Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Oct 1;247(1):35–40. doi: 10.1042/bj2470035

Methionine metabolism by rat muscle and other tissues. Occurrence of a new carnitine intermediate.

P W Scislowski 1, B M Hokland 1, W I Davis-van Thienen 1, J Bremer 1, E J Davis 1
PMCID: PMC1148365  PMID: 3689352

Abstract

Perfused rat hindquarter preparations were shown to incorporate radioactivity from [U-14C]methionine into citrate-cycle intermediates, lactate, alanine, glutamate, glutamine and CO2. During perfusion, large amounts of methionine were also oxidized to methionine sulphoxide. The capacity for transamination of methionine or its oxo analogue, 4-methylthio-2-oxobutyrate, by muscle extracts was demonstrated. Rat skeletal muscle, heart, liver and kidney mitochondria, when incubated with the latter plus radiolabelled carnitine, formed a newly identified carnitine derivative, 3-methylthiopropionylcarnitine. It is concluded that the capacity for oxidation of methionine by a trans-sulphuration-independent pathway occurs in several mammalian tissues. The extent of inter-organ handling of intermediates in this pathway(s) is discussed.

Full text

PDF
40

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benevenga N. J. Evidence for alternative pathways of methionine catabolism. Adv Nutr Res. 1984;6:1–18. doi: 10.1007/978-1-4613-2801-8_1. [DOI] [PubMed] [Google Scholar]
  2. Cooper A. J. Asparagine transaminase from rat liver. J Biol Chem. 1977 Mar 25;252(6):2032–2038. [PubMed] [Google Scholar]
  3. Cooper A. J., Meister A. Glutamine transaminases. Prog Clin Biol Res. 1984;144B:3–15. [PubMed] [Google Scholar]
  4. Davis E. J., Bremer J. Studies with isolated surviving rat hearts. Interdependence of free amino acids and citric-acid-cycle intermediates. Eur J Biochem. 1973 Sep 21;38(1):86–97. doi: 10.1111/j.1432-1033.1973.tb03037.x. [DOI] [PubMed] [Google Scholar]
  5. Davis E. J., Lee S. H. Amino acid metabolism by perfused rat hindquarter. Effects of insulin, leucine and 2-chloro-4-methylvalerate. Biochem J. 1985 Jul 1;229(1):19–29. doi: 10.1042/bj2290019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davis E. J., Spydevold O., Bremer J. Pyruvate carboxylase and propionyl-CoA carboxylase as anaplerotic enzymes in skeletal muscle mitochondria. Eur J Biochem. 1980 Sep;110(1):255–262. doi: 10.1111/j.1432-1033.1980.tb04863.x. [DOI] [PubMed] [Google Scholar]
  7. Davis E. J. The effect of pyruvate on cyclic oxidations by heart sarcosomes. Biochim Biophys Acta. 1967 Jul 5;143(1):26–36. doi: 10.1016/0005-2728(67)90106-5. [DOI] [PubMed] [Google Scholar]
  8. Dixon J. L., Benevenga N. J. The decarboxylation of alpha-keto-gamma-methiolbutyrate in rat liver mitochondria. Biochem Biophys Res Commun. 1980 Dec 16;97(3):939–946. doi: 10.1016/0006-291x(80)91467-9. [DOI] [PubMed] [Google Scholar]
  9. Hokland B. M., Bremer J. Metabolism and excretion of carnitine and acylcarnitines in the perfused rat kidney. Biochim Biophys Acta. 1986 Apr 29;886(2):223–230. doi: 10.1016/0167-4889(86)90140-0. [DOI] [PubMed] [Google Scholar]
  10. Jones S. M., Yeaman S. J. Oxidative decarboxylation of 4-methylthio-2-oxobutyrate by branched-chain 2-oxo acid dehydrogenase complex. Biochem J. 1986 Jul 15;237(2):621–623. doi: 10.1042/bj2370621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lee S. H., Davis E. J. Amino acid catabolism by perfused rat hindquarter. The metabolic fates of valine. Biochem J. 1986 Feb 1;233(3):621–630. doi: 10.1042/bj2330621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lee S. H., Davis E. J. Carboxylation and decarboxylation reactions. Anaplerotic flux and removal of citrate cycle intermediates in skeletal muscle. J Biol Chem. 1979 Jan 25;254(2):420–430. [PubMed] [Google Scholar]
  13. Livesey G., Lund P. Methionine metabolism via the transamination pathway in rat liver. Biochem Soc Trans. 1980 Oct;8(5):540–541. doi: 10.1042/bst0080540. [DOI] [PubMed] [Google Scholar]
  14. Mudd S. H., Finkelstein J. D., Irreverre F., Laster L. Transsulfuration in mammals. Microassays and tissue distributions of three enzymes of the pathway. J Biol Chem. 1965 Nov;240(11):4382–4392. [PubMed] [Google Scholar]
  15. Scislowski P. W., Davis E. J. Amino acid catabolism by perfused rat hindquarters: degradation of threonine and isoleucine. Arch Biochem Biophys. 1986 Sep;249(2):620–624. doi: 10.1016/0003-9861(86)90042-1. [DOI] [PubMed] [Google Scholar]
  16. Steele R. D., Benevenga N. J. The metabolism of 3-methylthiopropionate in rat liver homogenates. J Biol Chem. 1979 Sep 25;254(18):8885–8890. [PubMed] [Google Scholar]
  17. Stipanuk M. H. Metabolism of sulfur-containing amino acids. Annu Rev Nutr. 1986;6:179–209. doi: 10.1146/annurev.nu.06.070186.001143. [DOI] [PubMed] [Google Scholar]
  18. Stokke O., Bremer J. A simple method for preparation of methyl-labelled (-) carnitine. Biochim Biophys Acta. 1970 Dec 15;218(3):552–554. doi: 10.1016/0005-2760(70)90021-4. [DOI] [PubMed] [Google Scholar]
  19. Xue G. P., Snoswell A. M. Quantitative evaluation and regulation of S-adenosylmethionine-dependent transmethylation in sheep tissues. Comp Biochem Physiol B. 1986;85(3):601–608. doi: 10.1016/0305-0491(86)90055-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES