Skip to main content
. 2024 Oct 3;18:1435091. doi: 10.3389/fninf.2024.1435091

Table 5.

Accuracy (%) and F1 Score comparison of the SVM with other classifiers for individual RSI item classification on Caltech ADOS video datasets using “Top3” scenario fusion.

Classifier B01 B02 B03 B04 B05
Accu. F1 Accu. F1 Accu. F1 Accu. F1 Accu. F1
MLP (Werbos, 1974) 78.33 0.75 40.56 0.39 78.06 0.75 59.44 0.55 61.67 0.61
ResNet50 (He et al., 2016) 78.61 0.75 47.78 0.44 78.89 0.75 61.67 0.54 57.50 0.56
SVM (Cortes, 1995) 83.06 0.78 45.00 0.45 83.06 0.78 68.89 0.65 52.50 0.53
Classifier B06 B07 B08 B09 B10
Accu. F1 Accu. F1 Accu. F1 Accu. F1 Accu. F1
MLP (Werbos, 1974) 37.78 0.38 64.17 0.65 50.28 0.49 61.94 0.61 56.94 0.57
ResNet50 (He et al., 2016) 57.22 0.53 59.44 0.58 47.78 0.40 71.11 0.64 42.22 0.40
SVM (Cortes, 1995) 42.78 0.41 66.39 0.65 49.44 0.47 64.44 0.61 51.94 0.51
Classifier B11 B12 B13
Accu. F1 Accu. F1 Accu. F1
MLP (Werbos, 1974) 69.17 0.65 50.00 0.50 52.22 0.52
RestNet50(He et al., 2016) 64.44 0.58 47.22 0.44 54.44 0.55
SVM (Cortes, 1995) 66.94 0.63 47.50 0.48 56.67 0.57

The best results are highlighted by bold.