Table 5.
Accuracy (%) and F1 Score comparison of the SVM with other classifiers for individual RSI item classification on Caltech ADOS video datasets using “Top3” scenario fusion.
Classifier | B01 | B02 | B03 | B04 | B05 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Accu. | F1 | Accu. | F1 | Accu. | F1 | Accu. | F1 | Accu. | F1 | |
MLP (Werbos, 1974) | 78.33 | 0.75 | 40.56 | 0.39 | 78.06 | 0.75 | 59.44 | 0.55 | 61.67 | 0.61 |
ResNet50 (He et al., 2016) | 78.61 | 0.75 | 47.78 | 0.44 | 78.89 | 0.75 | 61.67 | 0.54 | 57.50 | 0.56 |
SVM (Cortes, 1995) | 83.06 | 0.78 | 45.00 | 0.45 | 83.06 | 0.78 | 68.89 | 0.65 | 52.50 | 0.53 |
Classifier | B06 | B07 | B08 | B09 | B10 | |||||
Accu. | F1 | Accu. | F1 | Accu. | F1 | Accu. | F1 | Accu. | F1 | |
MLP (Werbos, 1974) | 37.78 | 0.38 | 64.17 | 0.65 | 50.28 | 0.49 | 61.94 | 0.61 | 56.94 | 0.57 |
ResNet50 (He et al., 2016) | 57.22 | 0.53 | 59.44 | 0.58 | 47.78 | 0.40 | 71.11 | 0.64 | 42.22 | 0.40 |
SVM (Cortes, 1995) | 42.78 | 0.41 | 66.39 | 0.65 | 49.44 | 0.47 | 64.44 | 0.61 | 51.94 | 0.51 |
Classifier | B11 | B12 | B13 | |||||||
Accu. | F1 | Accu. | F1 | Accu. | F1 | |||||
MLP (Werbos, 1974) | 69.17 | 0.65 | 50.00 | 0.50 | 52.22 | 0.52 | ||||
RestNet50(He et al., 2016) | 64.44 | 0.58 | 47.22 | 0.44 | 54.44 | 0.55 | ||||
SVM (Cortes, 1995) | 66.94 | 0.63 | 47.50 | 0.48 | 56.67 | 0.57 |
The best results are highlighted by bold.