCs have
been previously annotated to contain greater amounts
of tumour infiltrating lymphocytes and immunothera-
pies have shown greatest efficacy in this subtype, while
ER+ tumours are generally considered immunologically
‘cold’.32–34 Correspondingly, upon normal cell removal
some TNBC samples (most notably TN-106 and TN-0114-

T2, with 29 and 106 cells respectively) had relatively few
tumour cells remaining.
To further assess malignant cell types, the resulting cells

following immune and normal exclusionweremerged into
a combined dataset of 260 500 cancer cells, representing
clinically typed ER+, HER2+, and TNBC. The resulting
dataset of malignant-only cells underwent normalisation,
scaling, dimensional reduction and was visualised by
UMAP projections annotated by clinical type and model
(Figure 4B). Again, TNBC and ER+/HER2+ samples clus-
tered distinctly away from one another, primarily on the
left and right sides of the UMAP respectively, except for
ER-0319 which clustered with TNBC clinically typed sam-
ples (Figure 4B). The majority of primary HER2+ samples
were again seen to cluster with a subset of ER+ primary
samples. Of note, TNBC PDXOs clustered distinctly away
from their founder PDX counterparts, suggesting distinct
transcriptional features of this model system, deserving of
further analysis.

2.4 Treated PDX samples exhibit
molecular profiles similar to their
untreated pair

We further sought to stratify our data based on applied
treatment. Several PDX samples within this dataset have
applied treatment and untreated isogenic paired sam-
ples. Of note, all 69 primary patient samples have been
characterised as treatment naïve.26 Treated PDX sam-
ples exhibited overall transcriptional profiles that closely
resembled their untreated paired samples, as indicated
through their close proximity to their untreated isogenic
pairs in theUMAPprojection (Figure 4C). Themain excep-
tion to this was noted to be ER+ PDX pairs under estradiol
withdrawal conditions, an observation worthy of further
study. The proximity of isogenic pairs in most contexts
suggests that PDX models remain more transcriptionally
like their matched untreated isogenic counterparts than to
other treatment samples. Prior studies saw similar conser-
vation of essential molecular features in patient tumour
cells following treatment with therapeutic agent.8,9 Within
PDXmodels, this trend held true even in the case of devel-
oped resistance to carboplatin due to long term exposure
to the drug over serial passages, where we note resistance
status did not significantly shift clustering of cells.
This finding underscores the robustness and reliability

of PDX models in retaining essential molecular features
even after exposure to therapeutic interventions. Further-
more, this recapitulates trends in expression previously
seen in patient tumour cells. This observation holds
significant implications for translational research and
preclinical studies, as it suggests that the robust molecular
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F IGURE 4 Cancer-only clustering following removal of immune and normal cell clusters. (A) Per cent bar graph showing the
proportions of immune (blue), normal (grey), and malignant (garnet) cell types in each sample. Clinical type is annotated by the bar along the
right of the graph. UMAP visualisations of cancer-only cell dataset coloured by (B) tissue of origin and clinical subtype and (C) treatment or
condition.

characteristics of tumour cells may remain largely
unchanged even in the presence of therapeutic inter-
ventions. The congruence in molecular profiles between
treated and untreated PDX samples highlights the need
for differentially expressed gene analysis in evaluating
treatment responses and deciphering the molecular
intricacies associated with mechanism of resistance.

2.5 Transcriptional changes underlying
resistance to platinum-based
chemotherapeutics in TNBC

A major strength of this dataset lies in its incorporation
of isogenic models of resistance. To understand how treat-
ment effects gene expression at a single-cell resolution, we
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generated resistance models by subjecting a subset of the
parental PDX model to successive tumour passages cou-
pled with the administration of carboplatin (40 mg/kg),
a platinum-based DNA intercalating chemotherapeutic
(Figure 5A).35 Several models were inferred to be carbo-
platin resistant (CR) when no discernible reduction in
tumour volume was observed following treatment com-
pared to time-matched carboplatin sensitive (CS) founder
models (Figure 5B).
To identify transcriptional changes that occur with

developed resistance, we performed differentially
expressed gene (DEG) and pathway analysis on each
set of paired CR and CSmodels. Pathway analysis involved
scrutinising the significantly enriched pathways for poten-
tial overlap between model systems (Figure 5C and D).
This approach allowed us to unravel the intricate molec-
ular mechanisms underpinning resistance across diverse
PDX/PDXO model pairs, providing valuable insights into
the common pathways associated with chemotherapeutic
resistance. Pathways involved in activation of HIFα,
HER-2 signalling, cellular response to heat stress, and
mitochondrial dysfunction were significantly activated in
4 of the 5 CR models when compared to CS (Figure 5C).
Furthermore, a number of canonical pathways were
found to be inactivated in CR models, such as PTEN
signalling, oxidative phosphorylation, and ESR-mediated
signalling.
Among those pathways associated with disease and

function, several similarly associated and overlapping
pathways were observed between CR models (Figure 5D).
Many signatures associated with metastasis and migra-
tion were seen to be elevated broadly across these models.
Curiously, BCM-2147 showed slight activation of epithelial-
mesenchymal cells, but generally inactivation of other sig-
natures associated with metastasis and migration. These
findings suggest that broadly, CR models may have higher
metastatic phenotype, excepting BCM-2147. Cellular pro-
liferation related signatures were also seen to be activated
within many CR models. This aligns our observation that
CR models tended to reach maximum tumour burden in
fewer days than their CS pair. Interestingly, we concur-
rently saw activation of death signalling and inactivation
of signatures of a small subset of proliferation and colony
formation signatures across CR models. This nuanced
observation may point to increased rates of cell turnover
in CR models. Notably, we have seen higher instances of
necrosis at the centre of someCRPDXmodels comparative
to their CS pair. These findings taken together may suggest
that larger CR tumours may experience rapid proliferation
on the tumours outer expanding surface while more inter-
nal cells lack adequate nutrients resulting in increased
death signalling. Additionally, we see activation of path-
ways linked to alterations in transcriptional programming
such as those related to transcription of DNA/RNA, unsur-

prising given the mechanism of action associated with the
drug carboplatin.

2.6 Distinct gene expression alterations
underlay PDXO culture

As previously noted, this dataset includes time matched,
batch sequenced, PDX and PDXO samples from the
founder lines WHIM30 and WHIM30CR (Figure 6A).
Remarkably, PDXO and PDX samples from the CS
and CR lines do not cluster by resistance status, but
rather by model system. WHIM30 and its isogenic pair
WHIM30CR fall within the same cluster by UMAP, having
globally similar transcriptional profiles, however, PDXO
pairs did not cluster with their originating PDX mod-
els, despite being seeded from the same time-matched
cells (Figure 6A). This finding is contrary to previous
reported comparisons of PDX and PDXOs bulk tissue
RNA sequencing.36 DEG analysis uncovered 595 signif-
icant (p < .05) genes between PDX/PDXO samples in
WHIM30 founder line, and 1109 significant genes differ-
entially expressed between PDX/PDXO model types in
WHIM30CR following Benjamini-Hochberg multiple test-
ing correction (Figure 6B and C). Of these, 357 genes were
seen to be differentially expressed in both sets in the same
direction (Figure 6D). These 357 geneswere then evaluated
via gene set enrichment analysis to determine pathways
of interest. Secondary metabolism genes were found to be
significantly differentially regulated between PDX/PDXO
sets with generally higher expression seen in PDXO sam-
ples, suggesting alterations in cellular metabolism profiles
(Figure 6E). Additionally, there was found to be signif-
icant upregulation of genes associated with the NRF2
pathway in PDXO samples. Namely genes both involved
in this pathway and regulated by the NRF2 transcription
factor were seen to be upregulated in organoid models
(Figure 6F and G). Interestingly, among transcripts most
upregulated in PDXOs were glutamine-cystine ligase cat-
alytic and regulatory subunits GCLC, GCLM (Figure 6G).
Several aldo-keto reductase family genes were likewise
seen among those most upregulated in PDXO models
(Figure 6H). These findings taken together suggest that
PDXOs have distinct metabolic profiles when compared to
their PDX counterparts, suggesting possible non-canonical
glutamate-cysteine ligase activity as was previously seen
in cancer cell lines.37 These changes in metabolic function
underlying organoid culturing, have serious implications
for drug response and in vitro testing.

2.7 PAM50 pseudo-bulk comparison
with clinically typed sample annotations

To further interrogate the molecular portraits of sam-
ples within our dataset, we created pseudo-bulk RNA
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F IGURE 5 Transcriptional changes underlying resistance to platinum-based chemotherapeutics in TNBC models. (A) Workflow
schematic demonstrating development of carboplatin resistant (CR) and carboplatin sensitive (CS) pairs. (B) Tumour volume graphs for 3
PDX models contained within (BCM-2147, BCM-7482, WHIM30), starting with cells from founding PDX and monitored over serial passage
with applied carboplatin treatments. Red arrows indicate the administration of carboplatin via intraperitoneal injection at dosage 40 mg/kg.
Each serial passage of cells into new mice is represented by a new segment and colour on the larger parent graph. Of note: final segment of
BCM-7482CR graph represents data from the same cohort as sample BCM-7482CR_109078. (C, D) Canonical pathways and disease/function
annotations differentially regulated in CR models as observed through IPA analysis. The size and colour of the circle represent the z-score
associated with the pathway in that model comparing CS and CR pairs, positive values (blue) indicate activation in CR models, negative
values (red) indicate inactivation or downregulation. Statistically significant associations (p < .05) are shown by a black border surrounding
the circle. ‘?’ indicates insufficient data for z-score calculation. Generated using the corrplot() function from the corrplot package.
* = ‘Alterations in Transcriptional Programming’.
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F IGURE 6 Differential gene expression analysis of time matched PDX MGT and PDXO in WHIM30 and WHIM30CR. (A) UMAP of
reclustering of PDX and PDXO models included in analyses. Volcano plots of differentially regulated genes in (B) WHIM30 PDXO compared
to PDX MGT and (C) WHIM30CR PDXO compared to PDX MGT. Genes selected for analysis highlighted in green (downregulated) and red
(upregulated), genes were excluded with p-values > .05 or low average read counts (defined by an average occurrence less than 1 count per cell
across the dataset). (D) Venn diagram of overlapping gene count between model sets. Violin plots of log normalised average expression for
genes within signatures for (E) secondary metabolism genes, (F) genes regulated by NRF2, and (H) aldo-keto reductase family genes. p Values
from unpaired t-test. (G) Heatmap visualisation of NRF2 pathway genes as log2 fold change between samples. Glutamate-cysteine ligase
modifier (GCLM) and catalytic subunits (GCLC) annotated with *.

profiles for each sample in order to apply the PAM50,8–11,38
and claudin-low centroid predictors (Figure 7A).39
Intriguingly, some PAM50 classifications did not align
with expected calls based on clinical subtyping, such as
in the case of ER-0319, clinically typed as PR+/ERlow
via IHC but annotated as ‘basal-like’ by the PAM50 pre-
dictor, a molecular subtype most closely associated with
TNBCs.8 While initially surprising, recent literature notes
molecular similarities between TNBCs and ER–/PR+
breast cancers.40 Additionally, it has been shown that a
subset of ERlow cancers (1–9% positivity) cluster primarily

with basal-like samples in gene expression profiling.41–43
Further incongruencies with PAM50/claudin-low and
clinical-type included TN-0106 and TN-0114-T2 clinically
classified as TNBCwere unexpectedly labelled as ‘luminal-
A’ and ‘luminal-B’ respectively, by PAM50 predictor. This
difference may be attributed, to the 15–20% of TNBCs
which are molecularly classified as luminal androgen
receptor (LAR) positive,15,44,45 or to the low percentages
of remaining malignant cells post immune/normal cell
removal within these samples, underscoring the impor-
tance of considering multiple factors in validating subtype
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F IGURE 7 SCSubtype single-cell typing methodology on mixed cancer-only set. (A) UMAP visualisations of cancer-only cell dataset
coloured by sample-wise pseudo-bulk PAM50 and claudin-low centroid predictors. (B) UMAP visualisation of SCSubtype cell-wise
annotations. (C) UMAP visualisation of SCSubtype sample-wise annotations, as denoted by majority call. (D) Bar graph showing proportion
of cells annotated as each of the 4 molecular subtypes classified by SCSubtype, ordered by clinical subtype and model type. Top to bottom:
Her2-enriched primary, ER+ primary, ER+ PDX, TNBC primary, TNBC PDX/PDXO, TNBC cell line. Conditions displayed for each sample in
the right-most bar.
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classification. HER2+ clinically typed primary samples
were typed by PAM50 centroid predictor as similarly
HER2-enriched (HER2E), excepting HER2-0161 and
HER2-0308 samples which were typed ‘luminal B’. This is
not surprising due to the close clustering of these samples
with other luminal-like or clinically ER+ samples. Inter-
estingly, several samples were annotated as claudin-low
by this pseudo-bulk methodology, a molecular subtype
not often differentiated in the clinical setting. Claudin-low
prediction was applied independent of PAM50 centroid
predictor, and all claudin-low tumours in this sample set
were initially typed as basal-like; this is not surprising
given the majority of claudin-low samples are ER–/PR–
/HER2– and the clinical subtype TNBC is thought to
be primarily composed of basal-like and claudin-low
subtypes.46,47
Among those typed claudin-low were PDXs (BCM-

7482_107157, BCM-7482CR_109078, WHIM30CR_108903),
PDXO (WHIM30-O_108793-4), and cell lines
(HCC1143, SUM149). The inclusion of PDX sample
WHIM30CR_108903 and PDXO sample WHIM30-
O_108793-4, as claudin-low here were surprising
as the founder PDX WHIM30 (represented here by
WHIM30_105954 & WHIM30_108896) and corresponding
resistant PDXO (WHIM30CR-O_108805-9), were cate-
gorised as basal-like. Previous studies have noted that
claudin-low characteristics can increase in samples post
treatment with neoadjuvant chemotherapies47 (such as
with WHIM30CR_108903); however, admittedly by this
mechanism alone, it is peculiar whyWHIM30-O_108793-4
was typed claudin-low and not its carboplatin resis-
tant counterpart (WHIM30CR-O_108805-9). HCC1143
and SUM149 cell lines were previously characterised as
containing populations of claudin-low cells,48 so it is
unsurprising that they would be among the few samples
typed as claudin-low within this dataset. Likewise, BCM-
7482 founder and resistant PDXmodels were both typed to
be claudin-low by this predictor, which aligns with prior
characterisations of this model within our lab.

2.8 Intrinsic subtyping analysis of
scRNA-seq in human breast cancer cells
further defines molecular heterogeneity
between model systems

In order to evaluate the molecular heterogeneity present
within the malignant cell subset, we performed intrinsic
molecular subtyping (basal, luminal A, luminal B, and
HER2-enriched) utilising SCSubtype methodologies.10,49
The results from SCSubtype analysis highlight the inher-
ent heterogeneity within breast cancer samples. The cell-
wise annotations provide a comprehensive snapshot of

the diversity in molecular subtypes, shedding light on the
intricate interplay of genetic signatures within the cancer-
only dataset. Cell-wise subtype annotations allowed us to
see variation heterogeneity within a sample (Figure 7B),
while sample-wise subtype calls based on majority cell
calls within a sample allowed us to address concordance
with PAM50 subtyping (Figure 7C).
Of note, we saw ∼70% concordance with calls from

PAM50 pseudo-bulk analysis, which outperformed when
compared to the 66% concordance seen with pseudo-bulk
in the original testing-set.10 However, in ER+ cohorts we
notedmore incongruencies with respect to Luminal A ver-
sus Luminal B calls between PAM50 predictor and SCSub-
type majority call, noting ∼61% concordance with PAM50
pseudo-bulk analysis in ER+ clinically typed samples.
However, SCSubtype analysis consistently classified ER-
0319 as ‘basal-like’ via the majority call, echoing findings
from prior PAM50 predictors. This unexpected alignment
with the basal subtype suggests that, despite the initial
IHC characterisation, ER-0319 exhibited molecular fea-
tures more closely resembling basal-like samples. TNBC
models BCM-3887 and BCM-7482 which by majority call
were typed Luminal A and HER-2 enriched respectively,
however classified by PAM50 and claudin-low centroid
predictors, were typed basal-like and claudin-low respec-
tively. Interestingly, claudin-low subtype is not included in
SCSubtype methodologies; however, both the CS and CR
pair in BCM-7482 PDX and SUM149 cell line were typed
HER2E by majority SCSubtype cell-wise call and claudin-
low within the prior pseudobulk analysis. This alignment
of three claudin-low samples with HER2E subtype, sug-
gests there may be overlap between claudin-low subtype
and cell-wise calls for HER2E subtype under SCSubtype
methodologies. It was noted that all TNBC models, which
were not typed basal-like bymajority call following SCSub-
type analysis, contained a subset of basal-cells which
constituted the second most abundant cell type in these
samples.
Although the overall gene expression profiles of PDX

models did not exhibit global shifts with treatment, except
in estradiol withdrawal (EWD) conditions, intriguing
observations emerged regarding the influence of certain
treatments on the proportions of single-cell subtypes in
both PDX and PDXO models (Figure 7D). A notable trend
was observed in the proportion shifts towards more basal
cells in time matched WHIM30, WHIM30-O (PDXO),
BCM-2147, and UCD52 CR models compared to their iso-
genic CS counterparts. This nuanced effect can likely
be attributed to the fact that subtype signatures primar-
ily focus on the expression of cancer-related pathways,
which could be markedly influenced by targeted thera-
peutic agents. Conversely, a contrasting trend was noted
when comparing CR and CS pairs in BCM-7482, which by
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majority call was typed HER2E. Of note, an expansion of
the HER2E population of cells is seen in this CR sam-
ple when compared to the previously sequenced CS pair.
Thus, in each CR/CS pair we see expansion of the majority
cell type within each CR model comparatively. This state-
specific observation indicates predictive utility of these
shifts in subtype calls for anticipating drug response.

2.9 Profiling of ER+malignant cells
reveal insights into estrogen-dependent
responses

When evaluating subtyped proportions between sample
types, we noted a trend in HER-2 enriched aligning cell
proportions between matched primary and lymph node
samples (p.adj = .0625). Lymph node samples show a
trend towards decreased proportions of cells aligning with
this subtype when compared with matched primary tis-
sues (Figure 8A). No trends were noted for other subtypes
between lymph node metastasis and primary tissues.
This finding prompted further examination of the ER+

clinically typed samples within the dataset. To facilitate
this analysis, UMAP visualisations and clustering were
generated for malignant cells in the clinically ER+ sub-
set of samples (Figures 1A and 8B). We observed that
individual patient samples formed more distinct clus-
ters than seen in the mixed subtype set, with matched
lymph node samples clustering alongside the primary
sample from that patient (Figure 8B). Interestingly, PDX
samples were observed to cluster near the bottom of
the UMAP visualisation, not interspersed with the direct
from patient samples, suggesting differences in the overall
transcriptional landscape between these sample types.
To further assess samples in this cohort, clustering

of cells from isogenic PDX pairs was visualised, those
either given subcutaneous β-estradiol pellets (E2-treated,
denoted in Figure 8C as ‘Untreated’), and those which
underwent EWD after tumours developed, including
BCM-15057_EI which had developed an estrogen indepen-
dent (EI) phenotype under EWD conditions (Figure 8C).50
Similarly, to what was observed in the mixed sample set,
ER+ samples which had been grown under EWD condi-
tions exhibited significant shifts in transcriptional profiles
when compared to their E2-treated pair, likely due to the
role of estrogen and the ER in transcription.51–56 Markedly,
EWD conditions caused a considerable shift the HCI-011
cells relative to the E2-treated population. Conversely,
shifts between BCM-15057 EI and E2-treated as well as
HCI-013 EWD and E2-treated populations displayed less
dramatic shifts in cell clustering when comparing EWD
and E2 treatment conditions, demonstrating more relative
stability across these samples. This may be due to muta-
tional ESR1 within these samples as HCI-013 has been

previously annotated to contain an ESR1 Y537S mutation
(1610A > C), and similarly BCM-15057 EI has an acquired
Y537S mutation, which leads to constitutive activation
of ER.50,57 Our findings of less dramatic shifts between
these pairs are consistent with previous reports that
Y537S mutation specifically results in similar principal
components when stimulated with E2 or under hormone
deprivation conditions.58
To further interrogate transcriptional changes under-

lying EWD conditions, we performed DEG and pathway
analysis in EWD/E2-treated pairs. Although two of the
three estrogen withdrawn models harbour Y537S muta-
tions to ESR1, all three pairs show decreased translation-
related transcripts under EWDconditions (Figure 8D). The
differentially expressed pathway trends observed in this
mixed set of mutant and normal ER, between EWD and E2
conditions, may be uniquely regulated by liganded recep-
tor and not stimulated by constitutively active mutant
ER.

2.10 Multisubtype analysis of TNBC
models reveal subtype strengths

In addition to the four molecularly intrinsic subtypes of
breast cancer, previous studies have defined four molec-
ular subtypes within TNBCs. To validate and compare
these subtype calls within our clinically typed TNBC sam-
ples, we generated a data subset of clinically typed TNBC
samples (Figure 1B). We then visualised the heterogene-
ity within these new clusters as previously annotated by
SCSubtype proportion (Figure 9A). Individual cells were
then subtyped by centroid correlation to one of the 4
TNBC subtypes, including Basal-like 1 (BL1), Basal-like
2 (BL2), Luminal androgen receptor (LAR), and Mes-
enchymal (M) subtypes (Figure 9B).15,16 These subtyping
annotations allowed us to look further at the heterogeneity
within TNBC samples.
Some cells were excluded from subtyping due to insuf-

ficient transcriptional profiles. Two samples, TN-0106 and
TN-0114-T2, were excluded due to their limited cell num-
bers after immune and normal cell filtering. TNBCtype
cell-wise calls did not exhibit significant stratification
based on any SCSubtype classifications. We noted that
many cells from our cell line samples were primarily
correlated with BL2 subtype (with two models composed
of mixed BL1 an BL2), while PDX and primary cells were
primarily correlated with BL1 and M subtypes. Notably,
few overall cells were found to be associated with the
LAR subtype, which likely reflects the rare nature of
this subtype overall in TNBC (Figure 9C).59 As seen
with SCSubtype calls, cell-wise annotations of TNBCtype
are seen to shift in proportion with applied treatment,
with an expansion of M aligning cells seen in some CR
models (BCM-7482, WHIM30, and time-matched UCD52),
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F IGURE 8 Transcriptional profiles of ER+malignant cells reveal model differences. (A) Proportion of HER2-enriched cell-wise calls via
SCSubtype in matched patient primary and lymph node metastasis. (B) UMAP of ER+-only subset coloured by model/tissue type. (C) UMAP
of ER+-only subset, coloured by PDX and treated condition. (D) Canonical pathways differentially regulated in estradiol withdrawal (EWD)
and estrogen independent (EI) conditions as compared to E2-treated (untreated) or wild-type models. The size and colour of the circle
represent the z-score associated with the pathway in that model compared with the untreated pair, positive values (blue) indicate activation in
EWDmodels, negative values (red) indicate inactivation or downregulation. Statistically significant associations (p < .05) are shown by a
black border surrounding the circle (all). Generated using the corrplot() function from the corrplot package.

however it was unclear if this is representative of the
natural variation within our sample set. This analysis,
however, was limited due to the inability to subtype a
proportion of cells within samples.

2.11 Therapeutic drug efficacy
stratification based on cell-wise subtyping
analyses in PDXmodels

To assess the utility of subtyping methods as predic-
tive tools for therapeutic response, we integrated drug

screening data for 555 anti-cancer compounds (NCI
NExT Oncology Interrogation Tools Library)60 target-
ing cancer-relevant pathways across 18 TNBC and 5
ER+ clinically typed PDX models with projected pro-
portions of cells categorised by SCSubtype and TNBC-
type subtyping methodologies. This analysis utilised
these subtyping methodologies at the single-cell level
to estimate the proportion of subtype-aligning cells
within each PDX model. Drug screens were performed
on single-cell suspensions from PDX mammary gland
tumour digestions. Cell viability was measured following
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F IGURE 9 Subtyping comparison in TNBC cancer cell subset. (A) UMAP visualisation of SCSubtype cell-wise annotations projected
onto TNBC-only subset. (B) UMAP visualisation of TNBCtype cell-wise annotations. (C) Bar graph showing proportion of cells annotated one
of the 4 molecular subtypes classified by TNBCtype, ordered by clinical subtype and model type. Top to bottom: TNBC primary, TNBC
PDX/PDXO, TNBC cell line. Of note, ‘Unspecified’ denotes cells, which were not positively correlated with one of the 4 subtypes, and ‘None’
represents those cells which were untyped due to missingness in gene expression.

3-day treatment with therapeutic agents as previously
described.50,61,62 These projections were subsequently
applied in order to model responses to ex vivo drug
screening, investigating whether these subtypes serve as
meaningful indicators for the response to specific classes of
compounds.

2.12 SCSubtype proportions predict
drug response in mixed set of ER+ and
TNBC PDXmodels

First, we examined the distribution patterns of SCSubtype
annotationswithin eachPDXbyprojecting the proportions
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of subtype calls onto relevant PDX models (Figure 10A).
For this analysis we utilised both ER+ and TNBC PDX
models for which we had SCSubtype information avail-
able. Where multiple untreated samples were present,
the averages of the proportions were taken for projec-
tion onto the necessary PDXmodels. Through hierarchical
clustering, we observed four main groups based on these
projected proportions; those clusters could be best defined
by their luminal and basal proportions (Luminal A high-
intermediate, Luminal B high, Basal high, and Basal
intermediate). A significant constraint identified in this
dataset was the low proportion of HER2E typed cells in the
PDX samples.
Following subtype proportion projection, correlation

analysis was performed between the projected propor-
tions of each subtype and the viability of cells following
treatment with anti-cancer compounds given at 1 μM
concentration. In this context, negative association with
a subtype denotes increased responsiveness to the drug
given more abundance of the cell subtype; while positive
associates denote decreased responsiveness of the subtype
following drug treatment. This analysis returned several
suggestively (p.adj < .1) and significantly (p.adj. < .05)
associated therapeutic agents for Basal and Luminal B
subtypes, and one association with Luminal A subtype
(Table S2). HPI-1, a drug targeting hedgehog signalling,
was negatively correlated with abundance of Luminal A
cells, suggesting lower viability of cells following treatment
in samples with more Luminal A cells. Hedgehog pathway
is known to be involved in breast cancers and previously
annotated to be more associated with luminal types.63
Interestingly, we observed significant negative correla-

tion with Luminal B subtype and decreased viability fol-
lowing treatmentwith severalmTOR inhibitors (AZD2014,
AZD8055, and Rapamycin) in samples which were more
abundant for this subtype (Figure 10B). Thiswas surprising
as this pathway has been previously characterised as more
upregulated in a subset of basal models.64,65 This find-
ing may represent a therapeutic vulnerability in luminal
malignancies to inhibition of this pathway.
Of note 14 drugs showed significant association with

both Luminal B and Basal subtypes in opposite directions,
demonstrating the utility of SCSubtype methodologies
when used to stratify samples in a mixed set into intrinsic
subtypes which are informative for therapeutic response.
When splitting this analysis into two sets based on ER+
status, we saw significantly fewer overall associations,
indicating that the predictive ability of this subtyping
methodology is greatly enhanced by a mixed set of sam-
ples. In the case of drugs which were associated with both
Basal and Luminal B subtypes, all were positively asso-
ciated with Luminal and negatively associated with the
Basal subtype, suggesting that basal-like cells are more

sensitive to these drugs. Among those in this category
were several CHK inhibitors (AZD7762, LY2603618 and
NSC 109555) and two aurora kinase inhibitors (AT9283
and ZM 447439), both pathways currently under investi-
gation in TNBCs due to their activation in these models
(Figure 10C).66–71 Interestingly, two Bcl-2 inhibitors [Oba-
toclax Mesylate (GX15-070) and ABT737] were seen to be
negatively associated with Luminal B subtype, while one
(Bax channel blocker) was conversely seen to be negatively
associated with Basal and positively associated with Lumi-
nal B subtypes. The contraindication of drugs targeting
this pathway are curious in these models. Bcl-2 was pre-
viously shown to be overexpressed in ∼85% of ER+ breast
malignancies, andBcl-2 positivity has been associatedwith
poor clinical outcome in TNBC models, suggesting pos-
sible therapeutic vulnerabilities within both luminal and
basal subtyped tumours.72,73 Indeed, these findings may
suggest that certain Bcl-2 inhibitors may have subtype spe-
cific activity, while both subtypes may have vulnerability
to this pathway.

2.13 TNBCtype cell-wise annotations
demonstrate predictive response value in
TNBC subset

When examining the proportion patterns of TNBCtype
cell-wise subtype calls within our TNBC PDX models,
a notable prevalence of Basal-like 1 (BL1) cells was
noted in the dataset. Hierarchical clustering of our 18
included TNBC PDX models based on their projected
TNBCtype proportions revealed four main clusters pri-
marily driven by their proportions of BL1, BL2, and M
subtypes (BL1 high-intermediate, BL2 intermediate, M
high-intermediate) (Figure 10D).
Subsequently, we explored correlations between propor-

tion of TNBCtype subtype and drug responses at 1 μMcon-
centrations. Notably, we observed significant correlations
between several agents and the projected proportion for
several subtypes (Table S3). BL1 subtypewas positively cor-
related with KD 5170, an agent targeting histone deacety-
lases class I and II. Indeed, some HDAC inhibitors have
shown promise in treatment of TNBC.74,75 BL2 subtype
was seen to be negatively correlated with two drugs target-
ing RAF kinase and MAPK, both previously identified as
targetable in basalmalignancies (Figure 10E).76–78 Further-
more, BL2 subtypewas seen to be positively correlatedwith
one drug targeting JAKpathway, suggesting this subtype of
TNBCmay be less responsive to treatment with JAK path-
way inhibitors than other subtypes. M proportions were
positively correlation with a MEK inhibitor (PD0325901).
Indeed prior studies found that the M subtype could be
effectively treated by targeting MEK/MAPK pathway.79,80



18 of 31 ALTMAN et al.



ALTMAN et al. 19 of 31

Of particular interest, the subtype seen to be predictive
of response to the most therapeutic agents was the LAR
grouping. This subtype had relatively few cells overall.
In fact, only 3 PDX models had any LAR typed cells and
among them, all had projected proportions of less than .2%.
Among the many associations noted to be significantly
correlated with proportion of this subtype, drugs targeting
mTOR, EGFR, and PI3K were all seen to be negatively
correlated. This finding is not surprising, as majority of
LAR tumours have activating PIK3CA andAKTmutations
and have been shown to be sensitive to these agents.45,81–83
Interestingly, many of the drugs correlated with LAR
subtype were previously seen to be similarly associated
with Luminal B subtype in our SCSubtype analysis, an
unsurprising finding given the similarities of these two
subtypes.

3 DISCUSSION

Our study provides a high-resolution transcriptional atlas
of human breast cancer cells, integrating a large-scale
comprehensive dataset comprising various sample types,
treatments, and isogenic pairs of drug-resistant/sensitive
models. Many similar datasets focus on primary tumours
and immune interactions, not allowing for comparison
betweenmodel systems.10,84 These importantworks, while
providing crucial insights into the immune microenviron-
ment of breast cancer, does not extend to metastatic or
model systems like PDXs or organoids, which are crucial
for studying therapeutic responses and drug resistance.
Our findings demonstrate that PDX models more accu-
rately reflect patient tumours’ heterogeneity and cell cycle
dynamics than cell lines, as previously noted in other
works.85,86 However, our work adds to this field by inte-
grating PDX and PDXO models from isogenic lineages to
analyse shifts in gene expression, challenging other works
in which organoids were reported to faithfully recapitulate
disease heterogeneity and phenotypes.87 Additionally, the
distinct metabolic transcript profiles observed in PDXOs
compared to PDX tumours highlight the limitations of
relying solely on organoids for metabolic studies. Our
multimodel approach, therefore, provides a broader per-
spective on the data presented in these studies; future
studies should expansively assess how cancer cellular
physiology changes when cells are grown in matrices and

chambers as organoids or when growing as metastases
spreading in vital organs.
This integration enabled us to visualise malignant, nor-

mal, and immune clusters within our samples. Noting that
TNBC samples demonstrated a trend in higher percentages
of immune cell infiltrates in primary tumours compared
to ER+ and HER2-amplified primary samples, aligning
with the prior observations of robust immune infiltrates
in this subtype.88–90 The heightened immune cell infil-
trates in TNBC primary tumours echo prior findings of
an immunogenic microenvironment, likely contributing
to the responsiveness observed in TNBCs to immune
modulatory agents. The unexpected alignment of ER-
0319 with the basal subtype raises intriguing questions
about the underlying molecular features and potential
therapeutic vulnerabilities that may have been overlooked
in traditional clinical characterisations, emphasising the
importance of molecularly intrinsic subtyping methods
like SCSubtype or PAM50 for a more comprehensive
understanding of tumour characteristics. This example
highlights the limitations of relying solely on clinical
markers to subtype and treat breast cancer, demonstrat-
ing the need for advanced molecular profiling techniques
to unveil the intricate heterogeneity within samples for
refined treatment strategies. Dual subtyping may be par-
ticularly important for tumours which are ER+ or ERlow
by clinical typing and molecularly basal-like, as these
malignancies have been characterised to respond very dif-
ferently to therapeutic agents than other clinically ER+
tumours.91 Moving forward, future advancements in per-
sonalisedmedicinemay benefit from integrating both clin-
ical protein markers and molecular subtypes to optimise
treatment selection.
Of note, UMAP visualisations and cluster analysis

allowed for the examination of model heterogeneity, not-
ing limited heterogeneity in cell lines compared to other
model systems, suggesting these models less faithfully
recapitulate the natural heterogeneity seen in human
breast malignancies. We further stratified our data based
on applied treatment, observing that treated PDX samples
exhibited overall transcriptional profiles closely resem-
bling their untreated paired samples, with notable excep-
tions observed in ER+ PDX pairs under estradiol with-
drawal conditions. This finding underscores the robust-
ness of PDX models in retaining essential molecular fea-
tures after exposure to therapeutic interventions, aligning

F IGURE 10 Integrative analysis of cell-wise subtyping with high throughput drug screening data. (A) Projected proportions of
SCSubtype cell-wise call onto relevant PDX models. (B) Scatter plot of cell viability following treatment with 3 mTOR inhibitors as a per cent
of vehicle treated cells given varied luminal B subtype proportions. (C) Scatter plots of cell viability following treatment with 3 CHK inhibitors
as a per cent of vehicle treated cells given varied basal (left) or luminal B (right) subtype proportions. (Correlation values and adjusted
p-values given for each drug). (D) Projected proportions of TNBCtype cell-wise call onto relevant PDX models. (E) Scatter plot of cell viability
following treatment with MAPK inhibitor (BI 78D3) as a per cent of vehicle treated cells given BL2 subtype proportions.



20 of 31 ALTMAN et al.

with trends seen in patient tumour cells and emphasising
the importance of differentially expressed gene analy-
sis for evaluating treatment responses and understanding
mechanisms of resistance.
As previously noted, a major strength of this dataset

lies in its incorporation of isogenic models of resistance,
where the development of carboplatin resistance was
observed in several TNBC PDXmodels. DEG and pathway
analysis on paired CR and CS models, revealing common
pathways associated with chemotherapeutic resistance
across diverse PDX/PDXO model pairs. Activation of
pathways linked to alterations in transcriptional program-
ming, such as those related to DNA/RNA transcription,
was notably observed, likely owing to the mechanism of
action of carboplatin and other platinum-based drugs.35,92
In four out of five CR models, pathways related to HIFα
activation, HER-2 signalling, cellular response to heat
stress, and mitochondrial dysfunction were significantly
upregulated while several canonical pathways, including
PTEN signalling, oxidative phosphorylation, and ESR-
mediated signalling, were found to be downregulated
in CR models. Briefly, HIF-1α and hypoxia pathways
have been previously implicated as playing a role in
drug resistance in TNBC models.93,94 The implications of
HER-2 signalling in this context are deserving of further
study, especially in BCM-7482 where we note expansion of
HER2E subtype in CR models compared to CS. Similarly,
heat shock proteins have been studied as a significant
element within the intricate and multifaceted reaction
of cancer cells to platinum-based chemotherapeutics but
the implication of their expression is not well studied
and may be context-dependant.95 The upregulation of
mitochondrial dysfunction pathway within these models
is of particular interest for future study as mitochondrial
dynamics in TNBC have been annotated to play important
roles in metastasis and growth. Interestingly, PTEN has
been implicated in altering repair processes during DNA
damage response, so it is curious that CR models are asso-
ciated with inactivation of this pathway.96–98 An intriguing
observation was noted when taking these pathways
together, mitochondrial metabolism plays key roles in
cancer cell survival and proliferation, alongside this some
solid tumours can thrive in less optimal oxygen avail-
able environments via mitochondrial dysregulation and
hypoxia adaptive metabolic alterations which up-regulate
HIF-1 factors.99,100 We posit that under suboptimal oxygen
conditions, the oxidative phosphorylation within these
tumours may differ from normoxic conditions, leading
to the observed downregulation of this pathway in CR
models. Recognition of these metabolic alterations present
possible vulnerabilities for future targeting of CR disease.
Several disease-associated pathways were similarly acti-

vated among CR models, with heightened metastatic sig-

natures observed broadly except in BCM-2147, indicating
a potential heightened metastatic phenotype associated
with most CR models. Of note, BCM-2147 appeared diver-
gent in several major pathways, suggesting themechanism
of resistance in this model may be different. Addition-
ally, concurrently increased cell necrosis and proliferation
in many CR models may suggest rapid proliferation at
the tumour periphery and nutrient deficiency internally,
similar to what has been observed during tumour process-
ing for some of these models. These findings underscore
the complex interplay between tumour size, nutrient
availability, and cell proliferation in carboplatin-resistant
models, suggesting potential avenues for targeting tumour
microenvironments to enhance therapeutic efficacy and
combat resistance mechanisms.
In addition to isogenic CR/CS pairs, we present here

isogenic PDX and PDXO cultures. Our study uncovered
distinct metabolic profiles in PDXOs compared to their
PDX counterparts, with upregulation of aldo-keto reduc-
tase family genes and genes related toNRF2 signalling. The
metabolic changes underlying organoid culturing have sig-
nificant implications for drug response and in vitro testing.
These observations suggest a potential shift in cellular
metabolism, possibly towards altered redox regulation.
Furthermore, increased expression of GCLC and GCLM
implicate possible alterations in glutamine-cysteine lig-
ase activity within PDXOs.37 As mentioned earlier, this
indicates unique transcriptional characteristics within this
model system, contradicting previous comparisons of bulk
tissue RNA sequencing between PDX and PDXOs.36 How-
ever, a prior study showed that cell lines grown in vivo
versus in vitro showed distinct metabolomic profile shifts
similar to what our study notes in PDX versus PDXO
cultures, suggesting that this may be a common diver-
gence of in vitro conditions.101 Thesemetabolic divergence
may influence drug response mechanisms, introducing
the notion that drug efficacy in PDXOs might be influ-
enced not only by the tumour microenvironment but
also by distinct metabolic adaptations. Considering the
vital role metabolism plays in cancer cell survival, these
findings prompt further exploration into the functional
consequences of these metabolic shifts and their impact
on the efficacy of therapeutic interventions. We speculate
that deviations from the current standard for organoid cul-
turing, may serve to improve the ability of this model to
recapitulate in vivo conditions.
Subtyping methodologies, such as SCSubtype and

TNBCtype, have contributed to our understanding of
intrinsic heterogeneity within breast cancers, although
their comparative strengths and applications across differ-
ent model systems warrant further investigation. Building
upon these advancements, subtyping analysis revealed
that while overall gene expression did not exhibit signifi-
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cant shifts with treatment, certain treatments influenced
the proportions of single-cell subtypes in both PDX and
PDXO models. Expansion of the majority cell subtype
under SCSubtype was observed in CR models when com-
paring time matched pairs. Of note, this meant expansion
of basal-like proportions in all models except BCM-7482,
which saw expansion of HER2E calls. The claudin-low
subtype is not included in SCSubtype methodologies.
However, our findings reveal an interesting alignment:
both the CS and CR pair in the BCM-7482 PDX and the
SUM149 cell line were classified as HER2E by the majority
of cell-wise calls, despite being identified as claudin-low in
prior pseudobulk analysis. This suggests a potential over-
lap between the claudin-low subtype and cell-wise calls
for the HER2E subtype under SCSubtype methodologies.
Therefore, we suspect that a proportion of the cells anno-
tated as HER2E herein may stem from the claudin-low
subtype. Also, the majority of matched CR/CS sample sets
saw decrease in luminal typed cells in CRmodels, aligning
with decreased ESR-mediated signalling seen in pathway
analysis of thesemodels. The observed shifts towardsmore
basal cells in many CR models suggest potential clonal
selection that may be related to resistance mechanisms.
Analysis of lymph node samples revealed a trend

towards lower proportions of cells aligning with the
HER2E subtype compared to matched primary tissues,
indicating a reduced presence of cell populations express-
ing genes characteristic of this subtype in metastatic
lesions. These results emphasise the importance of util-
ising high-resolution techniques like SCSubtype analysis
to gain nuanced insight into the molecular profile of can-
cers. Additionally, further investigation of ER+ isogenic
pairs subjected to E2-treatment and EWD revealed path-
ways specifically reliant on liganded estrogen receptor, and
not stimulated by constitutively active mutant ER. Under-
standing the distinct transcriptional programs triggered
by ligand-independent ER activity is crucial, as mutations
in ER lead to constitutive activation and reduce tumour
sensitivity to endocrine therapy. ESR1mutations are preva-
lent in advanced and metastatic breast cancer, prompting
the exploration of targeted therapeutics tailored to ESR1-
mutant tumours.102,103 In the future, it will be essential to
identify ER-mediated transcriptional alterations unique to
variousmutant alleles of ESR1. This is imperative for devis-
ing precise, targeted therapeutic strategies for individuals
with ESR1-mutant conditions.
Subtype shifts in models of carboplatin resistance raised

the intriguing possibility that targeted treatment may
induce subtype-specific changes, offering a glimpse into
the dynamic interplay between drug response and the het-
erogeneity of breast cancer cell populations. This dynamic
shift in subtypes might serve as an early indicator of
treatment efficacy, potentially guiding more tailored ther-

apeutic approaches. Herein we attempt to evaluate these
single-cell subtyping annotations as predictors of drug
response to a number of anti-cancer agents targeting rel-
evant pathways. While we do not evaluate the potential
of these calls to aid in sequential treatment response pre-
diction, we feel our analysis is a necessary first step in
evaluating the predictive ability of these agents.
Intriguing observations emerged regarding subtype spe-

cific responses to drug targeting, such as nuanced and
varied subtype specific response to Bcl-2 inhibitors. Fur-
thermore, drugs that exhibited significant associations
with both Luminal B and Basal subtypes in oppos-
ing directions underscore the effectiveness of SCSubtype
methodologies in stratifyingmixed sample sets by intrinsic
subtypes and provided valuable insights into therapeutic
response.
When preforming similar corollary analysis with TNBC-

type subtype methods, many of the drugs correlated with
LAR subtype were previously seen to be similarly associ-
atedwith Luminal B subtype in our SCSubtype analysis, an
unsurprising finding given the characterised similarities
of these two subtypes.15,16,104,105 These findings however,
were particularly interesting as many drugs were seen to
be negatively correlated, suggesting that while there are
few LAR typed cells (< .02%) within our samples, some
proportion of these cells may serve to increase the models
sensitivity to agents targeting these pathways. Given the
number of cells typed as LAR and the strength of response
seen within these samples, we suspect there may be more
LAR cells within these samples than are being called by
the TNBCtype tool. Given the large viability drop seen in
these LAR cell containing samples when treated with cer-
tain drugs and their divergent response, we suspect that
some proportion of the untyped cells in this dataset may
be LAR aligning. It is known that missingness in scRNA-
seq gene expression is not random, and is rathermost often
biologically or technically driven.106 Indeed, all samples
excluded cells due to missingness for gene signatures nec-
essary when performing the current typing methodology.
We posit that TNBCtype tool may under call LAR subtype
within these samples due to the divergent gene expression
of LAR aligning cells, excluding many of these cells from
inclusion in this typing analysis.
Of note, only TNBC PDXO and cell lines are repre-

sented here, and no HER2-amplified PDX models were
included in this dataset, limiting the conclusions to be
drawn from thesemodels specifically.We further acknowl-
edge the constraints of this study, as our sample set
showed limited variety in SCSubtype and TNBCtype
subtyped samples. These limitations represent areas for
further study of model and subtype differences which
might serve to advance our understanding of breast
malignancies.
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4 CONCLUSIONS

Herein we present a detailed transcriptional atlas of
human breast cancer cells. This comprehensive dataset
incorporates various sample types, treatments, and iso-
genic pairs of drug-resistant/sensitive models. While pre-
senting this integration of cells, we have demonstrated
the utility of dynamic subtyping strategies in predict-
ing therapeutic treatment responses, thus paving the
way for more personalised and effective breast cancer
treatment approaches. Furthermore, our study elucidates
subtype-specific and model-specific insights. These novel
findings related to metabolic profiles and subtype shifts
underscore the complexity of breast cancer, urging con-
tinued efforts to refine and advance our understand-
ing for improved clinical decision-making and model
development.

5 MATERIALS ANDMETHODS

5.1 TNBC cell line culture

Cells were cultured in RPMI-1640 GlutaMAX media
(ThermoFisher Scientific) supplemented with penicillin,
streptomycin, and 10% fetal bovine serum. Previously pub-
lished protocols and information on where cell lines were
obtained can be found at https://doi.org/10.1016/j.tranon.
2021.101235.107

5.2 PDX culture

HCI-001, HCI-011, and HCI-013 were obtained from the
Huntsman Cancer Institute. BCM-0132, BCM-2147, BCM-
2277, BCM-3887, BCM-5097, BCM-7482, BCM-7821, BCM-
15034, and BCM-15057 were obtained from the Baylor
College of Medicine. UCD52 was obtained from the
University of Colorado, Denver. WHIM2 and WHIM30
were obtained from Washington University in St. Louis.
VCU-BC-001, VCU-BC-002, VCU-BC-003, VCU-BC-004,
VCU-BC-006, and VCU-BC-024 were obtained from the
Virginia Commonwealth University Mouse Models Core.
The Institutional Animal Care and Use Committee
(IACUC) at Virginia Commonwealth University (VCU)
gave its approval for studies involving mice (Protocol#
AD10001247; approved June 29, 2018), and all experiments
were carried out in compliance with IACUC rules and
regulations. Non-obese diabetic severe mixed immunod-
eficient gamma (NSG) mice were used for this study.
The NSG mice were bred by VCU Cancer Mouse Mod-
els Core. Tumour cells were resuspended in Matrigel
(Corning) and injected into the 4th mammary fat pads.

Tumours were collected at ∼10 × 10 and were digested in
DMEM/F12, 5% fetal bovine serum (FBS), 300 U/mL col-
lagenase (Sigma), and 100 U/mL hyaluronidase solutions
(Sigma).108 Digested tumours were trypsinized and single
cells were resuspended in a .04% BSA, PBS solution prior
to single-cell collection.

5.3 PDXO culture

To prepare PDXOs, tumours were resected from PDXmod-
els and finely chopped using a sterile razor blade and
placed into a solution for tumour digestion (DMEM/F12
containing 5% FBS, .0533 mg/mL hyaluronidase, and
2.4 mg/mL collagenase) in a temperature-controlled tube
cycler set at 37◦C for 1 h. Following this, the solutions
were centrifuged, and the resulting pellets were treated
with red blood cell lysis buffer, centrifuged again, and
the supernatants were discarded. A single-cell suspension
was obtained by subjecting the cells to trypsin digestion.
Subsequently, the cells were suspended in Hanks’ bal-
anced salt solution (HBSS) supplemented with 2% FBS
for subsequent procedures. Depletion of mouse cells was
carried out using Miltenyi Biotec Mouse Cell Depletion
Kit according to kit specifications.109 Following mouse
cell depletion, cells were then embedded in 150-μL Cul-
trex domes and plated onto a 50-μL Cultrex base layer
in six-well tissue culture plates. The plates were inverted
and briefly incubated to solidify the Cultrex domes, after
which culture mediumwas added. This medium consisted
of Advanced DMEM/F12 with 5% FBS, 10mM HEPES,
1× Glutamax, 1μg/mL hydrocortisone, 50 μg/mL gentam-
icin, and 10 ng/mL hEGF, supplemented with 10μM Y-
27632. Medium exchange occurred every 3 to 4 days, and
once mature, cultures were passaged using dispase solu-
tion followed by a dissociation step in TrypLE Express.
For passaging, single cells were seeded at a density of
200 000–400 000 cells per dome. For single-cell collection,
trypsinized single cells were resuspended in a .04% BSA
following dissociation steps in TrypLE. PDXOprotocol was
amended from Guillen et al.36

5.4 10X Genomics Chromium Next
GEM library construction and sequencing

With regards to PDX, PDXO and cell line data, the
Chromium Single Cell 3′ Protocol was followed accord-
ing to manufacturer-recommendations for single-cell cap-
tures and cDNA preparations using the 10X Genomics
Chromium machine. The GEM reaction mixture was
cleaned with Dynabeads MyOne SILANE (10X Genomics
PN#2000048) before the barcoded cDNA was amplified
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in a subsequent PCR process. Following this, a secondary
clean-up step was performed using SPRIselect reagent
(Beckman Coulter #B23318). Agilent Bioanalyzer High
Sensitivity chipwas used to quality control check cDNA for
each sample prior to library preparation. Gene expression
library constructionwas done according to 10X Chromium
specification. Agilent Bioanalyzer High Sensitivity chip
was used to quality control library preparations prior to
sequencing.Methods for library construction and sequenc-
ing of human primary patient samples can be found
at https://doi.org/10.15252/embj.2020107333.26 Single-cell
RNA sequencing (scRNA-Seq) was performed on 4 cell
line, 42 PDX, and 2 PDXO samples using Illumina NextSeq
2000 or Illumina HiSeq 4000 platforms. Collection of 69
primary patient samples and sequencingwas performed as
previously described.26,110 PDX, PDXO and cell line sam-
ples were sequenced in the VCU Genomics core facilities.
Primary patient samples were collected and sequenced by
the Walter and Eliza Hall Institute (WEHI) in Melbourne,
Australia. All raw and processed data from VCU and pro-
cessed data from WEHI have been uploaded to the Gene
Expression Omnibus under accession GSE276609.

5.5 Single-cell RNA-seq bioinformatic
analysis

5.5.1 Sample-level QC and alignment

RawFastq files were first assessed for quality using FastQC
v0.11.9111 and MultiQC v1.11112 prior to further analysis.
Alignment of all samples was performed using the 10X
Genomics CellRanger v6.0.1 ‘count’ algorithm. PDX sam-
ples were first aligned to the 10X Genomics generated
GRCh38/mm10multispecies genome. The secondary anal-
ysis ‘gem_classification.csv’ file, which makes calls for
human,mouse, andmultiplet cells,113 was utilised to differ-
entiate mouse and human cells and remove multiple cells.
Barcodes associated with human cells were extracted from
the aligned BAM files and converted back to FASTQ for-
mat for re-alignment to the 10XGenomics GRCh38 human
genome. The cell line, PDXO, and patient samples were
all aligned directly to the 10X Genomics GRCh38 human
genome. From this point all samples were run through the
same pipeline using the human data only.

5.5.2 Cell-level QC

Dying and multiplet human cells were removed from the
dataset using R v4.1.3, the Seurat v.4.3.0 package114 and an
internal R script. Briefly, poor quality cells were identified
using mitochondrial gene expression, number of detected
genes, and unique molecular index (UMI) counts using

10X Genomic guidelines.115 Filtering thresholds for each
metric were determined individually for each sample by
using 3median absolute deviations (MAD) above themean
for mitochondrial expression, and above and below for
gene and UMI counts. Cells not meeting these thresholds
were removed from further analysis due to poor quality.
Of note, the mitochondrial MAD threshold was calcu-
lated using only cells with less than 50% of mitochondrial
expression due to several samples having high mitochon-
drial content. Additionally, themaximum allowed per cent
mitochondrial gene expression for any cell was capped at
25% regardless of themedian for that sample, and any sam-
plewith amedian less than 5%was automatically increased
to 25%. These exceptionswere implemented to ensure sam-
ples had a reasonable number of cells returned with less
than 25% mitochondrial expression. Information on read
count, cell count, and mitochondrial expression cutoffs
can be found in Supplemental File 1.

5.5.3 Sample merging and Loupe file
generation

Following removal of poor-quality cells, samples were
merged using an in-house R script that utilises Seurat’s
‘merge()’ function. Briefly, the 10X Genomics filtered fea-
ture barcode data was imported into R using the Seurat
package. Barcodes were edited to have a consecutively
increasing postfix number to differentiate samples. Prior to
merging, we minimised the impact of technical variability
across samples through applying Seurat’s ‘Normalize-
Data()’ and ‘ScaleData()’ functions on each sample before
merging. Normalisation was achieved with Log2 Normali-
sation, which has been found to perform as well or better
than more sophisticated transformation methods,116 so
that variance differences across samples are minimised.
This was followed by finding variable features with ‘Find-
VariableFeatures()’ and scaling the data so gene expression
values are between 0 and 1 with the ‘ScaleData()’ function
following the standard Seurat pipeline as described inDave
et al and elsewhere in the literature.117 To avoid introducing
computational artefacts, batch correction methods were
not utilised to combine data as many of these methods
assume samples contain the same populations of cells,118
which is a poor fit for this dataset. It is recommended
that any smaller subset of our data, where all samples
can be assumed to contain the same cell populations, be
integrated using Harmony prior to analysis (e.g. isogenic
samples). Merging was then performed iteratively using
Seurat’s ‘merge()’ function and a list of Seurat objects.
Once merged, the tSNE and UMAP visualisations, along
with cell clustering analysis, were generated followed by
a cell cycle analysis using Seurat’s ‘CellCycleScoring()’

https://doi.org/10.15252/embj.2020107333
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function to obtain the cell cycle phase for each cell. At this
point, additional sample-level annotationsweremapped to
individual cells, such as treatment, PDX type, and source
tissue. UMAP, tSNE, clustering results, cell cycle and other
annotations were saved to Loupe-compatible comma sep-
arated value (CSV) files. The raw read count matrix was
then saved as a 10X Genomics formatted H5 file using
the ‘write10xCounts’ function from the DropletUtils R
package, which was then processed by the CellRanger
‘reanalyze’ algorithm to produce a Loupe file for visu-
alisation and downstream analyses. The CSV formatted
annotations and visualisations were manually imported
into the generated Loupe file. Since the first submission of
this paper 10XGenomics has released the RLoupe package
to convert Seurat objects directly to a .cloupe file format.
The data presented here was gathered prior to this pack-
age release and was converted to a .cloupe file using the
method above.

5.6 Differentially expressed gene (DEG)
and pathway analysis

Differentially expressed gene (DEG) analysis was per-
formed in 10X Genomics Loupe Browser v.7.0.0, using
the ‘Run Differential Expression’ function with ‘Between
selected cluster(s) themselves’ selected.

5.6.1 CS/CR analysis

In the instances of the UCD52, WHIM30 and BCM-
2147 PDX models, as well as the WHIM30 PDXO model,
time-matched samples were collected. These samples
underwent library preparation and sequencing in the
same batch, thereby mitigating potential batch effects and
enhancing the comparative potential of these models.
For additional model BCM-7482 we sequenced single-cell
libraries for the developed CR models without a time
matched pair and performed comparison with their previ-
ously sequenced CS pair following normalisation steps to
reduce batch effect.
DEG was performed in five batches for CS/CR compar-

isons, utilising time matched samples where available:

(1) BCM-2147_109176/BCM-2147CR_109178
(2) BCM-7482_107157/BCM-7482CR_109078
(3) UCD52_107080-1/UCD52CR_107086 & UCD52CR_

107269
(4) WHIM30_108896/WHIM30CR_108903
(5) WHIM30CR-O_108805-9/WHIM30-O_108793-4

DEG batches were exported from loupe browser into
.csv file format with adjusted p-values, log2 fold change,

and median expression values for all genes which were
not annotated as having ‘low average count’ (defined by
an average occurrence less than 1 count per cell across the
dataset).
Gene expression data was imported into Qiagen Inge-

nuity Pathway Analysis (IPA) software.119 A core analysis
was created for each set of samples, with settings ‘Expres-
sion Analysis’ and ‘Expr Log Ratio’ in IPA with thresholds
for feature inclusion of p-value < .1 and log2 fold change
cutoffs of < –.6 or > .6. Following core analyses, a compar-
ative analysis was created for all groups, IPA z-scores were
analysed for trends specific to differences between CR/CS
pairs.

5.6.2 E2-treated/EWD/EI analysis

DEG was performed in 3 batches for estradiol withdrawal
comparisons, utilising time matched samples where avail-
able:

(1) BCM-15057_107673/ BCM-15057_107684
(2) HCI-011_107334/HCI-011_107332
(3) HCI-013_10666-10667/HCI-013_106662 & HCI-013_

106663

Similarly to the above CR/CS analysis, batches were
exported from loupe browser into .csv file format with
adjusted p-values, log2 fold change, andmedian expression
values for all genes which were not annotated as having
‘low average count’ (defined by an average occurrence less
than 1 count per cell across the dataset).
Gene expression data was imported into Qiagen Ingenu-

ity Pathway Analysis (IPA) software.119 A core analysis was
created for each set of samples, with settings ‘Expression
Analysis’ and ‘Expr Log Ratio’ in IPA with thresholds for
feature inclusion of p-value < .1 and log2 fold change cut-
offs of <–.6 or >.6. Following core analyses, a comparative
analysis was created for all groups, IPA z-scores were anal-
ysed for trends specific to differences between E2-treated
and EWD/EI pairs.

5.7 InferCNV analysis

Inference of single-cell copy number variations were
done utilising the R packages scTyper120 and inferCNV
v1.3.3.121 Custom functions and some code from the
scTyper R package122 was modified for use independently
of scTyper and utilised in out in-house script as we had dif-
ficulty getting scTyper to run successfully. Our in-house
inferCNV analysis script includes customisations to run
inferCNV over our large breast cancer dataset in batches
due to the high computational resources required, as well
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as generating Z-scores of the calculated inferCNV score so
that batch results could be directly compared.
Prior to running inferCNV, the merged dataset that con-

tains tumour, normal, and immune cells was subset to 30%
of the cells in each sample as the full dataset was too large
to process all at once. InferCNV was run in batches of 10
samples at a time. Five of those were randomly chosen
normal samples that were used as the reference group in
each run of inferCNV so that all samples were compared
to the same set of normal data: N-0019-total, N-0021-total,
N-0064-total, N-0092-total, N-0093-total. The other five
samples ran in batches. Output included an inferCNV
score for each cell. The inferCNV scoremean and standard
deviation of the reference group was calculated and used
to generate Z-scores for the entire cohort. Thus, the refer-
ence and other normal samples should have low z-scores
around zero, and significant deviations from zero should
indicatemalignant cells. Scoreswere discretised and added
as an annotation to the Loupe file for analysis. Z-scores
ranged from –2 to 32.

5.8 Malignant cell identification and
cancer-only datasets

InferCNV was utilised to obtain cell-level CNV scores to
identify malignant versus normal cells in a subset of cells
from the ‘Master Merge’ (see Supplementary Methods for
details). An in-house R script calculated the mean and
standard deviation of the inferCNV scores for the reference
set of samples that was then used to calculate a Z-Score for
the rest of the cells in the dataset. Thus, reference and other
normal sampleswill have a z-score around zero, and signif-
icant deviations from zero will indicate cancer cells. The
z-score data was discretised and uploaded into the Loupe
Browser for the ‘Master Merge’. We manually identified
consistent patterns where low z-score cells from PDX, or
patient samples clustered near or in normal cell clusters.
Recognising this strong pattern and the computationally
expensive pipeline of running InferCNV on the rest of
the dataset, we chose to forgo InferCNV processing in
favour of identifying and selecting all cells clustering with
normal samples in the ‘Master Merge’ as non-malignant
cells that needed to be removed from the dataset moving
forward.
Utilising the ‘Master Merge’ Loupe file three main

groups of cells were manually annotated in the Loupe
Browser: immune, normal, and malignant cells. Normal
cells included all normal samples as well as any PDX or
patient cells that clustered with the normal cells based
on the UMAP visualisation. Those barcodes annotated as
‘malignant’ were exported to a TSV file with all headers
and annotation columns removed. An in-house R script123

extracted each set of barcodes for each sample, replaced the
numbered postfix on the barcode from the merged dataset
to ‘–1’, and saved a new TSV file in the individual sample’s
results directory. The in-house script also re-generated the
config file for the in-house merge script by replacing any
previous barcode list of cells to keep with the newly gen-
erated cancer cell-only file. This config script was then
utilised in another merge run to create the cancer-only
dataset.
The cancer-only dataset contains 89 samples with a

total of 260 500 cells. This dataset was further divided
into TNBC- and ER+-only subsets where the TNBC-only
dataset contains 40 samples with 111 442 cells and the
ER-only subset contains 42 samples with 131 471 cells.

5.9 Subtype analysis

5.9.1 Cancer-only dataset

Subtyping the cancer-only dataset was performed using
two methods, pseudo-bulk and SCSubtype. The pseudo-
bulk method, implemented with an in-house R script,
was used to classify samples into PAM50 subtypes (Basal,
Her2, LumA, LumB,Normal-like) and identify which sam-
ples were also Claudin-low. The SCSubtype method is
the intrinsic single-cell subtyping method developed by
Wu et al. that performs subtyping at the cell level to
classify individual cells into one of four PAM50 subtypes
(Basal-like, Her2E, LumA, LumB).10
The pseudo-bulk PAM50 subtyping was performed by

first acquiring the pseudo-bulk gene expression for each
sample through summing all read counts for each gene
across all cells in a sample with Seurat’s ‘AggregateEx-
pression()’ function. Now instead of having hundreds or
thousands of expression values per gene in a sample (one
for each cell) we have one aggregated value per gene
per sample. This data was normalised using the DESeq2
v1.42 normalised counts median of ratio’s method.124 The
gene list was then filtered to those that had an Entrez
identifier and gene symbol prior to running subtyping
using the Genefu v2.34 ‘molecular.subtyping’ function
with ‘sbt.model’ set to ‘pam50’. Claudin-low classifica-
tions were obtained by utilising the same pseudo-bulk
counts with the ‘claudinLow()’ function available through
Genefu.39,47
Code for SCSubtype was obtained from the

Swarbricklab-code GitHub repository125 on 6/28/2023.
Two files were downloaded: Highest_calls.R and Nat-
Gen_Supplementary_table_S4.csv. The R file was
modified so that it could be run from the command line,
output status messages, and reformat the output files to be
Loupe-compatible–no other code was altered. The merged
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cancer-only dataset, formatted as a Seurat object, and the
downloaded NatGen_Supplementary_table_S4.csv file,
which contained the PAM50 gene signatures, were used as
inputs to the SCSubtype script. Output annotations were
then manually imported into the cancer-only Loupe file
for analysis.

5.9.2 TNBC-only dataset

A subset of the cancer-only dataset was generated to con-
sist of TNBC samples only. These samples were then
further characterised by utilising the TNBCtype subtyping
method developed by Chen et al.126 Briefly, The TNBC-
type software was used to classify each candidate TNBC
sample into four TNBC subtypes using centroid correla-
tion to the BL1, BL2, LAR, and M subtypes using the
highest positive centroid correlation. TNBC subtyping was
performed on normalised expression from each individ-
ual epithelial cell. Cells that did not have the required
depth of expression for the genes in the TNBC signature
were excluded from the analysis and labelled as ‘None’ in
Figure 9.

5.10 Statistical analysis of drug
screening

As previously reported, high-throughput screening was
carried out on PDXmodels of ER+ and TNBC cancers util-
ising a 555-drug library at 1 and 10 μM concentration.50,61
TNBCtype and SCSubtype were applied at the single-
cell level was applied to relevant PDX models to esti-
mate the proportion of subtype-aligning cells within
each PDX model (as described in above). Once subtype
proportions were determined for relevant PDX models,
those subtyped proportions could be integrated with drug
screening information. Drug screening data for these 555
anti-cancer compounds were then integrated with pro-
jected proportions of cells categorised by various PDX
models.
This analysis involved hierarchical clustering of the 24

included PDX models based on their projected TNBC-
type proportions, resulting in four main clusters primarily
driven by proportions of M and BL1 subtypes.
Correlation analysis, using the cor() function in R with

a suggestive threshold of p < .1 and significance thresh-
old of p < .05 following BH multiple testing correction,
explored associations between TNBCtype subtypes and
drug responses at concentration of 1 μM.
Expanding the analysis to clinically typed TNBC

and ER+ PDX models, significant associations between
SCSubtype proportions and cellular viability post-

pharmacological intervention were similarly observed
through correlation analysis.
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