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The derivation and interpretation of control coefficients
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1. Equations for control coefficients are derived by using a method that generates all the control coefficients
for a system in a single procedure. This requires solving fewer simultaneous equations than an equivalent
method based on ‘control theorems’. 2. The interpretation of control coefficients is discussed : in particular,
it is shown that these functions are unsatisfactory as measures of ‘control’ and are perhaps best used as

a means of testing control theories (models).

1. INTRODUCTION

The strength of a metabolic control system can be
measured as the relative change in the response to a given
relative change in stimulus. When the changes are ‘near-
infinitesimal’, the resulting functions are differential
coefficients, which we prefer to call ‘sensitivities’ [1]. A
group of workers has recently proposed a very different
system of nomenclature (see [2,3]), which, since it is
based on a general ‘systems’ approach [4,5], is not
suitable for our ‘flux-orientated’ approach [1]. However,
the ‘systems’ approach has identified an important class
of sensitivities, which have been termed ‘control coeffi-
cients’ [2,3]. These sensitivities describe the response of
a flux and its associated metabolic intermediates to an
infinitesimal change of an enzyme activity. For example,
the control coefficients for the system in Fig. 1 are (i) the
sensitivities of the flux, J, to changes in the activities of
the enzymes E, and E, (sg, sz ) and (ii) the sensitivities
of the internal effector, S, to cﬁanges in the activities of
E, and E, (s}, 53 )- Although we believe that the term
‘control coefficient’ is inappropriate, because these
sensitivities do not measure physiological ‘control’ (see
section 4), it is now in such widespread use that confusion
would only result from proposing a more logical name.
However, we prefer to use the symbol ‘s’, instead of the
recommended symbol, ‘C’, to make it clear that control
coefficients are just a special type of sensitivity.

Control coefficients are useful because they can be
measured experimentally without requiring any know-
ledge of the nature of the internal communications that
control the flux; these measured values can therefore be
used to test the validity of proposed theories (models)
describing these internal communications. For this it is
necessary to be able to derive control coefficients from
the component sensitivities of the assumed model(s), and
this can be done by using several procedures. One
procedure is based on ‘control theorems’, which are
relationships between the control coefficients themselves
(e.g. ‘summation’ theorems) or between the control
coefficients and other component sensitivities (‘con-
nectivity’ theorems) [3,4,6,7]. Another procedure in-
volves a simultaneous solution of the set of rate equations,

in either differential (linear) form [8] or as power
equations [1,9]. We prefer to use rate equations, because
it is a more direct procedure that can be used to calculate
the overall sensitivity of any communication sequence
(and not just control coefficients). Moreover, with
complex systems involving extensive branching and
different types of flux, the use of control theorems
becomes very cumbersome (e.g. [10]) and requires a
much larger number of equations to obtain the entire set
of control coefficients (section 3).

The present paper outlines a systematic method, based
on elementary matrix algebra, in which the component
rate equations (in differential linear form) are used
directly to derive algebraic expressions for all the control
coefficients of a system in a single procedure.

2. GENERATION OF CONTROL COEFFICIENTS
DIRECTLY FROM RATE EQUATIONS AND
BRANCHING EQUATIONS

We have previously used power equations [9] to
calculate the overall sensitivity of a complex response [1].
Although this method is straightforward (and has the
advantage of using equations that resemble those of
chemical Kkinetics), it is preferable to express the
component equations in linear rather than power form
when solving for a large number of sensitivities. This is
because a set of linear equations can be solved
simultaneously by standard procedures (e.g. by using
determinants or substitutions; see ref. [11]). However, a
manual solution becomes increasingly tedious as the
number of equations increases; consequently, a solution
by computer is essential for most metabolic systems, and
this is aided by writing the equations in matrix form (see
[5], [6], [7] and [9]). Since matrix representations also
provide a very concise way of writing the set of equations
and, in particular, of indexing their solutions, they
provide a very useful basis for the general method
outlined in the present paper, even with systems that are
not sufficiently complex to require solving by computer.
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(i) Simple linear flux (Fig. 1)

The simple system outlined in Fig. 1 has been analysed
by several workers (e.g. [1], [4], [5] and [8] and the rate
equations for its component reactions, E, and E,, can be
written in the following linear form [1,8,9]:
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where the notation X denotes an infinitesimal relative

change [X = dX/X or d(InX)] and o, u, ¥ and é represent
the respective intrinsic sensitivities (Fig. 1).

These two equations may be solved simultaneously, by
simple substitution, to obtain the changes in variables J
and S, in response to given changes in X and Y. For

r .
example, when Y =0, solving the two equations

gives: r
joreX
(n+0)

where ¢ = — . Consequently, the intrinsic sensitivity of

J to X, i.e. the infinitesimal response when all other
regulators are held constant [1], is given by the equation:

st=1/X
_rn
n+o
However, to calculate control coefficients (as opposed
to discussing their physiological significance; section 4),
there is no need to specify the nature of the regulator,

and the above rate equations may be written more
generally as:

.rl=(r'é+él
j=/l'é+Er,2

where the term ‘E’ represents the effect of unspecified
totally external regulators [8]; the control coefficients are
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Fig. 1. Simple linear flux

S is an internal effector of flux J, whereas X and Y are
totally external effectors: o (=sp) and g (= sE:) are
component, and in this case intrinsic, sensitivities (see [1]).
In more complex systems (e.g. Fig. 3) the component
sensitivities may be complex functions of the intrinsic
sensitivities. +—— denotes saturation with substrate
A [1], which means that the interactions of X and S with
E, do not include any competitive components with
respect to A.
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then obtained as the ratios i/él, j/ Er.z, é/Erland é/Er2
For example, solving the equations by simple substitu-
tion:

s, = .;/Er.l (when E, = 0)

= _#
p+o
where ¢ = —o.

However, these equations and their solutions can be
expressed more concisely in matrix form. To do this, the
original linear equations are written with all the variables
on the left-hand side and all the external interactions on
the right-hand side, i.e.:

r r

J—o-S= E,

_/"é=Er‘2

g

The matrix representation is then:

= 0]

The format of this matrix equation is quite straight-
forward. Each row across the entire representation
represents one of the original linear equations. On the
right-hand side no changes occur, but on the left-hand

r r
side the variables (J, S) are placed in a separate matrix
r

from their coefficients (x and o for S; 1 for J). The order
in which the variables appear in their ‘single-column’
matrix (referred to as a ‘vector’) is determined by the
order in which rthey appear in the original equations:

since J precedes S in the original equations (reading from

left to right), J is placed above S in the vector of variables
(for further details see refs. [11] and [13].

The matrix equation is solved by applying ‘trans-
formations’, which involve the addition and subtraction
of appropriate multiples of the rows of each matrix to
each other, until the square matrix on the left-hand side
becomes the ‘identity’ matrix. (These transformations
are only applied to the square matrix and the vector on
the right-hand side: the vector of variables is not
transformed). The solution is then obtained from the
r%ws of the resulting solution vector on the right-hand
side.

A possible sequence of transformations for eqn. (1) is
as follows: (i) subtract row 2 from row 1; (ii) add [0/
(o —m))xrow 2 to row 1; (iii) divide row 2 by (o —u).
These result in the equation:

1 ol |J %—(Ez—ElHE,
A=177 . (1a)
0 1 el 2

where the square matrix on the left-hand side is the
(2 x 2) identity matrix. No terms in S now appear in the
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top row of the representation, which may be written out
(expanded) as follows:

r o r r r
J= o___—/:(E2—El)+El 2

Similarly, no terms in J appear in the bottom row, which
may be expanded as:

[an—y

S= —”(E :—E,) 3
From eqn. (2) the control coefficient, s{,ﬁ, is given by the
equation:

r r

sg, =J/E, (when E, =0)

o

=1-—"_

o—p

=4
p+a

Since s{; < 1, the net sensitivity of J to any regulator of
E, is less than the intrinsic sensitivity of E, to that
regulator this is because the action of regulators of E,
(e.g. X) is opposed by changes of S (see {1]).

Also from eqn. (2):

5. =J/E, (when E, =0)
_ a
_ﬂ+&

Similarly, from eqn. (3), the control coefficient, 5%, is
given by the equation:

Sk, = é/]l:l1 (when E, =0)

Since s > 0, activation of E, tends to increase S, as
would be expected from the model
Also from eqn. (3):

st,=S/E; (when E, =0)

1

p+a

Since s < 0, activation of E, tends to decrease S, which
is also as expected from the model.

Values for the control coefficients can therefore be
calculated from the values of the component sensitivities,
4 and o, which in turn are obtained from the Kkinetic
parameters of the reactions in situ (see [1] and [3]).

The above analysis shows that all four control
coefficients for the system occur as coefficients of the
respective ‘E’ terms in the solution vector of eqn. (1a):

those forJ occur in the first (j) row and those for S occur

in the second (S) row. In general, the control coefficient,
sg, *"'¢, is the coefficient of E, in the row of the solution
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vector corresponding to that variable. The use of matrix
methods therefore provides a very straightforward and
concise way of deriving all the control coefficients and of
indexing their positions in the final solution vector. As
mentioned above, matrix representations are also ap-
propriate for a solution by computer, which is essential
for metabolic systems. Moreover, recent developments in
computer technology [14] should soon be able to provide
algebraic solutions of the set of rate equations, thereby
giving the actual equations for the control coefficients
directly.

The effects of specific external regulators, e.g. X and Y
(Fig. 1), may be re-incorporated as the product of the
control coefficient and the relevant intrinsic sensitivity
[1,4), and this should always be done before assessing
the physiological importance of a control site [15,16].
Thus:

If enzyme-bound intermediates transmit the flux
between reactions (so that the enzyme plays more than
just a catalytic role; ref. [12]), these must be included in
the rate equation. For example, in the sequence:

S+e=eP—>Q

Vr

B (F)

where enzyme-bound P (eP) is used directly by reaction
F, the rate equation for E is:

p=R-S+R-e—(R—1)-eP+E

where R = v,/v (see ref. [1]). The extra variable, ::, can be
removed by using the ‘enzyme conservation’, e +eP = E,
(which, in differential form, becomes e-e+€P-€eP = 0),
to give the equation:

o= R-S—[R-(E,/e)—1]-eP+E

(ii) Simple branched flux (Fig. 2)

This system (which is also analysed in refs. [1] and [8])
consists of three fluxes J, J, and J, which are all of the
same type, i.e. carbon or C fluxes [1], and the rate
equations (in linear form) are as follows:

For E,:

j a: §+F:1
For E,:

J,=B-S+E,
For E;:

3y ='}"é+Er3

Since there are now four variables (J, J,, J, and S) a
complete solution requires a fourth equation, which is
provided by the branch-point relationship:

) S N
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Fig. 2. Simple branched flux

As in Fig. 1, the Greek letters denote component
sensitivities and -+—= denotes saturation with A.

which may be written as:
33 =30 40,0,

(see [1]). Writing the four equations in matrix form as
explained in section 2(i):

1 0 0 —-a

g ™t
[es
-

-

®
-
~

1 0 -8

0
0 0o 1 —y||J
3 -3, -1, o||S

o
°© m.
w

As in the previous example, each row across the entire
matrix represents one of the linear equations, and the
order of the variables in their vector is that in which they
appear in the original equations. By the use of trans-
formations similar to those outlined previously, this set
of equations eventually becomes:

100 oll] E,+ %( é+‘%l§2+%és)
01 0 offJ %( +%F:2+%Ers)
001 0||J ) %( +!J3Er,+%h£3)
000 1||S —5(—15 %éﬁ% ra)

where D = (a—ﬂ%—y%) and the square matrix on the

left-hand side is the (now 4 x 4) identity matrix.
As before, the solution vector on the right-hand side
contains all the control coefficients of the system as the

r
coefficients of the relevant E terms. Thus sz is the
r r
coefficient of E, in the J (first) row, so that:

a
e, =1-7
_ ﬂJa+7Jb
a+pY,+vI,
where @ = —a (since a < 0).

B. Crabtree and E. A. Newsholme

Similarly, s_is the coefficient of E, in the S (fourth)
row, so that:

J,
%=DJ
— _Jb
al+pJ, +yJ,

(This control coefficient is negative because an increased
activity of E, tends to decrease S.) As before, all the
control coefficients are contained in the final solution
vector, and can then be combined with the interaction of
specific regulators: for example, the sensitivity of flux. J
to the external regulator X (Fig. 2) is obtained from the

equation:
sx =@ 5%

_ BB+
(@T+ BT, +7y)

(iii) Branched system with different types of flux (Fig. 3)

In this system, which is designed to illustrate some of
the principles involved in the regulation of glycolytic
ATP production [15], there are both carbon (C) and
‘energy’ (E) fluxes (i.e. fluxes of ATP to ADP). If n is not
equal to m, this system provides a complex feedback in
which a change in J, (= lactate production) or J,
(= pyruvate oxidation) changes the net yield of ATP by
glycolysis and hence changes the total rate of glycolysis,
J, as a result of the effect of ATP on J. This effect of J,
or J, on J occurs in the absence of any direct feedback
from either branched flux to J and would be overlooked
if attention were concentrated only on these three carbon
(C) fluxes. It should also be noted that, in this system, y
is not an intrinsic sensitivity, because it includes the
interactions of ATP with other important auxiliary

(&)

1
|
|
z
(Jp)
Fig. 3. Complex branched system with carbon and energy (ATP)
fluxes

This system illustrates some basic principles involved in
the control of glycolysis by ATP and related metabolites;
however, it is not a full control model of this pathway. The
system contains carbon (C) fluxes (J, J, and J,) and
‘energy’ (E) fluxes (U = other ATP-producing pathways;
T = ATP-using pathways, mJ, and nJ,). For simplicity
each component flux is shown as a single reaction catalysed
by ‘single enzyme activities’ E,—E,. In practice E,-E;
represent the net effects of all component regulatory
reactions; for example, E, represents the overall effect of
all the enzymes in flux U that communicate with U. For
further details see the text.
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Calculation and interpretation of control coefficients

regulators of glycolysis, for example ADP, AMP and
P, (see [1]): an intrinsic sensitivity to ATP describes the
response when the concentrations of these other regula-
tors remain constant.

As previously, the five rate equations for the system
are written in their linear forms:

(1) U= g-ATP+E,
@) T=a-ATP+E,
(3) J=y-ATP+E,
@) J, = 8-Pyr+E,

(5) J, = ¢-Pyr +E,

In addition, there are now two branch-point conservation
equations, one for the C flux:

3 I=1,-3,43,J,
and one for the E flux:
T-T=U-Utml,-J +nl,-J,

The above seven equations form the following matrix
equation:

100 o o o -pgllU E,
010 0 0 0 —aflT E,
001 0 0 0 —y||J E,
000 1 0o s oflr |=|E
000 0 1 —e  of|J, E,
0013 —-J, -J 0 of|py 0
~UT 0 —mJ, —nJ, 0 Of|ATP 0

which, although more complex than those of the previous
examples, can be transformed in exactly the same way to
give the equation:

U

Ix

\?- e ’H" b

T

ATP
where 1 is the (7 x 7) identity matrix and the components
of the right-hand side solution vector, V, are given in
Table 1.
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As before, the solution vector V contains all the

r

control coefficients as coefficients of the respective E
terms. For example, the control coefficient of * glycolys1s

(J) with respect to E, is the coefficient of E in the J
(third) row of V (Table 1); so that:

s =%I"y'J-U

~ Uy(8J, +€ly)
= @T—Up)- (83, +el,)— Jy(dm], +enl,)

and this function can then be used to calculate the
sensitivity of J to the external regulator W, by using the
equation:
Sw = stw y;;x
With this system it is interesting to consider the
sensitivity of flux J to regulator Z. The required control
coefficient, i.e. the control coefficient of J with respect to

reaction E,, is the coefficient of ]53 in the J (third) row of
vector V (Table 1):

o _dYaT-Up)

Eg x

This function is zero if @ and U are both zero, i.e. if E,
is saturated with ATP and all the ATP derives from J (a
situation which may occur in the flight muscles of some
insects, notably flies and bees, during flight ; see refs. [17]
and [18]). Consequently, under these conditions, a
‘titration’ of flux J with regulator Z (Fig. 3) would give
a flux control coefficient of zero. If control coefficients
are interpreted as measuring the ‘control’ of J exerted by
E, (e.g. [19] and [20]), it would then be concluded that
E, is not regulatory for J. However, as can be appreciated
from Fig. 3, the control of J is actually exerted, via ATP,
at E;, which communicates with, and therefore is
regulatory for, J [1]. This apparent paradox can be
resolved by noting that control coefficients, measured
experimentally, relate to the interaction of totally external
regulators (i.e. ‘open’ regulatory sequences); they do not
relate to, and hence do not detect, ‘closed sequences’
initiated by ‘partially external’ regulators, such as the
interaction of ATP with E, and hence J in this system [15]
(these terms, which, in our approach, are always defined
relative to a given flux, are explained in more detail in
section 5). In the extreme situation when U =0 and a =
0, the control of J is exerted totally by the closed
sequence; no ‘open’ regulatory sequences for J can then
be initiated at E,, and hence the control coefficient, 53 ,
is zero. Since even a qualitative analysns of the control of
any given flux must include both ‘open’ and ‘closed’
regulatory sequences, a function relating to only one of
them is not satisfactory even as an ‘index’ of control,
unless the discussions are concerned specifically with
totally external interactions. In other words, physio-
logical control cannot always be simulated by ‘adding
enzymes’ to systems.

3. CALCULATION OF CONTROL COEFFICIENTS
BY USING CONTROL THEOREMS

Control coefficients may also be derived by using
relationships referred to as ‘summation’ and ‘connec-
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Table 1. Components of vector, V, for the system in Fig. 3

B. Crabtree and E. A. Newsholme

Row Vector V

1(0) E,+ J’; Jbé5+1,1'~:4—1é3)+’3;’ Jy(nJ,,i;+mJ,1'5,+Uél—Tl'a,)—(aT—ﬂU)(Jbé5+J,é,—Jl'-:s)]
2(T) E,+ J"; J,E,+1.E,~JE, +%J'y(an]ris+mJné4 +UE, —Tfaz) —(aT— ﬂU)(Jb]rE5+J&lrE4 —Jés)]
3() lr53+%(.lblr55+J‘lr:',4—J]§,)+—[J-y(anlr55+mJ E,+UE,—TE ) (aT— ﬂU)(JbIri5+J,lr34—Jlris)]
40) é,+g[J'y(ané5+mJ E,+UE, TE) (aT—ﬂU)(Jbé5+J.é4—Jé,)]

53 E, +° J‘y(an]ris +m),E,+UE, —Té,) - (aT - ,S'U)(J,,é5 +1,E,— Jéa)]

6 (Pyr) le J,E,+J.E, —Jéa) +g[J'y(an]r35 +ml,E, +UE, —Téz) - (aT— ﬂU)(Jblr?.s +1,E, —Jéa)]

7 (ATP) %{Jy(n]bfis +m) E, +UE, —Téz) - (aT - ﬁU)(Jbé, +1,E, —Jés)]

where  g= ‘”“J“ o and x = (T —BUYGY, +e,)— Jy(omJ, +enl,)

tivity theorems [6,7,21]. With simple systems (e.g. those
in Figs. 1 and 2) this procedure is quite satisfatory,
although less direct than solving a set of rate and branch-
point equations. However, with more complex systems
such as that in Fig. 3, the theorems become extremely
complicated (e.g. [10]). Moreover, as the number of
reactions increases, the approach based on theorems
becomes less efficient for generating equations for all the
control coefficients of the system. By using the method
outlined in the present paper, all the control coefficients
are obtained by solving (r+ b) simultaneous equations,
where r is the number of reactions and b is the number
of branch points. However, when control theorems are
used, the control coefficients themselves become the
variables, instead of the (r+ b) system variables such as
J, J,, J, etc. Since each system variable generates r
control coefﬁments of the type sv‘;"‘“"‘e the total number

of such coefficients is r-(b+r). Consequently, to derive
equations for all the control coefficients of a system by
using control theorems, it is necessary to solve r-(b+r)
simultaneous equations, which is r x the number involved
when using the set of rate and branch-point approxi-
mations. For example, the system in Fig. 1, for which
r =2 and b = 0, has four control coefficients (s; , Sk Sk
and s3) and therefore four (i.c. r?) equations (two
summation and two connectivity theorems) are required
for a solution based on control theorems. However, only
two (i.e. r) equations are needed to derive all four control
coefficients when using the set of rate equations directly
[sectlon 2(1)].

It is therefore more efficient to derive equations for
control coefficients directly from the set of rate and
branch-point approximations, especially when the
number of reactions (r) is large.

4. HOW SHOULD CONTROL COEFFICIENTS BE
INTERPRETED?

It is important to realize that ‘control coefficients’
measure only the response of a system variable (e.g. a
flux) to an infinitesimal change of an enzyme activity.
They do not therefore measure the ‘control exerted’ in
any physiological sense of that term. The reasons for this
have been discussed in detail elsewhere [1,15,16], and so
only a brief summary is given here.

Firstly, since all metabolic sensitivities vary continu-
ously during a physiological (i.e. ‘large’) response
[1,4,20,22], a single value referring only to an infinitesimal
response does not reflect the overall ‘strength’ of the
corresponding physiological response. This limitation
also applies to the use of control coefficients for
pharmacology or genetic engineering. For example, if
two sites have measured control coefficients of 0.3 and
0.7, these values do not necessarily indicate that the latter
is a better site for large external interactions (i.e.
‘engineering’). In other words, the values of control
coeflicients can only serve to identify possible sites for
external interaction and should not be used to rank them
in order of importance. This also means that, for this
type of analysis, it is unnecessary to determine control
coefficients with high accuracy: a semi-quantitative
approach similar to that developed by Rognstad [23]
may be sufficient.

Secondly, because control coefficients relate to ‘enzyme
activities’, they do not include the interactions of the
totally external regulators that produce these changes in
enzyme activity in situ [partially external interactions are
included, as discussed in sections 2(iii) and 5]. However,
these totally external interactions may be major factors
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determining the importance of an enzyme as a control
site in situ. For example, if an enzyme having a low flux
control coefficient interacts with a totally external
regulator (e.g. a hormone) having a large intrinsic
sensitivity, the net sensitivity of the flux to that regulator
(i.e. the product of the control coefficient and the
intrinsic sensitivity [1]) may be sufficiently large to make
the enzyme an important control site. This situation
could arise when the interaction of the regulator involves
a system of enzymically interconvertible forms, which, in
theory, can provide a very high intrinsic sensitivity [1,24].
At the other extreme, an enzyme may have a measurable
flux control coefficient (i.e. be a potential regulatory site)
and yet have no physiological regulators [15]. Such
‘inactive’ or ‘silent’ regulatory sequences clearly play no
part in controlling the flux under physiological conditions
and therefore the values of their flux control coefficients
do not reflect (even qualitatively) the physiological
‘control’ exerted by these reactions.

Thirdly, as shown in section 2(iii), the operation of a
‘closed’ regulatory sequence resulting from the inter-
action of a ‘partially external’ regulator can provide
physiological control that is not detected by control
coefficients; in an extreme situation this can result in a
flux control coefficient of zero at a reaction that is
nevertheless an important physiological control site.

Consequently, we believe that control coefficients do
not reflect (even qualitatively), and therefore should not
be used to measure, thé&# control™exerted by a site or an
enzyme under physiologic# ‘conditions. However, we
accept that some workers find these functions preferable
to a purely qualitative description and, provided that the
above limitations are fully recognized, control coefficients
can serve as approximate ‘indices’ of totally external
control.

In our opinion control coefficients are important
because they can be measured experimentally [3,7,22,25]
without making any assumptions about the nature of the
internal interactions that provide the control (i.e. the
communications that comprise the rate equations). A
comparison of experimental values with those calculated
theoretically (as described in the present paper) therefore
provides an additional method for testing the validity of
the rate equations (i.e. the control model). Indeed, it
must be stressed that the values of any control coefficients,
calculated theoretically, that have not been subjected to
experimental testing (e.g. those for gluconeogenesis in
ref. [21]) apply only to the assumed control model and
not necessarily to the relevant pathway or flux in situ.
For example, if the branched system consisting of J, J,
and J, in Fig. 3 had been modelled by ignoring its
interactions with fluxes U and T, the calculated value of
s3. would be unity. However, because of the (averlooked)
inflibitory effect of ATP (y), this value would be greater
than that measured experimentally, e.g. by ‘titration’
with Z; indeed, as shown above, if « and U are both zero,
sz, Wwill be zero. Without such a comparison of
experimental and theoretical values the erroneous model-
ling would almost certainly go undetected. However, we
do not suggest that a simple test of experimental versus
theoretically calculated control coefficients will always
validate (or otherwise) a model. Errors in both the
measured coefficients and in the kinetic data needed to
calculate them will often make the result of such a test
less clear-cut. Nevertheless, it can provide a valuable
additional test to complement the more familiar ones
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[26,27]. In fact an example already exists. In a study of
the control of aromatic amino acid metabolism [25],
control coefficients measured by techniques such as
inhibitor titration and hormonal manipulations agreed
well with those calculated theoretically by using what the
authors described as ‘simple minded assumptions’ (i.e. a
very simple control model), thereby validating this
simple model.

These cautionary notes apply especially to procedures
for calculating theoretical values of control coefficients
for pharmacological or microbiological ‘engineering’
[6,7]. Since these calculations require a full knowledge of
the internal control structure of the pathways and since
this information is very unlikely to be available, any
control coefficients derived in this way will be conjectural
and potentially misleading. Moreover, if the control
structure is known, it would be preferable to use it
directly to simulate the actual physiological or pharmaco-
logical responses, instead of basing conclusions on
control coefficients that apply only to infinitesimal
changes.

5. CONTROL COEFFICIENTS AND ‘CLOSED’
REGULATORY SEQUENCES

Metabolic systems frequently involve the sharing of
intermediates (especially cofactors such as adenine and
nicotinamide nucleotides) between fluxes. One example
has already been discussed in relation to glycolytic ATP
production [section 3(iii)], and its essential characteristics
are outlined below:

X[-=---=== + (other fluxes)]

«—-------N

\
/
| €——

A - > (flux = J)

E, E,

Metabolite X is a regulator of flux J, but is shared
between J and other, unspecified, fluxes. Since the sharing
of X between the fluxes means that its concentration is
partially determined by J, X is termed a °‘partially
external’ regulator of J and its interaction with J forms
a ‘closed’ regulatory sequence for J [15]. In contrast, the
concentration of Z is not determined (even partially) by
J; Z is therefore a totally external regulator of J and its
interaction forms an ‘open’ regulatory sequence for J
[15].

Since a change in concentration of the partially external
regulator, X, does not affect that of a totally external
regulator such as Z, the response of J to X may be
calculated by treating J as if it were completely ‘open’,
i.e. by assuming that X is a totally external regulator. A
‘pseudo flux-control coefficient’, s}, _, is then derived
and sy is calculated as the product’ of this and the
intrinsic sensitivity, s&. (The nature of the subscript of
the pseudo flux-control coefficient indicates that it is
specific for the interaction of X, and does not apply to
other regulators such as Z.)

However, since [X] is partially determined by J and
hence by [Z], changes of [Z] will result in changes of [X],
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which must therefore be included in any quantitative
analysis of the response of J to Z. Consequently, in this
case the relevant control coefficient cannot be calculated
by treating J as a completely ‘open’ structure, i.e. by
ignoring X. This raises a problem because, in terms of the
matrix equations, the changes of [X] add an extra

variable, X, which is not matched by a corresponding
equation; consequently, there are more variables than
equations and the system of equations cannot be solved
uniquely. The most satisfactory way of resolving this
problem would be to incorporate the unspecified fluxes
to form a completely open system; for example, the
control coefficients for flux J in Fig. 3 are calculated from
a wider system involving fluxes U and T, which together
form a completely open structure. Unfortunately, this is
usually not possible in practice, because the ultimate
‘open’ structure may include the entire metabolism of
the cell or even the organism!

An alternative solution would be to measure changes
of [X] experimentally and eliminate X by using an
empirical function relating [X] to changes of J. However,
this may be difficult technically because of the problems
associated with measuring intracellular metabolite con-
centrations (see [1]).

Since erroneous values for control coefficients, and
hence sensitivities to regulators, will often result from
treating a complex metabolic pathway as a completely
‘open’ regulatory structure (e.g. [21]), problems caused
by the operation of partially external regulators (a class
to which most common regulators belong) will have to
be seriously considered in future quantitative analyses of
metabolic control systems.
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