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Abstract
In this review, we revisit the pivotal role of fibroblast growth factor receptor 3
(FGFR3) in bladder cancer (BLCA), underscoring its prevalence in both non-
muscle-invasive and muscle-invasive forms of the disease. FGFR3 mutations
in up to half of BLCAs play a well-established role in tumorigenesis, shaping
distinct tumor initiation patterns and impacting the tumor microenvironment
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(TME). Emphasizing the importance of considering epithelial-mesenchymal
transition profile and TME status, we revisit their relevance in predicting
responses to immune checkpoint inhibitors in FGFR3-mutated BLCAs. This
writing highlights the initially promising yet transient efficacy of the FGFR
inhibitor Erdafitinib on FGFR3-mutated BLCA, stressing the pressing need to
unravel resistance mechanisms and identify co-targets for future combinatorial
studies. A thorough analysis of recent preclinical and clinical evidence reveals
resistancemechanisms, including secondarymutations, epigenetic alterations in
pathway effectors, phenotypic heterogeneity, and population-specific variations
within FGFR3 mutational status. Lastly, we discuss the potential of combi-
natorial treatments and concepts like synthetic lethality for discovering more
effective targeted therapies against FGFR3-mutated BLCA.
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1 INTRODUCTION

Bladder cancer (BLCA) accounts for the 10th most com-
mon cancer globally, with more than 550,000 newly diag-
nosed cases and over 220,000 annual deaths worldwide [1,
2].Male gender increases the risk for BLCA (4:1), making it
the 6th most common cancer among all cancer typesworld-
wide [1, 2]. According to the American Cancer Society
prediction, one out of every twenty-eight men will develop
BLCA during their lifetime (source: https://www.cancer.
org/). Nevertheless, the biological females are diagnosed
at more advanced and deadlier stages of BLCA [2].
Around 95% of BLCAs are urothelial cancer, originat-

ing from urothelial cells within one of the cellular layers
of bladder epithelium [2]. Based on the tumor’s local inva-
sion, BLCA is classified into non-muscle-invasive disease
(NMIBC) and muscle-invasive disease (MIBC), account-
ing for ∼80% and ∼20% of BLCAs, respectively [1, 3]. With
the emergence of knowledge about genetic alterations in
BLCA, the association of these alterations with different
subtypes has been unveiled [1].
The five-year survival rate for NMIBC stands at approx-

imately 70%-96% [3, 4]. However, depending on the MIBC
disease stage, it drops from 38% to a meager 6% in
metastatic BLCA [5].
The diagnosis and management of BLCA places sub-

stantial economic pressure on healthcare systems as,
particularly MIBC, is the costliest cancer type per patient,
with estimated costs in the US reaching approximately $6
billion annually [6].

2 FGFR3 ALTERATIONS AND THEIR
ROLE IN BLCA AND BEYOND

Fibroblast Growth Factor Receptor (FGFR) alterations,
and in particular, FGFR3 mutations, are one of the most
frequent alterations in BLCA, associated with ∼60% of the
NMIBCs and at least 15% of theMIBCs [1, 2]. Figure 1 illus-
trates two BLCA categories, emphasizing their correlation
with distinct stages and diverse subtypes, all within FGFR3
status.
In 1999Cappellen et al. [7] described recurrent activating

FGFR3 in BlCA and cervical cancer. In 2006, Bernard-
Pierrot et al. [8] showed that mutated FGFR3b (S249C),
the predominant isoform in epithelial cells, has onco-
genic properties as demonstrated by its ability to transform
NIH-3T3 cells, and when transformed cells implanted
in immunocompromised mice formed tumors. Bernard-
Pierrot et al. [8] showed that FGFR3 knockdown and
FGFR chemical inhibition inBLCAMGH-U3 cells, harbor-
ing the same mutated isoform, suppressed cell prolifera-
tion and anchorage-independent growth. Later, Tomlinson
et al. [9] reported similar findings in another BLCA cell
line (97-7) with the same mutation. Apart from muta-
tion or overexpression, FGFR3 can also be activated in
BLCA through chromosomal rearrangements that gener-
ate constitutively activated fusion genes [10]. Specifically,
FGFR3-transforming acid coiled-coil 3 (TACC3) fusions
resulting from 4p16.3 rearrangements and a t(4;7) translo-
cation generating anFGFR3-BAI1-associated protein 2-like
1 (BAIAP2L1) fusion were identified in several BLCA

https://www.cancer.org/
https://www.cancer.org/


NOERAPARAST et al. 1191

F IGURE 1 Two Categories of bladder cancer (BLCA) are attributed to Baylor, UROMOL, and Consensus subtyping systems,
highlighting their correlation with different stages of local advancement and FGFR3 status. Differentiation-based color scheme showing
features associated with the respective classification. Baylor and UROMOL define NMIBC: Luminal (blue), Luminal-to-basal (blue-grey), and
Basal (grey). MIBC is defined by consensus class: Urothelial-to-Luminal (blue), Luminal-to-basal (blue-grey), Basal (grey), and
neuroendocrine (light yellow). FGFR3 status among subtypes is highlighted in blue (intact FGFR3) or red (mutated FGFR3), with the
frequency of FGFR3 alterations in %. Abbreviations: Ba/Sq, basal/squamous; FGFR3, Fibroblast Growth Factor Receptor LumP , luminal
papillary, LumNS , luminal nonspecified, LumU, luminal unstable, MIBC, muscle-invasive bladder cancer, NE, neuroendocrine, NMIBC,
non-muscle-invasive bladder cancer,. Figure generated in Biorender.

cell lines and tissue samples [10]. These fusion proteins
have lost their Phospholipase C gamma 1 (PLCγ1) bind-
ing site. They can transform NIH-3T3 cells. They can
induce activation of the ERK pathway, but not the PLCγ1,
in immortalized normal human urothelial cells, suggest-
ing their potential as targets for FGFR-targeted therapy in
BLCA [10].
In 2014, during a Cancer Genome Atlas project study, a

comprehensive genetic analysis of 131 urothelial carcino-
mas discovered FGFR3 alterations as one of the genetic
hallmarks of urothelial bladder carcinoma [11]. More
recently, FGFR3 mutations have been suggested as one of
the potential therapeutic targets in advanced BLCA [12].
The consensus classification of BLCA had concluded that
the high frequency of FGFR3 mutations, translocations,
and FGFR3 activation signature in advanced BLCA could
suggest that these tumors may be collectively responsive
to FGFR-targeted therapeutics [12]. The authors reiterated
the results of studies that showed a considerable group
of MIBC patients who either harbored FGFR3 mutations

or were identified with high FGFR3 expression signatures
could benefit from FGFR3-targeted therapies [12]. Of note,
later, the benefit of FGFR3 inhibition has been limited to
patients with FGFR3 mutations and not those with solely
high FGFR3 expression [13, 14].
Komura et al. integrated the three subtyping systems,

Consensus [12], Baylor [15], and UROMOL [16], in BLCA
categories (NMIBC vs. MIBC) in which the subtyping was
not originally described [17]. The variations in subtype fre-
quencies could be associated with either NMIBC orMIBC.
For example, the class I, differentiated (vs. basal), and
LumP subtypes were more prevalent in NMIBC than in
MIBC [17]. However, most subtyping systems could not
distinguish between NMIBC and MIBC in an absolute
manner [17]. The UROMOL class 3 subtype, with the high-
est frequency of FGFR3 alterations, wasmostly confined to
NMIBC [17].
Kinase domainmutationswere predominantly enriched

among basal/squamous subtypes [17]. Gene Set Enrich-
ment Analysis (GSEA) also revealed that basal/squamous
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F IGURE 2 Schematic displays the FGFR3 amino acid residues subjected to mutational occurrence in BLCA. Querying 4732 BLCA
samples in 19 studies. Based on the query, the figure was generated in cBioPortal and modified for clarity. Abbreviations: BLCA, Bladder
Cancer; cBioPortal, cBioPortal for Cancer Genomics; FGFR3, Fibroblast Growth Factor Receptor 3.

and epithelial signatures characterized MIBC. Moreover,
Komura et al. [17] showed that FGFR3 alterations inMIBC,
in addition to luminal subtypes, can involve epithelial
subtypes, including both the basal and squamous types.
Of note, the association of FGFR3 alterations with

the induction of basal markers in this category warrants
further investigations of whether resistance mechanisms
and pathways activated by FGFR3 and, consequently,
co-targets to tackle these resistance mechanisms differ
between NMIBC and MIBC.
A significant proportion, up to 50% of BLCA patients,

including a subset of those with advanced disease, carry
FGFR3 mutations [2]. These are primarily point muta-
tions, followed by less frequent structural variants (∼14:1
ratio) involving fusion with other genes, such as TACC3
[3, 18]. To investigate this further, we consulted cBioPortal
to query 4,732 samples from 3,993 patients across 19
non-redundant studies (date of data retrieval: Septem-
ber 10th, 2023). Our analysis revealed three prominent
mutational hotspots within the FGFR3 coding sequence
(the reference is the FGFR3c sequence), namely S249,
R248, and Y373 (Figure 2). Interestingly, these hotspots
do not involve the tyrosine kinase domain but induce a
conformational change that leads to constitutive protein
activity and triggers its downstream signaling output
[7, 19, 20]. Further, following the approach described
previously [21], we manually curated the dataset, cross-
referenced patient and sample IDs, and retained only
the earliest samples. Our curation corroborated that the
three most frequently occurring FGFR3 mutations in
BLCA were S249C (APOBEC-type motif [22]), Y373C, and
R248C, accounting for 49%, 13%, and 12% of the samples,
respectively. These findings are, in principle, consistent
with previous reports [23].
A multi-omic analysis of 124 NMIBC and 265 MIBC

patient samples and 35 adjacent normal tissue samples by
Komura et al. [17] has provided insights into the differential
FGFR3 mutational status among the Asian and Western
populations.

In the Asian population, FGFR3 SNPs, including Q29H,
G65R, L164V, T450M, and A720S, appeared enriched at the
germline level, though these mutations were not enriched
in BLCA patients, and no established associations with
clinical outcomes among BLCA patients were identified
[17].
Unlike the Western population, FGFR3 mutations

within the kinase domain, specifically K650E and T757P,
were more prevalent yet showed no conclusive changes in
clinical outcomes [17]. Notably, thesemutationsweremore
recurrent in MIBCs [17]. Additionally, Komura et al. [17]
discovered two novel FGFR3 fusions involving NSD2 and
SPON2.
Regarding the frequency of FGFR3 alterations among

subtypes, 54% and 94% of class I and class III URO-
MOL subtypes, respectively, and 42% of the MIBC LumP
(consensus) subtype harbored these alterations [17].
Mutant FGFR3 is shown to have transforming capac-

ity in a context-dependent and variant-specific manner
[24]. As unraveled by di Martino et al. [24], variants could
exhibit distinctive downstream signaling output and differ-
ential impacts on proliferation. For instance, in a human
urothelial cellular model, FGFRS249C but not FGFRK652E
could activate the PLCγ1 and induce cellular proliferation
(see Figure 3 for a simplified illustration of FGFR3 sig-
naling). Conversely, in a mouse embryonic fibroblast cell
line, all three FGFR3 variants could activate the PLCγ1 and
exhibited cell transforming capacity [24].
Indeed, FGFR3 is frequently mutated or overexpressed

in BLCA. Assessing mutation status and receptor expres-
sion levels may help define the patient population that
could benefit from FGFR-targeted therapies [25].
Of note, Shi et al. [26] have recently shown that

human FGFR3S249C alone can initiate luminal-like pap-
illary tumors in a transgenic mouse model with higher
incidence among male mice. Interestingly, the formed
tumors exhibited a similar expression profile as class I
and class III human BLCA [26]. Both subtypes belonged
to NMIBC and are known to be enriched with FGFR3
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F IGURE 3 Oversimplified illustration of FGFR3 signaling. Upon Fibroblast Growth Factors (FGFs) binding to the extracellular domain
of FGFRs, these receptors, such as FGFR3, go through conformational changes, which subsequently trigger their dimerization and
transphosphorylation of the intracellular C-terminal tyrosine kinase domains. Different tyrosine residues at the intracellular C-terminal
fragment of the FGFR can trigger distinctive downstream signaling pathways. When FGFRs become active, they may, via their essential
adaptor, FRS2α, recruit complexes from the RAS or PI3K/AKT pathways, initiating signaling output through the ERK or AKT pathway. Active
FGFRs may also play a role in activating the JAK/STAT pathway. Furthermore, FGFRs, by activating PLCγ, induce the hydrolysis conversion
of phosphatidylinositol-4,5-biphosphate (PIP2) into inositol triphosphate (IP3), resulting in Calcium ion influx or via diacylglycerol (DAG),
trigger the protein kinase C (PKC) signaling. Note that FGFR3 is also shown to be involved in nonliganded activation, which is not
acknowledged in this schematic. The figure was generated in Biorender. Abbreviations: AKT, Protein Kinase B; DAG, Diacylglycerol; ERK:
Extracellular Signal-Regulated Kinase; FGFs, Fibroblast Growth Factors; FGFRs, Fibroblast Growth Factor Receptors; FGFR3, Fibroblast
Growth Factor Receptor 3; FRS2α, Fibroblast Growth Factor Receptor Substrate 2α; IP3, Inositol Triphosphate; JAK/STAT, Janus
Kinase/Signal Transducer and Activator of Transcription; PIP2, Phosphatidylinositol-4,5-bisphosphate; PI3K, Phosphoinositide 3- Kinase;
PLCγ: Phospholipase C Gamma; PKC, Protein Kinase C; RAS, Rat Sarcoma.

mutations [26]. The authors reported that FGFR3S249C-
induced tumor initiation correlates with FGFR3 tissue
expression levels [26]. As the authors reiterated, in pre-
vious studies, other FGFR3 variants, such as K644E, the
murine equivalent of human K652E, had failed to induce
tumors without other cooperating factors [26, 27].

Today, when patients relapse on immune checkpoint
inhibitors, they may be eligible for FGFR3-targeted ther-
apy [2]. Therapeutics targeting FGFR3 encompass a range
of approaches in terms of medicinal chemistry, includ-
ingmulti-kinase inhibitors, selective kinase inhibitors, and
monoclonal antibodies directed against FGFR3 [28–30].



1194 NOERAPARAST et al.

The first two categories have made more significant
progress in the clinical trial phases [30]. Selective FGFR
inhibitors like erdafitinib and rogaratinib are advanced in
clinical trials [3, 28, 29]. In particular, erdafitinib, which
has shown selectivity towards FGFRs and high potency,
has been granted FDA approval for metastatic urothelial
carcinoma with FGFR3 and FGFR2 alterations and is cur-
rently being explored in other BLCA settings [3, 14, 28, 29,
31–36]. In one study leading to accelerated FDA approval,
erdafitinib’s median duration of response in patients with
advanced BLCA was shown to be 5.6 months (95% CI, 4.2
to 7.2) [14].
Recently, erdafitinib has been clinically explored among

different groups of FGFR mutated BLCA patients [14, 31-
35, 37]. For instance, among high-risk NMIBC patients
who harbored FGFR3 or FGFR2 genetic alterations and
were refractory to BCG therapy, oral erdafitinib was shown
to have more favorable outcomes in terms of recurrence-
free survival (RFS) compared to intravesical chemotherapy
(median RFS: ∼16.9 months vs. ∼11.6 months) [38]. More-
over, a novel drug delivery system for site-specific and
sustained intravesical delivery of erdafitinib is also being
developed [39].
Clinically available compounds targeting FGFRs are

pan-FGFR inhibitors with varying degrees of activity
against each FGFR isoform.However, this broad FGFR tar-
geting comes at the cost of adverse events. For instance,
the FGFR1 activity of these compounds is suggested to
be associated with hyperphosphatemia, while anti-FGFR4
targeting is linked to diarrhea [40].
Nail damage, alopecia, dry mouth, stomatitis, blurred

vision, central serous retinopathy, andhand-foot syndrome
are recurrent adverse events observed among patients
receiving FGFR inhibitors [30].While these adverse events
are often below grade 3 toxicities, they may necessitate
temporary dose withdrawal or dose reduction until the
adverse event is resolved [14, 30-34, 36-39, 40–46].
Hyperphosphatemia is rather a shared adverse event

caused by different FGFR inhibitors. At least 60% of
patients treated with FGFR inhibitors experience some
extent of hyperphosphatemia.
FGF23-FGFR1-klotho axis controls phosphate

levels. When FGF23 binds to FGFR1, it inhibits 25-
hydroxyvitamin D 1α-hydroxylase, leading to the
breakdown of 1,25-dihydroxyvitamin D (1,25(OH)2D),
and blocks sodium-phosphate co-transporters in the
proximal renal tubules, reducing phosphate reabsorption
[30, 40, 47]. FGFR inhibitors block this pathway, prevent-
ing the breakdown of 1,25(OH)2D and the inhibition of
sodium-phosphate co-transporters, which increases both
1,25(OH)2D levels and phosphate reabsorption in the
kidneys. By disrupting the FGF23-FGFR1-klotho axis that
typically limits phosphate reabsorption, FGFR inhibitors

cause hyperphosphatemia through increased intestinal
phosphate absorption due to higher 1,25(OH)2D levels and
increased renal phosphate reabsorption and decreased
excretion [30, 40, 47].
Maintaining a low-phosphate diet and prescribing

phosphate binders can prevent and manage hyperphos-
phatemia, reducing therapy discontinuation risk [30].
While interventions like phosphate binders and dietary
phosphate restriction are necessary to manage the com-
monhyperphosphatemia caused byFGFR inhibitors, these
measures can paradoxically lead to hypophosphatemia in
some patients. Unlike hyperphosphatemia, which typi-
cally is low-grade, hypophosphatemia resulting from over-
correction may manifest as a higher-grade (grade ≥3)
adverse event [48].
Interestingly, serum phosphate levels have emerged as a

robust pharmacodynamic marker for the FGFR inhibitor
erdafitinib [14, 49]. Increases in serum phosphate levels, a
consequence of FGFR inhibition by erdafitinib,were found
to strongly correlate with positive clinical responses and
improved outcomes in treated patients [14, 49, 50]. As such,
based on pharmacodynamic and pharmacokinetic model-
ing, a target serum phosphate threshold of 5.5 mg/dL (1.8
mmol/L) has been defined, indicative of an effective erdafi-
tinib dose capable of achieving the desired pharmacologic
effect [14, 49, 50]. A study proposes initiating erdafitinib at
a dose of 8 mg, followed by an escalation to 9 mg between
Days 14 and 21. While minimizing dose-limiting interven-
tions, this approach maximized the proportion of patients
achieving the target serum phosphate concentrations of
5.5-7 mg/dL [50].
In theory, selective FGFR3 inhibitors should effectively

inhibit FGFR3while enhancing the therapeutic safety pro-
file. Efforts in this regard have been made, and several
FGFR3-targeting monoclonal antibodies with enhanced
selectivity for FGFR3 have been preclinically and clinically
explored [51–55]. FGFR inhibitor toxicity is not exclusively
due to their pan-FGFR effects but can be associated with
their targeting potential towards other proteins, such as
VEGFR2 [56]. Efforts are being made to develop inhibitors
with enhanced selectivity towards FGFR3 over VEGFR2
[56].
In the following lines, we revisit FGFR3, a less-

understood receptor tyrosine kinase, beyond its role in
BLCA.
FGFR3 is one of the four conventional members of

the FGFR family [57]. In 1986, Drohan’s lab isolated the
coding sequence of FGF1, one of the cognate ligands of
FGFRs, from the human brain cDNA library [58]. Today,
we acknowledge at least eighteen human FGF ligands
(twenty-two unique FGFs in rodents and humans) that
bind to different FGFR isoforms, triggering diverse signal
transduction processes and resulting in distinct cellular
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outcomes [29, 57, 59]. Four FGFR receptors are encoded
from four different chromosomes, and FGFR3 is encoded
from chromosome 4 [29, 60]. FGFR3 can be activated by
FGF1, FGF2, FGF4, FGF5, FGF6, FGF8, FGF9, FGF16,
FGF17, FGF18, FGF19, FGF20, FGF21, or FGF23 in human
or mouse [3, 57]. FGFR3, like the other three members of
the related Receptor Tyrosine Kinase family (RTK), has
functions beyond its role in cancer, from early embryoge-
nesis to cell homeostasis throughout mammalian cell life
[57]. FGFR3 possesses three extracellular domains where
ligand binding occurs, a juxta-membranous domain and
an intracellular domain where the tyrosine kinase domain
is positioned [29, 57]. Upon ligand binding, FGFR3 under-
goes activation and dimerization [57, 61, 62]. Notably,
despite conjecture, the mechanisms and extent of FGFR3’s
involvement in heterodimerization events remain poorly
understood. Following ligand binding and the initiation
of dimerization, FGFRs may experience transphosphory-
lation of their tyrosine kinase domains, and subsequently,
via their C-terminal tails, they facilitate the binding and
activation of adaptor proteins, setting in motion down-
stream signaling cascades [3, 57] (Figure 3). Notably,
nonliganded FGFR3 has basal dimerization capacity that
can be augmented in somemutant forms of FGFR3 [61, 62].
FGFRs, including FGFR3, can be genetically altered in

solid and liquid tumors [63–68], and therefore, endeav-
ors have been dedicated to therapeutically targeting such
alterations [69–72]. Apart fromBLCA,where FGFR3muta-
tions are prevalent, other human cancers can be identified
with these mutations, albeit at a much lower frequency.
These cancer types, among others, include uterine and cer-
vical cancers [73, 74], glioblastoma [75], multiple myeloma
[76], penile cancer [77], non-melanoma skin cancer [78],
melanoma [79], small bowel cancer [80] and non-small cell
lung cancer [81, 82].
FGFR3 has attracted attention not only in the context

of cancer. Interestingly, activating FGFR3 mutations, par-
ticularly S249C, can be recurrently found in benign skin
conditions such as seborrheic keratoses [83, 84].
FGFR3 has been extensively examined in bone repair,-

remodeling, and skeletal disorders [85–93]. Herein, unlike
in aforementioned cancers, FGFR3’s role is rather sup-
pressive. In particular, FGFR3 can restrict the proliferation
of chondrocytes, and its signaling can lie behind skeletal
disorders such as achondroplasia and thanatophoric dys-
plasia [94]. Interestingly, activating FGFR3 germlinemuta-
tions have been linked to skeletal disorders in humans and
animal models [29, 87-89, 95–97]. FGFR3 negatively influ-
ences chondrocyte balance, viability, and differentiation
by sabotaging the related autophagy machinery in achon-
droplasia [85]. FGFR3 can suppress sheep growth plate
chondrocyte proliferation by limiting telomerase activity
during bone elongation in a Thyroid hormone-dependent

(T3) manner [86]. Interestingly, in addition to several FGF
ligands, FGFR3 is the target of T3 [86].
In mice where chondrocyte FGFR3 was knocked out,

there was a notable increase in osteoblast count and
bone formation [98]. This effect was further elucidated
through chondrocyte-osteoblast co-culture experiments,
which demonstrated that the absence of FGFR3 in chon-
drocytes stimulated the differentiation and mineralization
of osteoblasts, accompanied by the up-regulation of genes
including Ihh, Bmp2, Bmp4, Bmp7, Wnt4, and Tgf-β1,
along with a down-regulation of Nog expression [98].
Conversely, FGF18, a high-affinity ligand for FGFR3, has
shownprotective effects in osteoarthritis [93, 99]. Of note, a
variant of FGFR3 has been reported in Camptodactyly, Tall
Stature, and Hearing Loss (CATSHL) Syndrome, which
counteract the wild-type FGFR3 function in a dominant-
negative manner [100–102].
Due to the complexity of FGFs and FGFRs signaling,

the full picture of FGFR3’s role in bone and cartilage
pathogenesis remains to be elucidated.
This duality of the FGFR3 role has also been reported

in cancer. For instance, in colorectal cancer (CRC), the
FGFR3 role seems Janus-faced [103]. Due to aberrant alter-
native splicing and activation of cryptic splice sequences,
FGFR3 was reported to be frequently inactivated in CRC
[103]. Conversely, FGFR3 overexpression in CRC has been
associated with a more invasive phenotype [104]. A recent
study on Hepatocellular carcinoma (HCC) deciphers trun-
cated FGFR3’s role in cancer, or at least in HCC [105].
FGFR3∆7-9, lacking the IgG III domain involved in FGF
binding, exhibits increased affinity for FGF compared
to wild-type FGFR3 [105]. FGFR3∆7-9 promotes HCC
cell proliferation, migration, and metastasis both in vitro
and in vivo [105]. Interestingly, FGFR3∆7-9 directly inter-
acts with TET2, a tumor suppressor, phosphorylating it
at Y1902, thereby promoting TET2 ubiquitination and
degradation and unleashing the AKT pathway and its
oncogenic subsequences, which is no longer suppressed by
the TET2-PTEN axis [105].
In one study in pancreatic cancer, FGFR3 has been

shown to have a tumor-suppressing role in cells with
epithelial featureswhile exhibiting oncogenic properties in
cells with mesenchymal characteristics [106].
FGFRs present a high degree of homology to other

knownRTKs like vascular endothelial growth factor recep-
tor (VEGFR) and platelet-derived growth factor receptor
(PDGFR) [107]. In terms of signaling output, a great
extent of similarities can be observed with other RTKs,
such as the renowned Epidermal Growth Factor Receptor
(EGFR). Those common features are not limited to the
mechanism of action, but these receptors also share down-
stream effectors and, as such, shared cellular events [3,
57, 108–110]. FGFR3 activation yields at least four distinct
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pathway activities, including the RAS-RAF-MEK-MAPK,
PI3K/AKT, Calcium signaling, and Signal Transducer and
Activator of Transcription (STAT) pathways (Figure 3) [24,
29, 92, 106, 111–113]. These pathways are known to be signif-
icantly influenced by receptor tyrosine kinases (RTKs) like
EGFR as well [92, 113–117]. As such, it comes as no surprise
that regulators of FGFR3 signaling are also shared between
FGFR3 and EGFR. Indeed, CBL, SPRY, Dusp-6, and SEF
are among the known regulators of FGFR3 signaling that
have been previously studied in the context of EGFR signal
transduction and regulation [3, 118–122].
In BLCAwith aberrant FGFR3 activation due to translo-

cation and point mutation, the role of the FGFR3/MYC
feedback loop has been unveiled [123]. FGFR3 upregulates
MYC expression by increasingMYCmRNA levels via p38α
MAPK activation. Additionally, FGFR3 stabilizes theMYC
protein by AKT-mediated phosphorylation of GSK3β, pre-
venting MYC degradation by the proteasome. As such,
a positive feedback loop was discovered where activated
FGFR3 upregulates MYC levels, which in turn upregulates
FGFR3 expression, and disrupting this FGFR3/MYC loop
decreased bladder cancer cell viability in vitro and tumor
growth in vivo [123].
Still, we do not fully grasp the extent of FGFR3 signal-

ing and its unique impact. As FGFR3 shares similarities
with other receptors like EGFR, these commonalities
might help us uncover more about FGFR3’s function and
vulnerabilities.

3 MUTATED FGFR3: SENSITIVITY
AND RESISTANCE TO TARGETED
THERAPIES IN BLCA

Unsurprisingly, the resistance mechanism to FGFR3 inhi-
bition in BLCA resembles those observed in EGFR-
targeted therapeutics. Indeed, just as resistance to some
EGFR inhibitors can arise due to the emergence of resis-
tant clones with secondary mutations at the gatekeeper
T790 site of EGFR, secondary mutations in gatekeeper
FGFR3 residue have also been reported in response to
FGFR inhibition.
Resistant mechanisms are not limited to on-target sec-

ondary mutations but can also involve bypassing mech-
anisms [124–126]. In the case of FGFR3-mutated BLCA
under FGFR inhibition therapy, cells may find ways to
bypass signaling through EGFR in an AKT-dependent
manner [127].
Moreover, FGFR3 has a pivotal role in shaping the TME

landscape and, as such, response to therapies that impact
TME.
In the following paragraphs, we delve into some recent

preclinical and clinical highlights of discoveries of mecha-

nisms that contribute to mutated FGFR3 BLCA resistance
to approved targeted therapies.

3.1 Mutated FGFR3 and TME

Before introducing new cancer immunotherapy
approaches, treatment options in BLCA were mainly
limited to platinum-based chemotherapeutics [2, 128]. One
such approach involves immune checkpoint inhibitors,
which block PD-1 on T-cells or the associated PD-L1 on
tumor cells. This enables the human immune system to
restore its capacity to recognize and further target can-
cer cells. Additionally, Bacillus Calmette-Guérin (BCG)
therapy is another form of classical immunotherapy that
is a standard of care for non-muscle-invasive bladder
cancer [6]. Immunotherapies offer encouraging outcomes
in a group of BLCA responder patients [2]. However,
these therapies are also doomed to a rise of resistance,
and predicting the responders’ subpopulations is still a
challenge [36, 129].
Overall, immune checkpoint inhibition has emerged

as a promising avenue for BLCA patients in addition to
classical chemotherapy. However, conflicting insights exist
regarding the relevance of Immune checkpoint inhibitors
(CPIs) in FGFR3-mutated BLCAs, and such a dilemma has
inspired further studies [17, 130, 131].
Drawing inspiration from clinical findings that suggest

an association between FGFR3mutations and the immune
desert microenvironment, preclinical studies have been
undertaken to uncover related mechanisms [132]. BLCA
mousemodels withmutated FGFR3 have corroborated the
association between mutated FGFR3 and a cold TME [26,
132, 133].
Recently, Ouyang et al. [132], through single-cell RNA

sequencing of FGFR3-mutated BLCA in mice, have dis-
covered that correspondingmacrophages exhibit immune-
inert phenotypes. The observed phenotype was associ-
ated with serine synthesis in FGFR3-mutated BLCA cells
and was PI3K/AKT pathway-dependent in macrophages
[132]. The authors showed that PI3K inhibition reverses
the immune-inert phenotype and further synergizes with
Erdafitinib in exerting an anti-BLCA tumor effect in mice
[132]. An intriguing question regarding these findings is
how much of the observed effect could be independent of
cold TME reversal and correspond directly to the effect of
PI3K inhibition on BLCA tumor cells.
Along with preclinical and clinical studies focusing on

unveiling the impact of FGFR3 on TME, a significant study
by Jing et al. [134] uncovered a critical aspect of FGFR3
and, consequently, its inhibition on TME. The authors dis-
covered in a bladder cancer mouse model that erdafitinib
and infigratinib, despite effectively slowing down tumor
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growth, concurrently mediate the upregulation of PD-L1
on tumor cells [134]. The authors found that active FGFR3
in BLCA is associated with the downregulation of PD-
L1 [134]. Notably, in BLCAs, upon FGFR3 inhibition, the
upregulation of PD-L1 hampers the antitumor activity of
CD8+ T-cells [134]. Mechanistically, FGFR3 plays a crucial
role in regulating PD-L1 ubiquitination through its bind-
ing to and phosphorylating the ubiquitin E3 ligaseNEDD4,
thereby enhancing its E3 ligase activity [134]. NEDD4, in
turn, targets PD-L1 and catalyzes its K48-linked polyubiq-
uitination [134]. Combining FGFR3 and PD-1 inhibition
synergistically improved the overall antitumor effect [134].
Caution is advised when directly extrapolating these

preclinical findings to clinical scenarios.
Okato et al. [133] from the Kim lab have recently illumi-

nated intriguing aspects of mutated FGFR3 and its influ-
ence on urothelial carcinoma TME. Developing an innova-
tive transgenic murine model, they conditionally induced
urothelial carcinoma through the concurrent expression of
the human equivalent of T5P3R273H and FGFR3S249C. The
authors found that tumors in thismodel exhibit high-grade
NMIBC features and, in terms of transcriptome signa-
ture, could show similarities to UROMOL class I and even
LumP, mirroring their human counterparts [133]. Okato
et al. [133] discovered that these urothelial carcinomas
exhibited an intermediate T-cell inflamed phenotype [135].
Upon anti-PD1 treatment, tumors demonstrated hyper-
progression, possibly attributable to the abundance of
T-regulatory cells (Tregs) within the TME [136].
Interestingly, the authors demonstrated that Erdafitinib

treatment could suppress the proliferation of correspond-
ing Treg cells in vitro and even better in vivo by targeting
FGFR1 on the surface of these cells [133]. Ultimately,
combining Erdafitinib with anti-PD1 showed greater ther-
apeutic efficacy than erdafitinib monotherapy alone [133].
Consequently, the study by Okato et al. [133] presents the
non-selectivity of erdafitinib in targeting FGFR receptors
as a blessing in disguise thatmay extend erdafitinib’s appli-
cation as a Treg-suppressor agent beyond FGFR3-mutant
BLCAs. In line with these findings, the study by Shi et al.
[26] is noteworthy as it also found that FGFR3-mutated
BLCA in their mouse model exhibited a “cold” TME char-
acterized by reduced CD8+ T cell infiltration compared to
carcinogen-induced tumors.
A reduced T-cell infiltration and an immunologically

inert microenvironment may be associated with FGFR3
alterations in BLCA [12, 137]. As such, the potential
resistance of FGFR3-mutated BLCAs to CPIs is a dilemma.
In a recent clinical trial study [138], the authors delin-

eated MIBC subtypes by integrating the tumor’s gene
expression and genetic profiles, TME, and the response to
CPIs. The authors discovered that genetic alterations in
FGFR3were notably enrichedwithin a non-responder sub-

type [138]. Subsequent preclinical benchwork revealed that
the histone demethylase KDM5B is accountable for creat-
ing a cold TME, and inhibiting both KDM5B and mutant
FGFR3may potentially reinstate a hot immune phenotype
[138].
In search for comprehensive prognosis-related immune

profiling of BLCAs, Xu et al. [139] assessed immune com-
ponents within tumors in TCGA while acknowledging
FGFR3 status in their analysis. The authors categorized
two risk groups, low and high, based on immune profiles,
with the high-risk group characterized by elevated levels
of neutrophils, macrophages, follicular helper cells, CD4
andCD8T-cells, aswell as increased expression of immune
checkpoint markers such as PD-L1, PD-1, CTLA-4, LAG-3,
and TIM-3. Notably, the high-risk tumors were associated
with a reduced frequency of FGFR3 mutations [139].
Exploring whether the abundance of infiltrated T-cells

alone can be a reliable prognostic and predictive marker
extends beyond FGFR3 mutations and BLCA.
A significant study by Wang et al. [131] sheds light

on this matter in BLCA, providing evidence that the
interplay between T-cell infiltration and stroma-associated
epithelial-mesenchymal transition (EMT) markers in the
TME collectively establishes predictive value for the
response to CPIs. The same group further delves into
unraveling the relationship between the response to CPIs
and the FGFR3 status based on two preceding clini-
cal cohorts [140]. They found no significant difference
between FGFR3-mutated and wild-type patients regarding
the response to immunotherapy [140]. Despite observ-
ing a decrease in the T-cell component, they note that
tumors with FGFR3 alterations exhibit lower expression
of TGF-B in stromal components [140]. According to their
previous findings in BLCA and other reports on differ-
ent cancer types, the low TGF-B expression in a tumor
counteracts the cold TME, which is associated with low
T-cell infiltration within the tumor [140]. Therefore, low
TGF-B expression counteracts the lack of response to CPIs,
thereby rendering these tumorswith supposedly cold TME
responsive to CPIs [140]. Unlike T-cell status, lower TGF-
B expression is a positive predictive marker for CPIs [131].
As such, Wang et al. [140] hypothesize that the cumu-
lative impact of FGFR3 mutations on T-cell abundance
and the presence of stroma-related EMT lies behind con-
sistent response among two distinctive FGFR3 statuses.
Of note, independent clinical studies have corroborated
Wang’s hypothesis. For instance, in a real-world compar-
ison of response to CPIs among FGFR3-altered (n = 17)
vs. wild-type (n = 86) metastatic BLCAs, Rose et al. [130]
found no significant difference in clinical outcomes.More-
over, they concluded that the sum of T cell gene expression
status, immunosuppressive stroma, and related markers
might be determinant of response to CPIs.
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Consistent with Wang et al. findings [140], the EMT sig-
natures were significantly down-regulated among FGFR3-
altered samples in Komura et al. study [17]. This study
analyzed samples from 72 patients included in CPI ther-
apy, and distinctive immune microenvironments between
FGFR3 mutant vs. wild-type tumors were discovered [17].
In line with previous clinical and preclinical reports,
Komura et al. [17] also found different markers of
activated TME being associated with FGFR3 intact
tumors as opposed to FGFR3 altered patients. Moreover,
they uncovered significant heterogeneity among FGFR3-
altered patients and corresponding subtypes concerning
immune cell components and response to CPIs. Impor-
tantly, in line with Guercio et al.’s report [23] and Wang
et al.’s hypothesis [140], Komura et al.’s study [17] does
not find an inverse relationship between FGFR3mutations
and response to CPIs.
Indeed, while Komura et al. [17] findings of lower T-cell

infiltration among FGFR3-mutated BLCAs could suggest
a lower response to CPIs, overall, no significant difference
was observed between the two FGFR3 statuses. Moreover,
when responses to CPIwere stratified into subtypes, unlike
presumptions, the LumP subtype with FGFR3 mutations
showed ∼50% ORR vs. ∼5% among the same subtype with
wild-type FGFR3 [17].
Further substantial evidence corroborating the effec-

tiveness of CPIs in FGFR3-mutated BLCA is derived from
cohort 2 of the phase III THOR trial [37]. Although in
this trial the pembrolizumab arm (n = 176) did not
demonstrate a more favorable outcome with statistical
significance than the erdafitinib arm (n = 175) [37].

3.2 Resistance mechanisms to mutated
FGFR3 inhibition

Due to evidence on FGFR3-mutated BLCA addiction
to this oncogene, interest had risen towards FGFR3
inhibition as a therapeutic approach and further explo-
ration of related resistance mechanisms. In 2013, Herrera-
Abreu et al. [126] conducted a parallel RNA interference
kinome/phosphatome screen in five cell lines carrying
FGFR3 fusion or point mutations to identify potential co-
targets alongside FGFR3 inhibition. The cell line panel
under examination comprised both cell types demon-
strating partial sensitivity to FGFR3 inhibition and those
intrinsically resistant to FGFR3 inhibition but reliant on
EGFR [126]. Intriguingly, EGFR emerged as a co-target in
both cell types. Even in cell lines inherently resistant to
FGFR3, a notable sensitivity to combined EGFR/FGFR3
targeting was observed [126]. Later, a kinome-wide shRNA
screen reported both EGFR and PI3K as co-targets with
fusion FGFR3 in RT112 cells [127].

Another recent study [141] has revealed a resistance
mechanism to erdafitinib in BLCA cells harboring the
fusion FGFR3-TACC3. The authors discovered that Erdafi-
tinib exerts cytotoxic effects on these cells by inducing
incomplete autophagy and elevating reactive oxygen
species (ROS) levels [141]. However, resistance could
develop due to the activity of P4HA2, which stabilizes its
positive transcriptional regulator, HIF-1α, whose signaling
output, in turn, yields reduced lethal ROS levels and, con-
sequently, counteracts the cytotoxic effects of erdafitinib
[141].
Recently, Pettitt et al. [142] have published their findings

on the attempt to unravel resistance mechanisms in two
BLCA cellular models with native fusion FGFR3-TACC3
mutation. They generated several resistant subclones from
parental cells primarily sensitive to FGFR3 inhibition
(PD173074) [142]. They addressed resistance mechanisms
by whole exome sequencing and bulk-RNA sequencing.
Their findings imply the emergence of very heteroge-
neous phenotypic switches [142]. Moreover, even if a
homogenous upregulation of a gene was identified, it
did not sensitize all sub-clones to targeting that gene
[142]. They identified an irreversible resistance mecha-
nism caused by HRASG12S in only one subclone. Still,
10% of cells remained HRAS wild type in that subclone
[142]. Of note, unlike the preclinical and clinical reports
on the rise of secondary mutations within the FGFR3
gatekeeper or molecular break residue in BLCA cells
with FGFR3 point mutations, no such secondary muta-
tions were identified in the Pettitt et al. study [142]. All
resistant derivatives showed upregulated expression of
YAP/TAZ targets [142]. However, upregulation was asso-
ciated with sensitivity to the YAP inhibitor CA3 in only
one cell line [142]. Resistance could also be accompa-
nied by upregulation of EGFR, ERBB2, ERBB3, and MET
[142]. However, targeting these proteins did not restore
sensitivity to FGFR3 inhibition [142]. These results contra-
dict Weickhardt et al.’s findings [124], where co-targeting
ERBB3 potentiated the effect of FGFR inhibition in BLCA
cells with acquired resistance to FGFR inhibition. Of
note, two cellular models in Weickhardt et al. also har-
bored FGFR3 fusion. However, a different FGFR inhibitor
(BGJ398: Infigratinib) was tested in the Weickhardt et al.
study [124].
In two subclones of the same parental cell line, upreg-

ulated expression of IGF1R was associated with response
to sunitinib [142]. Other signature modulations in resis-
tant subclones included cell motility and adhesion, IFNγ
response, and EMT signature [142]. One needs to con-
sider that clinical reports about resistance mechanisms to
FGFR inhibition among BLCA patients come from cohorts
enriched with point mutations rather than FGFR3 fusions
(reviewed below). Therefore, mutation-specific resistance
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may lie behind the discrepancy between Pettitt et al. [142]
and recent clinical findings [23, 143].
A recent study by Hosni et al. [125] shows that neureg-

ulin 1 (NRG1) secreted from a subset of stromal cells, the
undifferentiated adipocyte precursors, mediates resistance
to erdafitinib in FGFR3-mutated BLCA mouse xenografts
in a HER3-dependent manner [125]. As opposed to Pettitt
et al. study [142], HER3 (ERBB3) targeting by Pertuzumab
could restore sensitivity to FGFR3 inhibition (Erdafitinib
[125] vs. PD173074 [142]), and combined erdafitinib and
pertuzumab treatment led to increased survival in mice
with FGFR3-mutated BLCA xenografts [125].
In a hypothesis-driven approach, Wang et al. [144] have

recently demonstrated that quisinostat, an experimen-
tal histone deacetylase inhibitor, synergizes with Erdafi-
tinib through suppressing FGFR3 protein translation and
heparin-binding growth factor, a BLCA-relevant mitogen.
Often, BLCA patients of both categories who relapse

on other therapeutics would be eligible candidates for
treatment with Erdafitinib [2, 34-38, 128]. Despite the ini-
tially encouraging outcomes, up to 45.6% ORR [143], and a
median PFS of up to 5.6months upon erdafitinib treatment
[34, 143], justify a clear need to enhance the effectiveness
of these treatments.
A comparison between erdafitinib and pembrolizumab

in patients with advanced or metastatic urothelial car-
cinoma carrying FGFR3 mutations has been conducted
[37]. Although the study revealed no statistically signifi-
cant difference in overall survival between erdafitinib and
pembrolizumab arms, the OS in the immunotherapy arm
was slightly higher (median OS of 10.9 and 11.1 months,
respectively, hazard ratio 1.18; 95% confidence interval 0.92-
1.51; P = 0.18) [37]. The median PFS for erdafitinib was 4.4
months, compared to 2.7 months for pembrolizumab (haz-
ard ratio 0.88; 95%CI 0.70-1.10) [37]. The objective response
rate (ORR) was 40% for erdafitinib and 21.6% for pem-
brolizumab, with a relative risk of 1.85 (95% CI 1.32-2.59)
[37]. The median duration of response was 4.3 months for
erdafitinib and 14.4 months for pembrolizumab [37].
In a recent study conducted by Facchinetti et al.

[143], researchers examined the tissue and circulating
tumor DNA (ctDNA) of twenty-one BLCA patients with
FGFR mutations who had progressed on different FGFR
inhibitors (19 out of 21 had FGFR3 mutations) [143]. The
study revealed that secondary FGFR3 mutations within
its kinase domain were present in 37% of patients who
developed resistance to various FGFR inhibitors [143]. Two
critical resistance spots, among others, were identified:
the gatekeeper residue FGFR3 V555 and the molecular
brake N540, which play a crucial role in drug binding
to the FGFR3 molecule [143]. These secondary mutations
reduce the targeted FGFR3 affinity for the correspond-
ing compounds [143]. Furthermore, alongside secondary

FGFR3 mutations, the study identified genetic alterations
among the PI3K–mTOR pathway effectors [143]. The
EGFR hyperphosphorylation could also be associated with
resistance to FGFR inhibition in a patient [143]. Co-
targeting PI3K (by pictilisib) and EGFR (with gefitinib)
in the presence of corresponding alterations was shown
to lead to enhanced inhibitory effects in FGFR3-mutated
patient-derived xenograft (PDX)model [143]. These results
are in line with those of Lang et al. [145] who report
that treatment of FGFR3-mutant PDX models of MIBC
and upper urinary tract urothelial carcinoma with com-
bined FGFR/EGFR inhibitors was more efficient than
anti-FGFR3 treatment alone.
Facchinetti et al. [143] evaluated various selective FGFR3

inhibitors in a Ba/F3 cellular model, revealing that erdafi-
tinib exhibited a better potency against cells expressing
FGFR3:TACC3 with both wild-type or mutant FGFR3
kinase domain.
An essential point that the study of Facchinetti et al.

[143] prompts our attention to is the fact that several
patients developed resistance to FGFR3 inhibition without
a clear molecular explanation.
Guercio et al. [23] prospectively analyzed collected

patient data co-mapped with respected NGS data in one of
the largest FGFR2/FGFR3-altered BLCA cohorts, compris-
ing 414 annotated samples. While male patients exhibited
a higher frequency in both FGFR3 wild-type and mutant
BLCA cases, female patients demonstrated a higher fre-
quency in the mutant group than in the wild-type group
[23]. It deserves reiteration that in line with Wang et al.’s
hypothesis [140] and contrary to previous assumptions
regarding FGFR3-mutated tumors’ lack of responsiveness
to CPIs, Guercio et al. did not observe such an inverse
relationship [23].
The FGFR3 status was dynamic according to the disease

progression [23]. The FGFR3 alterations were more fre-
quent among NMIBC and upper tract lesions than MIBC
ormetastatic samples [23]. Of note, among 27 patients with
existingmatchedmetastatic tumor samples, seven patients
were identified with the same FGFR3 alteration, which
was limited to either the primary or the metastatic tumor
and not both [23]. An important conclusion that can be
drawn from this finding is that considering the primary
tumor’s FGFR3 status for therapeutic decisions can bemis-
leading. Guided by early NGS results, the clinician might
treat a non-existing altered FGFR3 entity in a metastatic
patient [23].
Recurrent mutations in cell cycle genes CDKN2A and

CDKN1A were observed alongside FGFR3 mutations [23].
Genetic alterations in ERBB2, TP53, and RB1 were found
to show amutually exclusive trendwith FGFR3mutations,
whereas CDKN2A, CDKN2B, andKDM6Adisplayed cooc-
curring tendencies [23]. In line with some other cancer
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types and therapeutic contexts [146], TP53mutations at the
baseline were associated with poorer clinical outcomes in
FGFR3-altered patients [23]. Notably, baseline alterations
in PIK3CA, TSC1, and ERBB2 were not associated with
further resistance to erdafitinib [23].
Interestingly, Pettitt et al. [142] also discovered that

within subclones with acquired resistance to erdafitinib,
ERBB2 overexpression did not sensitize to ERBB2 target-
ing.
Thirty-two metastatic BLCA patients (FGFR3/2 altered)

treated with erdafitinib were examined in the respective
cohort [23]. Among them, before treatment, 87% harbored
a point mutation, predominantly the FGFRS249C variant
(59%), 13% had FGFR3-TACC3 fusions, and patients with
Y373C and R248C variants each exhibited 9% frequency
[23]. Interestingly, all three patients with FGFR3Y373C
showed objective responses [23]. FGFR3-fusion patients
showed poorer response to erdafitinib; three of four
showed disease progression as the best response [23]. The
response rate to erdafitinib was 40%, the overall survival
was six months, and the median progression-free survival
was 2.8 months [23].
Like the renowned mechanism of acquired resistance

to anti-EGFR therapies, namely secondary T790M at the
EGFR gatekeeper residue [147], Guercio et al. [23] found
secondary FGFR3 mutations potentially involving similar
FGFR3 residues and negatively affecting the drug bind-
ing in response to erdafitinib treatment. These secondary
mutations (along with other mutations) found in two
patients were N540S or V553M [23].
Interestingly, the study [23] reports acquired TP53muta-

tions among five patients in response to erdafitinib. Con-
sidering the association of TP53 mutations at baseline
with a poorer response to erdafitinib, one might ques-
tion the inclusion of patients with concurrent FGFR3 and
TP53 mutations in FGFR3-targeted therapies. However,
perhaps we need to learn more about the role of TP53
mutations when they cooccur with FGFR3mutations. The
TP53 mutations have shown a trend of mutual exclusiv-
ity with FGFR3 mutations [3, 23], while they can still
cooccur. Concurrent TP53 and FGFR3 mutations do not
necessarily render BLCA cells tolerant to FGFR3 inhibi-
tion [148]. An example of this notion is the high sensitivity
of UMUC14 cells to FGFR3 inhibition [148], which con-
comitantly harbors FGFR3S249C and T5P3R2807, a variant
linked to cooperation with the AKT pathway [149]. The
TP53 mutations are distinctive regarding loss of function,
dominant negative effect, and even gain of function pheno-
types [150–154].Moreover, at least one preclinical study has
shown that combined PD-1 and FGFR inhibition may lead
to enhanced therapeutic effects in transgenic mice with
concomitant FGFR3 and TP53 mutations in their BLCA
tumors [133]. As such, more detailed studies are needed to

unveil the differential impact of distinctive TP53 variants
on FGFR3 signaling and vulnerability to FGFR3 targeted
therapies.
In one patient, an AKT1 mutation was found after

Erdafitinib therapy. Overall, secondary mutations were
observed in six patients. An intriguing question remains
concerning other patients who also develop resistance,
with no genetic findings [23].
Enfortumab vedotin (EV) is an antibody-drug conju-

gate (ADC) targeting Nectin-4, a cell adhesion molecule
expressed in BLCA cells [155, 156]. Its mechanism involves
the monoclonal antibody binding to Nectin-4 on cancer
cells, leading to internalization and release of the cytotoxic
monomethyl auristatin E, which disrupts the microtubule
network, inducing cell cycle arrest and apoptosis [155, 156].
Erdafitinib and EV have distinct mechanisms of action

and distinct toxicity profiles, providing a rationale for
evaluating their combination in metastatic urothelial car-
cinoma patients with FGFR2/3 genetic alterations. An
ongoing phase I dose-escalation and expansion study is
assessing the safety, pharmacokinetics, and antitumor
activity of combining erdafitinib (8 mg/day) with EV (1 or
1.25 mg/kg) in patients progressing after platinum-based
chemotherapy and/or PD-1/L1 inhibitors [157]. Prelim-
inary data from the first two dose levels indicate the
combination is feasible, with common toxicities such as
hyperphosphatemia. All evaluable patients achieved a par-
tial response. Dose escalation continues to identify the
maximum tolerated dose for the expansion phase [157].
Table 1 summarizes the key preclinical and clinical

associations with FGFR3 mutations and targeting.

4 DISCUSSION AND CONCLUSIONS

As the revisit of recent findings in this writing suggests,
FGFR3 mutations in BLCA may not serve as conclusive
predictive markers for lack of response to CPIs. Consid-
ering the EMT status of the TME and the tumor subtype,
more sophisticated algorithms are needed to establish
effective consensus for FGFR3-mutated BLCA response to
CPIs.
Moreover, a combination of FGFR1/3 inhibition and

CPIs holds promise for further clinical exploration in
BLCA.
The state of the art regarding the predictive and prognos-

tic value of mutational profile of FGFR3 altered tumors is
still in its infancy. An important lesson from the study by
Guercio et al. [23] is that an updatedNGS is essential before
starting the FGFR3 inhibition therapy.
Whether innate or acquired, resistance to FGFR3

inhibitors in BLCA is not an isolated phenomenon lim-
ited to FGFR3 inhibitors targeting BLCA or even cancer
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TABLE 1 Overview of recent key preclinical and clinical findings on FGFR3 mutations in BLCA.

Recent findings on FGFR3 mutations in BLCA Preclinical Clinical
Related to TME and CPIs
Immune-inert phenotype in FGFR3 mutated tumors in mice ✓

Downregulation of PD-L1 in FGFR3 active status ✓

Impact on anti-tumor activity of CD8+ T-cells ✓

Improved antitumor effect upon combining FGFR3 and PD-1 targeting ✓

Reduced T-cell infiltration and inert microenvironment associated with FGFR3
mutations in BLCA patients

✓

FGFR3 mutation impacts response to CPIs by both T-cell infiltration and
stroma-associated EMT markers

✓

Cold tumors not always in inverse relationship with responsiveness to CPIs in
FGFR3-altered BLCA patients

✓

Related to FGFR3 inhibition and resistance
EGFR and PI3K identified as co-targets ✓

Sensitivity in FGFR3 resistant cell lines when co-targeting EGFR ✓

bypassing mechanisms through effectors of AKT pathway ✓

Heterogenous phenotypic switches in FGFR3-resistant subclones derived from
the same cell

✓

Upregulation of various genes including IGF1R, EGFR, ERBB2, ERBB3, and MET ✓

Quisinostat synergizes with Erdafitinib by suppressing FGFR3 protein translation ✓

Resistance to Erdafitinib in FGFR3 mutant cells induced by P4HA2 and HIF-1α ✓

NRG1-HER3 axis mediates resistance to Erdafitinib and sensitizes to
HER3-targeting in FGFR3 mut BLCA mouse xenografts

✓

Secondary mutations at gatekeeper residue sites ✓

HRAS mutation was found in some FGFR3-resistant sub-clones ✓

Resistance hotspot mutations on residues V555 and N540 ✓

Genetic alterations within AKT pathway effectors ✓

Poorer outcome upon baseline co-occurrence of FGFR3 and TP53 mutations ✓

Different phenomena discovered preclinically or clinically concerning the impact of FGFR3 alterations on TME, response to CPIs, and response and resistance to
FGFR inhibition are summarized.
Abbreviations: BLCA, Bladder Cancer; CPIs, Checkpoint Inhibitors; FGFR3, Fibroblast Growth Factor Receptor 3; FGFR, Fibroblast Growth Factor Receptor;
TME, Tumor Microenvironment.

therapy. We have drawn valuable lessons from the HIV
field, where combined treatments, referred to as “drug
cocktails,” have led to more favorable and durable clinical
outcomes [158]. In the realm of cancer targeting, mainly
since the New Era of Personalized Medicine in 1999 [159],
the focus has primarily been on exploring monotherapies,
with a recurrent pursuit of more effective combined treat-
ments. One prominent example of such an approach is
the combined inhibition of RAF and MEK in targeting
BRAFV600E mutant melanoma [160]. It is worth noting
that upfront combinatorial treatments, if tolerable, not
only may enhance and deepen the initial response but
also have the potential to significantly delay the emer-
gence of acquired resistance over the long term. For
instance, the combination of EGFR and VEGF target-
ing demonstrated a delay in developing secondary T790M
EGFR mutations and enhanced the response in EGFR
L858R/T790M-positive cancer cells [161]. Since then, more

evidence has supported the argument of upfront com-
binatorial treatments in EGFR mutant cancer [162] and
beyond [163]. Piro Lito introduced the fitness threshold
model, which suggests that cancer cells exposed to com-
binatorial treatments with a higher threshold, as opposed
to monotherapy, may be at a greater risk of experiencing
unfavorable outcomes [164].
In 2009, Nobel Prize laureate William G. Kaelin Jr.

adopted Theodosius Dobzhansky’s concept of synthetic
lethality as a conceptual framework for cancer target
discovery [165]. This approach has effectively widened tar-
geting options in all areas of cancer. As such, exploring
synthetically lethal (co)targets with FGFR3 holds promise
in BLCA. As the revisit of precedent studies into unrav-
eling different resistance mechanisms in FGFR3-mutated
BLCA treated with different FGFR inhibitors revealed,
targeting the differentially expressed genes has not often
proven effective in producing a meaningful response. It is
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worth noting that genetic screens, such as CRISPR screens,
can be highly beneficial in tackling the significant hetero-
geneity observed in resistance mechanisms against FGFR
inhibition by directly discovering valid co-targets.
An intriguing aspect of both preclinical and clini-

cal studies aiming to unravel the resistance mechanism
to FGFR3 inhibition is the absence of findings at the
genotype or transcriptome level in a subset of sam-
ples. Hence, the question could be investigated by delv-
ing into less-explored facets of FGFR3’s direct or indi-
rect influence, such as its interactions with non-coding
RNAs.
In summary, mutant FGFR3 has demonstrated its sig-

nificance as an oncogenic element and a promising target
in BLCA. On the other hand, short-lasting clinical benefits
and the rise of resistance in all patients upon FGFR3 inhi-
bition monotherapy underscore the need for the discovery
of FGFR3 co-targets and the uncovering of its unexplored
functions and vulnerabilities in BLCA.
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