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ABSTRACT: Successful integration of point-of-care testing (POCT) into clinical
settings requires improved assay sensitivity and precision to match laboratory
standards. Here, we show how innovations in amplified biosensing, imaging, and
data processing, coupled with deep learning, can help improve POCT. To
demonstrate the performance of our approach, we present a rapid and cost-
effective paper-based high-sensitivity vertical flow assay (hs-VFA) for quantitative
measurement of cardiac troponin I (cTnI), a biomarker widely used for measuring
acute cardiac damage and assessing cardiovascular risk. The hs-VFA includes a
colorimetric paper-based sensor, a portable reader with time-lapse imaging, and
computational algorithms for digital assay validation and outlier detection.
Operating at the level of a rapid at-home test, the hs-VFA enabled the accurate
quantification of cTnI using 50 μL of serum within 15 min per test and achieved a detection limit of 0.2 pg/mL, enabled by
gold ion amplification chemistry and time-lapse imaging. It also achieved high precision with a coefficient of variation of <7%
and a very large dynamic range, covering cTnI concentrations over 6 orders of magnitude, up to 100 ng/mL, satisfying clinical
requirements. In blinded testing, this computational hs-VFA platform accurately quantified cTnI levels in patient samples and
showed a strong correlation with the ground truth values obtained by a benchtop clinical analyzer. This nanoparticle
amplification-based computational hs-VFA platform can democratize access to high-sensitivity point-of-care diagnostics and
provide a cost-effective alternative to laboratory-based biomarker testing.
KEYWORDS: cardiovascular disease, vertical flow assay, point-of-care, high sensitivity, troponin, nanoparticle amplification, deep learning

INTRODUCTION
Cardiovascular diseases (CVDs) present a major public health
challenge worldwide, representing a leading cause of mortality,
with approximately 19.1 million deaths in 2020, accounting for
roughly 32% of global deaths, and imposing a significant
financial burden on patients and healthcare systems.1,2 From a
socioeconomic standpoint, the incidence of CVDs shows an
inverse correlation with income, with more than 80% of CVD-
related deaths globally reported in low- and middle-income
countries, exacerbating the global burden of CVDs shifting to
these regions.3 Similarly, within the U.S., the burden of CVDs
is increased in lower-income communities.4,5 Amid the
spectrum of CVDs, acute myocardial infarction (AMI),
commonly referred to as a heart attack, is a particularly critical
event characterized by a sudden and severe impairment of
blood flow due to a blockage of the coronary artery.6 Chest

pain that may indicate AMI is a primary reason for emergency
department visits, with suspected AMI patients accounting for
∼10% of all emergency department visits.7 Furthermore, AMI
stands as a paramount contributor to sudden death, with its
swift onset and severe consequences, making it a primary
concern in cardiovascular emergencies.8

To date, numerous clinical care advancements related to
AMI have benefitted from laboratory-based high-sensitivity
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(hs) cardiac troponin I (cTnI) assays.9,10 cTnI is a protein
specific to myocardial cells and is released into the blood-
stream in the case of myocardial damage, making it the gold
standard biomarker for the diagnosis of AMI.5 The latest
clinical guidelines, based on the fourth universal definition of
myocardial infarction,11 prioritized the identification of
myocardial injury by small increases in cTnI levels as an
essential measure in diagnostic algorithms along with other
evidence (e.g., electrocardiography or imaging), thereby
reinforcing the role of cTnI measurement in the diagnosis of
AMI. Currently available, clinically deployed benchtop hs-cTnI
assays can quantify cTnI at low concentrations (typically a few
pg/mL) at or below the 99th percentile upper reference limit
(URL) or in more than 50% of the healthy population with a
high precision (coefficient of variation [CV] ≤ 10%),12

providing opportunities for early diagnosis, rapid rule-in/rule-
out, risk categorization, and prognostic applications.9,10,13

However, laboratory-based hs-cTnI assays and readout instru-
ments are relatively expensive and bulky and require
specialized/trained operators. As a result, they are mainly
available in large hospitals with well-developed medical

infrastructure, making these assays inaccessible to low-income
regions. Underserved populations in these regions have a
higher prevalence of AMI,4,5 and the need for rapid and
accurate diagnosis is critical.7,14,15 Even in cases where a
patient suspected of AMI reaches the hospital within the
golden hour (the first hour after the onset of symptoms), the
medical protocol conventionally followed is complicated and
multistep (i.e., ordering a test from a healthcare provider,16

collecting and transporting a specimen to a central facility,
processing the specimen, and reporting the results; see Figure
1a). Turnaround times for this procedure can take over several
hours,17 further compounded by a 2−3 h waiting period that
patients with intermediate cTnI levels (between normal and
abnormal ranges) must undergo for follow-up testing. This
follow-up testing is necessary to monitor the potential
elevation of cTnI levels and make a conclusive determination
of safe rule-in or rule-out.18,19 Moreover, high-volume sample
processing and batch testing done at clinical laboratories
typically cause additional delays in reporting results and
performing critical medical interventions,20 making this

Figure 1. Overview of paper-based hs-VFA and its application in hs-POCT of cTnI. (a) Traditional workflow of central laboratory tests for
diagnosing patients with AMI. (b) POCT using hs-VFA and its mobile reader system can enhance the efficiency and quality of patient care.
(c) Current performance landscape of commercial cTnI assays (hs-assays and POCT assays) and the requirements for a successful hs-POCT
cTnI assay. The bars show the ranges of sensitivity and precision specifications, indicated by dots and circles, respectively. (d) Schematic
summary of our approach for hs-POCT cTnI assay using hs-VFA, a portable reader, and computational analysis.
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framework not ideal for addressing the time-sensitive nature of
AMI, where rapid diagnosis and response are essential.

Coupled with the continuous advances in sensing,
information, and communication technologies, point-of-care
testing (POCT) is emerging as a viable alternative approach in
the diagnostic landscape of AMI, potentially transforming
diagnostic pipelines by delivering rapid, affordable, and on-site
diagnostic measures (Figure 1b).7,16,17,21 POCT technologies
for AMI can provide the advantage of decentralized testing,
which expands testing capabilities in various healthcare settings
(e.g., hospitals, clinics, nursing homes, and pharmacies) and
accessibility even in resource-limited areas. By circumventing
the complexities and delays associated with the traditional

workflow, the POCT of cTnI could expedite clinical actions to
be performed within 20 min and reduce the time and cost
linked to the waiting period before the follow-up testing. To
address this important need, several cTnI-POCT products are
currently available,7,10,22 including those based on micro-
fluidics,23−27 lateral flow assays,28 and automated enzyme-
linked immunosorbent assays.29,30 Some of the additional
recent advances also involve microarray technologies,31 paper-
based sensors,32−35 electrode-based sensors,36−38 and surface-
enhanced Raman scattering39 coupled with luminescent,
electrochemical, and colorimetric sensing modalities. However,
it is important to note that because of the extremely low
clinical cutoff level of cTnI compared to other biomarkers,

Figure 2. Assay, reader, and imaging strategy of the hs-VFA. (a) Structure of the hs-VFA, comprising two top cases and a bottom case with a
sensing membrane. (b) Portable reader based on Raspberry Pi. The inset displays the internal cassette tray during imaging under LED
illumination. (c) Assay process and timeline. (d) Principle of immunoassay and signal amplification based on the reduction of Au3+ onto the
surface of AuNP conjugates. (e) Sensing membrane images at each assay step and corresponding SEM images of the test spots. Scale bar:
200 nm. (f) Evaluation of spot uniformity in the amplification reaction. Three individual sensors treated with 1 OD AuNP-antibody
conjugate in each spot were used for comparison. (g) Effect of the signal amplification on analytical sensitivity. Conjugates were serially
diluted and preimmobilized on the sensing membrane. Two top-case operations were conducted. (h) Comparison of imaging methods: time-
lapse vs end-point analyses. (i) Impact of time-lapse imaging on assay sensitivity. Data points in (g) and (i) represent the mean of triplicates
± SD.
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most of these POCT assays currently have limitations,
particularly in terms of their sensitivity and precision (see
Figure 1c and Table 1).7,11 Additionally, some of these assays
require expensive benchtop hardware and rely on AC
power,5,29,30 which limits their portable use. Even though
assay platforms can be miniaturized with hand-held ana-
lyzers,23,25 the high hardware costs exceed $15K and create
another barrier to widespread implementation in clinical
settings, particularly in low- and middle-income countries.
These necessitate continued research and development to
create high-performance cTnI-POCT solutions that meet
clinical requirements for high sensitivity and precision, while
ensuring cost-effectiveness.

Here, we report a paper-based high-sensitivity vertical flow
assay (hs-VFA) for rapid and cost-effective POCT of cTnI,
providing enhanced sensitivity and high precision and meeting
the clinical standards for hs-cTnI testing. This hs-VFA system
consists of a paper-based sensor coupled with a rapid
nanoparticle amplification chemistry, a portable reader with
time-lapse imaging capability, and computational analysis
algorithms empowered by deep learning (Figure 1d). This
system enabled highly sensitive and accurate quantification of
cTnI from 50 μL of serum within 15 min per test. We
developed a paper-based sensor and assay cartridge to perform
the immunoassay and signal amplification with simple
operational steps, comparable to at-home rapid diagnostic
tests. We validated the performance of our hs-VFA by testing it
using cTnI spiked serum samples as well as clinical patient
serum samples collected from healthy and diseased donors.
Signals from the activated immunoassays were captured by a
custom-designed, cost-effective and hand-held reader in a time-
lapse manner. The acquired data were processed by computa-
tional assay validation and outlier analysis algorithms to
improve assay performance, resulting in a limit of detection
(LoD) of 0.2 pg/mL with high precision (average CV < 7%).
Furthermore, hs-VFA signals were used to train neural
network-based models that accurately quantified cTnI levels
in clinical serum samples obtained from patients. When blindly
tested on a set of 46 serum samples from 23 patients, the
predictions of the computational hs-VFA showed a high
correlation (Pearson’s r = 0.965) with the ground truth
measurements obtained by an FDA-cleared benchtop analyzer,
while achieving ∼93.5% accuracy for classifying the concen-
tration of the serum samples to be below/above the cutoff of
the benchtop clinical analyzer (<40 pg/mL), which increased
to 100% accuracy using duplicate testing per patient. This
study demonstrates a significant leap forward in hs-VFA
technology for POCT and offers an affordable, robust, and
high-performance sensing platform for cTnI and potentially
other critical low-abundance biomarkers used for rapid
diagnoses and medical interventions.

RESULTS
Design and Optimization of the hs-VFA Platform. The

hs-VFA was engineered to achieve highly sensitive biomarker
detection while maintaining the essential features of conven-
tional VFAs,40−43 such as cost-effectiveness, simplicity, user-
friendliness, and rapid assay time. The hs-VFA cartridges
comprise a bottom case with a capture antibody-spotted
sensing membrane along with two top cases, each serving
distinct roles of the immunoassay (1st top) and the signal
amplification chemistry (2nd top) (Figure 2a). Wax printing
created multiple hydrophilic compartments on the sensing

membrane, surrounded by hydrophobic wax layers, thereby
concentrating fluid flow into the reaction areas. Among the 17
reaction regions of the hs-VFA cartridge, 10 were assigned as
testing spots (treated with cTnI capture antibodies), 2
functioned as positive control spots (treated with secondary
antibodies that bind the detection antibodies), and the
remaining 5 were designated as negative control spots
(blanks). This arrangement allowed for 10 repeated tests
within a single assay, which was important to mitigate test-to-
test variations and flow nonuniformity-related imperfections
usually observed in inexpensive POCT sensors.

Our hs-VFA utilized passive capillary flow for vertical sample
transport. The first top case facilitated uniform three-
dimensional fluid flow, ensuring an even distribution of
small-volume samples (≤50 μL) and reagents across open
compartments on the sensing membrane (12 × 12 mm2). The
second top case was fabricated by assembling a 3D-printed
cartridge with a transparent acrylic cover and a gasket. An
amplification reagent solution, introduced through the inlet,
flowed directly onto the sensing membrane via the enclosed
chamber, which served as a reservoir. The reagent solution
evenly spread across the entire membrane in <1 s, enabling
uniform reaction across all the test spots.

A custom-designed portable hs-VFA reader was assembled
using a Raspberry Pi computer, a touch display, and cost-
effective optical components (i.e., camera module, macro lens,
and light-emitting diodes [LEDs], see the Portable Reader and
Image Analysis section). This configuration enabled high-
resolution imaging of the sensing membrane within a compact,
portable design that is ideal for POCT applications (Figure
2b). The cassette tray blocked external ambient light and
connected to the main housing through a sliding mechanism.
Time-lapse images of the sensing membrane (for each test)
were taken under 532 nm LED illumination. The graphical
user interface enabled real-time observations of the sensing
membrane image and provided adjustable imaging parameters
(i.e., exposure time, total number of images, and time interval)
for optimal time-lapse imaging (Figure S1).

The entire assay process runs within 15 min per test,
encompassing two successive phases of the assay (immuno-
assay and signal amplification), followed by the signal readout
(Figure 2c,d). For the immunoassay using the first top case,
the cartridge is initially filled with a running buffer to activate
the immobilized capture antibodies on the sensing membrane.
Then a mixture of the serum sample (to be tested) and 15 nm
gold nanoparticle (AuNP)-detection antibody conjugates is
introduced, allowing the recognition of antigens. As this
mixture flows through the sensing membrane, a secondary
antigen recognition event occurs upon binding to capture
antibodies, resulting in the accumulation of the detection
antibody conjugate as a function of antigen levels. Finally, a
running buffer is injected to expedite the downward flow of the
sample-conjugate mixture toward the absorption pads,
accelerating the washing process of unbound analytes and
conjugates in the stacked papers.

After the 10 min immunoassay step, the first top case is
replaced with the second top case, and the amplification
solution (500 μL) containing gold ions (Au3+) and a reducing
agent (H3NO) is introduced to initiate the signal amplification.
This process amplifies the colorimetric response of each
reaction area where AuNPs were previously bound. Notably,
the AuNPs catalyze the reduction of Au3+ on their surfaces in
the presence of H3NO, leading to gold particle growth on the

ACS Nano www.acsnano.org Article

https://doi.org/10.1021/acsnano.4c05153
ACS Nano 2024, 18, 27933−27948

27937

https://pubs.acs.org/doi/suppl/10.1021/acsnano.4c05153/suppl_file/nn4c05153_si_001.pdf
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.4c05153?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


paper (Figure 2d). This results in a more intense optical signal
per test spot, primarily due to increased absorption, further
enhancing the assay’s sensitivity to <1 pg/mL. Figure 2e shows
bright-field images of the sensing membrane alongside the
corresponding scanning electron microscope (SEM) images of
the testing spots after the immunoassay and signal
amplification stages. These images demonstrate a substantial
increase in the original AuNP diameter (from 15 nm to 100−
200 nm) and the formation of particle clusters following the
signal amplification, providing direct evidence of the physical

changes occurring during the Au-ion reduction strategy for
assay signal amplification. Furthermore, Movie S1 presents an
example of the real-time colorimetric response of the signal
amplification reaction. The flow mechanism of the amplifica-
tion reagent solution (Figure S2) and spectroscopic analysis of
the amplification reaction (Figure S3) are also provided in the
Supporting Information (SI).

We assessed the uniformity of this signal amplification step
across all of the reaction spots, revealing a decrease in CV,
from 7.9% to 4.1%, when excluding the edge spots (Figure 2f).

Figure 3. Computational data processing and the impact of assay quality check algorithms for cTnI testing using hs-VFA. (a) Data-
processing pipeline. (i) Data set and criteria to create a VCI. (ii) An example illustrating data refinement through OA. (b) Effect of OA. (i)
The number of remaining test spots. (ii) Exclusion rate for each test spot. (iii) Test spot uniformity within a single cassette (intra-assay). (iv)
Assay repeatability (interassay). Data in (i)−(iii) are based on N = 330 (55 spiked and 55 clinical samples with three time points). Data in
(iv) are based on N = 21 (7 cTnI spiked serum samples, triplicates). C stands for control, before OA. OA refers to a statistics-based method
and OA-D refers to a differential-based method (see the Methods section). (c) Test results for cTnI spiked serum sample and calibration
plot comparison with and without OA (N = 14, triplicates). The blue line represents results with OA (R2 = 0.998, y = 2.2x0.36), and the gray
line represents results without OA (R2 = 0.986, y = 1.6x0.35). (d) Comparison of test spot intensities for the spiked samples within the 99th
percentile range of cTnI concentration. (e) cTnI clinical sample test results and the impact of data-processing algorithms to exclude invalid
results and improve repeatability (i) before and (ii) after the assay validation and data refinement (Ninitial = 62, duplicated). Ground truth
values of the samples with cTnI levels <40 pg/mL are assigned to 39 pg/mL due to the clinical analyzer’s cutoff level (40 pg/mL).
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Regarding the analytical sensitivity of the hs-VFA (Figure 2g),
we experimentally verified a 212.3-fold improvement in
sensitivity threshold due to the Au-ion reduction, defined as
Mean blank value + 3 × Standard deviation (SD) of the blank
value, compared to that of the original AuNP conjugate
(0.0009 optical density [OD] vs 0.1911 OD, respectively).
This major signal enhancement elevates the sensitivity of the
hs-VFA platform to the sub pg/mL range, a major improve-
ment over conventional VFAs that typically operate at ng/mL
levels of LoD.40,41 Further analyses on sensor performance
optimization for improved signal-to-noise ratio, cartridge
compressibility (Figure S4a), AuNP size optimization (Figure
S4b), running buffer combinations (Figure S4c), effect of
different sample volumes on signal intensity (Figure S4d) and
sample absorption time (Figure S4e), effect of capture
antibody concentration (Figure S4f) and conjugate concen-
tration (Figure S4g) on assay result, and signal amplification
reagent concentrations (Figure S5) are provided in Supple-
mentary Note 2 (SI).
Time-Lapse Imaging Using a Hand-Held Quantitative

Reader. Time-lapse imaging involves the periodic capture of
images over a specified time period, which can play a pivotal
role in understanding the dynamic nature of bio/chemical
reactions, analyzing assay kinetics, and reducing the overall
measurement and sensing time.44,45 We utilized time-lapse
imaging to improve the sensitivity and precision of our hs-
VFA. Coupled with the signal amplification strategy, we
periodically imaged the ongoing Au-ion reduction process. We
hypothesized that this approach would mitigate some of the
nonspecific signals typically associated with prolonged reaction
times in conventional end-point measurements, thus allowing
for more sensitive measurements.

To test this hypothesis, we compared time-lapse and end-
point imaging methods using the cTnI assay. In the time-lapse
approach, we restricted data acquisition to three images
sampled at 30 s intervals (t = 0, 30, 60 s) to avoid the
generation of excessive data with even shorter capture intervals
(Figure 2h). We then computed the time-lapse hs-VFA signal
obtained from these images to measure the intensity increase
over time (see the Limit of Detection of cTnI hs-VFA section
for the definition of the time-lapse hs-VFA signal). In the end-
point measurement method, however, the intensity was
measured from a single image captured at t = 360 s when
the signal intensity saturated (Figure 2h). An end-point at t =
60 s provided insufficient signal intensity, preventing the
differentiation of low cTnI levels with acceptable statistical
significance (P < 0.05). For comparison, we normalized each
data set by dividing the intensity values using the negative
control results. Our analyses showed that the time-lapse
imaging approach significantly outperformed the end-point
measurement and enhanced the assay sensitivity by 6.5-fold,
also reducing the CV in low cTnI levels (≤10 pg/mL) from
11.0% to 4.2% and shortening the readout time to 1 min
(Figure 2i). Based on these analyses, we adopted time-lapse
imaging (with t = 0, 30, 60 s) as part of our hs-VFA
concentration measurement strategy, which will be further
detailed in the following sections.
Computational Data Processing: Virtual Control

Indicator and Outlier Analysis. Incorporating assay quality
control algorithms ensures the precision and reliability of our
hs-VFA platform. To achieve this, we developed a two-tier
computational data processing approach, which included a
virtual control indicator (VCI) and an outlier analysis (OA)

protocol (Figure 3a). We hypothesized that the incorporation
of the VCI would act as an internal benchmark to monitor
assay failure, and the OA would enable the identification and
exclusion of outlier test data points per test. By strategically
leveraging these digital data processing techniques, we
improved the robustness, sensitivity, and precision of the hs-
VFA results.

The VCI functions as the first algorithmic step that assesses
the validity of the hs-VFA results (Figure 3a, inset i). In
contrast to conventional immunoassays, such as lateral flow
assays that rely on binary on/off responses from the control
area for assay validation, we employed a more advanced
approach. We constructed a VCI max/min threshold by
consolidating data from 120 hs-VFA test results. To establish
the max/min threshold for determining assay validity, we used
±1.96 SD from the mean of the intensity ratio between the
positive (i.e., IPosj, t ) and the negative (i.e., INeg

j, t ) control spots; see
the Computational Analysis of hs-VFA Signals section. This
VCI signal range is effectively used to filter out any false signals
that could occur due to interference or nonspecific interactions
during the hs-VFA operation. If anomalies arise due to assay
failure or sample-related issues, the VCI signal will be out of its
acceptable range, and the system will display an “invalid”
message, suggesting the user perform further dilution and/or
retesting. The impact and details of the application of VCI on
the processing of clinical samples are detailed in the Limit of
Detection of cTnI hs-VFA section.

Following the VCI-based virtual quality control that utilizes
signals from the positive and negative control spots, the second
digital step, OA, is used to statistically validate the quality of
the assay data using the raw intensities of the 10 test spots (i.e.,
ITestj, t ). As shown in inset ii of Figure 3a, the test data points that
lie outside of the 95% confidence interval (CI) level are
excluded. This process helps mitigate spot-to-spot variations
that may be introduced by potential errors, such as
nonuniformity in the fluid flow within the paper matrix,
nonspecific binding, or irregularities in antibody spotting. As
shown in Figure 3b, the OA algorithm significantly improves
intra-assay uniformity (from a CV of 4.1% to a CV of 1.1%)
and interassay reproducibility (from a CV of 8.2% to a CV of
5.1%). Additional details on the design and performance of this
OA algorithm are provided in Supplementary Note 3 (SI). The
impact of the OA algorithm on improving assay sensitivity is
detailed in the next section.
Limit of Detection of cTnI hs-VFA. The LoD of the

optimized hs-VFA was evaluated by using titration experiments
with different concentrations of cTnI spiked and serially
diluted in cTnI-free human serum. The signal intensity of the
optimized hs-VFA with signal amplification, time-lapse
imaging, and OA was calculated according to eq 1:

= +I I I I ITime lapse Test Ref Test Ref Test Ref Test Ref,
2

,
1

,
3

,
1

(1)

where IT̅est, Reft = ITest, Reft − INeg, Ref
t is the OA-refined test signal

at time point t (t = 1, 2, 3 - corresponding to 0, 30, 60 s,
respectively) after subtraction of the negative spot signal (refer
to Computational Analysis of hs-VFA Signals section for the
definition of ITest, Reft and INeg, Ref

t ). Normalized time-lapse signal
(INormalized, Time‑lapse; Figure 3c,d) was obtained as

=I
I

INormalized Time lapse
Time lapse

Time lapse
Neg samp,

(2)
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where ITime‑lapse
Neg samp is the time-lapse hs-VFA signal for the negative

control sample (i.e., 0 pg/mL cTnI).
The results of the titration assay revealed that the hs-VFA

provided a response that was proportional to varying cTnI
concentrations across the clinically relevant range (100−105

pg/mL) (Figure 3c and Figure S6).18 The detectable range
spanned 6 orders of magnitude without signal degradation due
to the hook effect. Signal saturation was observed above the
cTnI level of 1 × 105 pg/mL, beyond the clinically relevant
range. Based on these measurements, the LoD of the hs-VFA
was determined to be 0.2 pg/mL using the following
equations:31,46

= + ×LoD Limit of Blank (LoB) 1.645 SD of the lowest

measured cTnI value (3)

= + ×LoB Mean blank value 1.645 SD of the blank value
(4)

where the time-lapse hs-VFA signal (INormalized, Time‑lapse) of the
Mean blank value, SD of the blank value, and the SD of the
lowest measured cTnI value were 1.000, 0.029, and 0.103 pg/
mL, respectively; and the lowest measured cTnI value was 1
pg/mL. The LoB value was further estimated at 0.13 pg/mL by
converting the time-lapse hs-VFA signal (INormalized, Time‑lapse, y-
value) to a concentration value (x-value) using the optimal
calibration curve in Figure 3c (i.e., with OA, y = 2.2x0.36).

Figure 4. Neural network-based analysis of cTnI concentrations in clinical serum samples. (a) Neural network-based signal processing
pipeline. The input to the neural networks comprises a time-lapse signal calculated from three time-lapse images. The neural network-based
processing pipeline consists of 1 classification (DNNClassif ication) and 2 quantification (DNNQuantif ication and DNNLow) neural networks that
collaborate with each other. If a sample is blindly classified by the DNNClassif ication model as <40 pg/mL (below the cutoff concentration), that
is our final decision, and the quantification neural network models are not used in that case. Samples that are blindly classified as ≥40 pg/mL
by DNNClassif ication are then processed by DNNQuantif ication for quantitative analysis. Blind inference results of DNNQuantif ication are used as our
final concentration measurements if and only if the inference result is ≥40 pg/mL, in agreement with the DNNClassif ication blind inference. The
samples predicted as <40 pg/mL by DNNQuantif ication are further processed by DNNLow since this indicates a disagreement between the blind
inference results of DNNClassif ication and DNNQuantif ication. If the cTnI concentration predicted by DNNLow is still <40 pg/mL, the sample is
labeled as “undetermined” as the disagreement with DNNClassif ication is further confirmed; otherwise, the prediction from DNNLow is used as
the final concentration measurement. (b) Classification results from the optimized classification model (DNNClassif ication) for 46 serum
samples from 23 patients used in the blind testing set. The 40 pg/mL threshold concentration is due to the cutoff level of the benchtop
clinical instrument used to obtain ground truth concentration measurements. (c) cTnI quantification results from the optimized
quantification models (DNNQuantif ication and DNNLow) for 35 serum samples from 18 patients classified into ≥40 pg/mL range by
DNNClassif ication blind inference.
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Finally, the LoD value was calculated as 0.2 pg/mL using the
same optimal fitting method.

In addition, as demonstrated in Figure 3c, the assay results
using OA showed very good precision (with a CV of 3.0 ±
1.6%) and a coefficient of determination (R2) of 0.998.
However, without OA, a relatively worse performance was
reported, with an LoD of 0.42 pg/mL, a CV of 6.1 ± 4.3%, and
an R2 of 0.986, confirming the impact of OA in improving the
precision and robustness of the hs-VFA.

The statistical validation of the assay results for low cTnI
levels at or below the 99th percentile URL level (1−50 pg/
mL) showed that all the P-values were lower than 0.001
(Figure 3d). This demonstrates that the hs-VFA can effectively
differentiate between cTnI concentrations, even at levels below
the clinical cutoff.

These results and the overall performance of the hs-VFA
adhere to two crucial criteria outlined in clinically recom-
mended guidelines for hs-cTnI testing:12 (i) achieving a CV of
≤10% at the 99th percentile URL, and (ii) detecting
concentrations at or above the assay’s LoD in over 50% of
healthy individuals (i.e., a few pg/mL to 50 pg/mL),
demonstrating our approach’s alignment with the well-
established clinical standards.

Next, we performed clinical sample testing using 62 samples,
including 54 patient serum samples obtained from UCLA
Health and 8 derived samples produced by diluting two of
these patient samples with cTnI-free serum. The ground truth
values were determined using an FDA-cleared benchtop
analyzer, with cTnI concentrations below 40 pg/mL recorded
as “<40 pg/mL” due to the equipment’s cutoff level. The assay
response plot demonstrated an increasing signal with rising
cTnI concentrations (Figure 3e, inset i); see the Computa-
tional Analysis of hs-VFA Signals section. Four samples with
cTnI concentrations of ≥40 pg/mL showed significant
deviations from the expected trend. However, the application
of VCI and OA successfully identified and excluded these four
outlier samples (Figure 3e, inset ii), leading to enhanced
precision (average CV reduced from 5.4% to 2.7% after OA).
The variations observed between the time-lapse assay signals
(i.e., Iw/o Normalized, Time‑lapse) and the ground truth measurement
values may be due to (i) potential troponin degradation during
sample storage,47 (ii) biochemical interferents such as lipemia
or elevated bilirubin,48 or (iii) the presence of cTnI
autoantibodies or heterophile antibodies in patient samples.48

Table S1 provides detailed results corresponding to the cases
before and after applying VCI and OA for each clinical serum
sample.

To infer cTnI concentrations from the captured hs-VFA
signals, we next applied trained neural network models for the
accurate quantification of cTnI in serum samples. The impact
of deep-learning-based cTnI quantification based on the hs-
VFA signals will be detailed in the following section.
Neural Network-Based Analysis of cTnI hs-VFA and

Blind Testing with Clinical Samples. Neural networks
consist of multiple interconnected layers with nonlinear
activation functions, which allow for robust quantitative
analysis of biological samples with point-of-care (POC)
sensors despite additional noise from the sample matrix and
the low-cost nature of these sensors.40−43 In this work, we used
fully connected neural networks to measure cTnI concen-
trations in clinical serum samples from the time-lapse hs-VFA
signals (i.e., ITime‑lapse, defined by eq 1). Our neural network-
based hs-VFA analysis consisted of two successive parts: (i)

classification of serum samples as either ≥40 pg/mL or <40
pg/mL since the clinical cutoff of the ground truth benchtop
cTnI analyzer used was 40 pg/mL; and (ii) quantification of
cTnI concentration for the samples in the ≥40 pg/mL range
(Figure 4a). For this cTnI measurement/inference task, we
first optimized the architecture of the neural network models
using a portion of the samples (validation set). Based on this
optimization (detailed in the Methods section), we converged
to 3 individual fully connected neural networks that collaborate
with each other as illustrated in Figure 4: DNNClassif ication neural
network is used for the classification between the two
concentration ranges (i.e., ≥40 pg/mL or <40 pg/mL; Figure
S7) and the other two neural networks are used for cTnI
quantification (i.e., DNNQuantif ication and DNNLow; Figure S8). If
DNNClassif ication revealed a classification decision of <40 pg/mL,
that was the final decision, and the quantification neural
networks (DNNQuantif ication or DNNLow) were not used. The
quantification stage was only used when DNNClassif ication blindly
classified the sample as ≥40 pg/mL. In this quantification
stage, the serum sample measurement was first processed by
the DNNQuantif ication model and its inference revealed the cTnI
concentration of the serum sample; this blind inference of
DNNQuantif ication was used as our final cTnI concentration
measurement if it was ≥40 pg/mL, i.e., complying with the
former inference of DNNClassif ication (see Figure 4a). However, if
the inference of DNNQuantif ication predicted <40 pg/mL,
contradicting the prediction of DNNClassif ication for the same
sample, we then used a second quantification model, namely
DNNLow, which was treated as an adjudicative model. DNNLow
was only used if the classification and quantification neural
networks disagreed with each other and the blind inference of
DNNLow was used as our final concentration measurement if it
was ≥40 pg/mL, i.e., complying with the inference of
DNNClassif ication (see Supplementary Note 4 in the SI). If the
prediction from DNNLow also disagreed with the inference of
DNNClassif ication, then the sample was labeled as “undetermined”
and excluded from the quantification results. Therefore, the
final cTnI quantification was implemented with this collabo-
ration among the three neural networks, as illustrated in Figure
4a.

DNNLow was trained separately from DNNQuantif ication using
samples with lower cTnI concentrations (i.e., <1,000 pg/mL),
whereas DNNQuantif ication was trained across a larger concen-
tration range of 40−40,000 pg/mL. Quantitative cTnI
predictions by the optimized neural network models for the
samples from the validation set showed a strong correlation
with the ground truth concentrations measured by the
benchtop device, achieving a Pearson’s r of 0.962 (see Figure
S9b, and the Neural Network-Based Analysis section for details
of the neural network training and architectures).

After optimizing the cTnI inference models using validation
serum samples, the resulting optimal neural network models
were blindly tested on a set of 46 serum samples from 23
patients never seen before. Serum samples from each patient
were measured in duplicate with two separate hs-VFAs
activated per patient (Table S1). Blind testing results for the
classification model (with a clinical cutoff of 40 pg/mL)
showed a sensitivity and a specificity of 97.1% and 83.3%,
respectively, with 1 false negative (FN) and 2 false positive
(FP) predictions (Figure 4b). These FN and FP predictions
can be attributed to the potential degradation of the clinical
samples over storage time, matrix effects, low-cost design of the
VFA cartridge, or the small size of the model training set.48 We
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should emphasize that the performance of the classification
model could be further improved by duplicate sample tests at
the cost of an increase in the sample volume per test. For
instance, the sample can be labeled as “undetermined” if the
variation in the predicted concentrations between the duplicate
tests exceeds a certain threshold. This threshold was
empirically determined by analyzing the mean absolute error
(MAE, see the Statistical Analysis section) between the
duplicate tests of each sample. We found out that the MAE
scores for all 3 falsely classified samples (i.e., 1 FN and 2 FPs)
were larger (i.e., >10%) than for the correctly labeled samples
(Table S2). Therefore, with a test-to-test variation threshold of
∼10%, we could reduce the number of FNs and FPs to 0 and
improve the accuracy of DNNClassif ication to 100% by correcting
the falsely classified samples as “undetermined”. Due to the
requirement of duplicate testing, we did not employ this
strategy in the rest of our clinical testing analysis and kept the
serum sample volume at 50 μL per test.

After this initial blinded cTnI classification stage, 35 serum
samples that were classified into ≥40 pg/mL range, including
33 correctly classified samples (from 17 patients) and 2 falsely
classified samples (from 1 patient), were further processed by
DNNQuantif ication. Out of these 35 samples, 21 were only
quantified by DNNQuantif ication, revealing the final concentration
measurements; the remaining 14 had contradicting predictions
between DNNQuantif ication and DNNClassif ication and therefore were
also processed by DNNLow, the adjudicative quantification
model. Since none of the 14 predictions from DNNLow
disagreed with DNNClassif ication (i.e., all concentration predic-
tions from DNNLow were in the ≥40 pg/mL range), no serum
samples from the blind testing set were labeled as
“undetermined”. The final quantitative predictions of cTnI
concentrations from the two quantification neural network
models on these 35 samples had a good match with the gold
standard measurements from an FDA-cleared analyzer,
achieving Pearson’s r of 0.965. In addition, the mean variation
between duplicate measurements of the samples was minimal,
with an average CV of 6.2%, confirming a repeatable
intersensor operation (Figure 4c and Table S1).

Importantly, cTnI quantification by the neural network-
based method outperformed a standard rule-based method
where the cTnI concentration and the time-lapse hs-VFA
signal are related to each other with an explicit equation. The
optimal equation from this rule-based method for our case
represented a power law fit (see Supplementary Note 5 in the
SI). To provide a fair comparison, the deep learning models
and the power law function were created using the same
training set and then tested on identical blinded serum
samples. For the same test samples, the optimized
quantification network models (DNNQuantif ication and DNNLow)
outperformed the power-fitting model in terms of accuracy and
reproducibility (i.e., Pearson’s r: 0.861 vs 0.965 and CV: 10.5%
vs 6.2%; Figure S10a). The advanced performance of neural
network models originates from their inherent universal
function approximation power and ability to effectively learn
robust quantification functions between the analyte concen-
tration and nonlinear time-lapse response of hs-VFA despite
the interference of noise from clinical samples and the low-cost
design of the paper-based POC sensor.

In addition, the performance of the cTnI quantification by
neural network models improved upon incorporation of the
OA step and the use of the time-lapse imaging method. For
instance, cTnI quantification precision achieved by the

optimized deep learning models (DNNQuantif ication and DNNLow)
using the time-lapse signal inputs processed by OA (i.e.,
ITime‑lapse) was higher compared to the precision achieved by the
same models using the time-lapse inputs without OA (see
Figure S10b, a CV of 8.8% for time-lapse inputs without OA vs
a CV of 6.2% for time-lapse inputs with OA). In addition, the
cTnI concentrations predicted by optimized models with the
end-point inputs (i.e., at t = 60 s) had a larger deviation from
the ground truth values than the predictions from the same
models with time-lapse inputs (Figure S10c). This was
especially apparent in the lower concentration range. In the
models with end-point and time-lapse inputs, Pearson’s r
coefficients were 0.806 and 0.959, respectively, for concen-
trations below 1,000 pg/mL (Table S3). Therefore, both the
time-lapse imaging and computational assay quality check (i.e.,
OA) have a positive impact on the quantification performance
of the neural network models, and the incorporation of these
methods into neural network-based analysis is important for
more accurate and robust quantification of cTnI concen-
trations.

DISCUSSION
cTnI concentrations quantified by our hs-VFA platform using
neural network-based analysis showed a strong correlation with
the ground truth measurements obtained by an FDA-cleared
analyzer (achieving a Pearson’s r of 0.965) and demonstrated
competitive testing precision with an average CV of 6.2%,
which falls within the precision requirement of the clinical hs-
cTnI assays (i.e., CV of <10%).12 In addition, the neural
network-based algorithms were able to quantify cTnI levels
over a large concentration range and correctly classify samples
above/below the clinical cutoff (40 pg/mL). This successful
performance of hs-VFA can be attributed to the synergistic
effects of several key innovations: (i) a signal amplification
reaction which provided a 212.3-fold increase in the sensitivity
threshold of the assay; (ii) time-lapse imaging which provided
an additional 6.5-fold increase in the sensitivity threshold; (iii)
computational assay quality check algorithms, including VCI
and OA, which provided a 2.1-fold improvement in LoD also
reducing the CV of the assay; and (iv) neural network-based
cTnI inference approach which further helped reduce the CV.
Moreover, the compact and cost-effective paper-based sensor
($3.86 per test, Table S4), paired with a custom-designed
Raspberry Pi-based user-friendly portable reader (priced at
approximately $170 per prototype, Table S4), emphasizes the
suitability of this platform for POC assays and positions it as a
viable alternative for standard laboratory testing. When
benchmarked against commercial cTnI POCT assays and
recent research results in the literature (Table 1), our hs-VFA
has a competitive precision over a wide assay range, spanning 6
orders of magnitude in concentration, fully covering the
clinically relevant cTnI range (0.01−100 ng/mL).18 It also
provides better sensitivity, with an order of magnitude lower
LoD. The improved performance of hs-VFA could be
leveraged to enable 0-h rule-out with a single cTnI test in
low-risk patients49 and improve the prehospital phase of care
for high-risk patients empowered by accurate cTnI testing even
in primary care or nursing home infrastructure.6

The quantification of the analyte concentration in clinical
samples conventionally relies on calibration curves established
using, e.g., spiked samples with known antigen concentrations.
However, this method has inherent limitations that may
compromise the accuracy and adaptability of the assay. For
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example, when applying this calibration-based approach to the
hs-VFA clinical sample results, we observed a significant
performance degradation, as shown in Figure S10a. This
limited performance in calibration-curve-based cTnI quantifi-
cation may arise due to various factors, including (i) matrix
effects from the spiked and clinical samples, (ii) varying storage
conditions for different sample batches, (iii) variations in the
assembly between sensor batches, and (iv) limited control over
environmental factors (i.e., temperature, humidity). Further-
more, ensuring the accuracy of the calibration curve over time
can be challenging, necessitating frequent recalibration and
quality control measures. In contrast, neural network-based
concentration inference can adapt to more diverse sample
matrices and variations in sample/sensor batches better than a
fixed function determined with a single explicit rule.40

We should also note that the introduction of the Raspberry
Pi system for constructing the portable reader yields multiple
benefits compared with using a smartphone-based reader. Our
custom-designed Raspberry Pi-based reader showed equivalent
quantification performance to a smartphone-based reader
(Figure S11).40−43 The Raspberry Pi’s open-source ecosystem
delivered higher flexibility and customization options in
hardware and software, facilitating the operation of the device
for time-lapse imaging-based analysis. The stand-alone nature
of the Raspberry Pi-based reader can help unify the design to a
fixed footprint and camera model, contrary to smartphone-
based readers, which are sensitive to the model brand and
camera optics, which frequently change as new models are
introduced in the market. Furthermore, our Raspberry Pi
reader offers cost benefits compared to those of high-end
smartphones. The Raspberry Pi-based custom-designed hs-
VFA reader can be easily equipped with batteries and
communication modules (3G/4G/5G/Wi-Fi), fulfilling the
real-time connectivity requirements of POCT.50 This could
help transform the hs-VFA platform into a more advanced
POCT assay that is not only used in traditional medical
facilities but also enables cTnI measurements to be performed
during patient transport (e.g., ambulance-based testing),51 thus
expanding the potential diagnostic use cases.

One of the major advances behind the presented hs-VFA
results is the highly sensitive detection of a single biomarker
with an LoD of <1 pg/mL. To increase the analytical
sensitivity, we designed the sensing membrane to improve
the overall surface area for capturing the target analyte, coupled
with a signal amplification reaction. With this strategy, we
configured the membrane to conduct 10 repeated tests under
equivalent conditions across 17 multiple spots in a single assay
run (all within 15 min), which is not achievable with
conventional rapid diagnostic tests such as lateral flow assays.
When investigating the impact of the number of test spots on
the assay sensitivity without data refinement, we observed that
increasing the number of test spots enhanced the signal
intensity and assay sensitivity (Figure S12a,b). Nevertheless,
the assay uniformity (Figure S12c) and repeatability (Figure
S12d) were reduced due to spot-to-spot variability between the
inner (closer to the center) and outer (closer to the edges)
reaction spots on the sensing membrane. We resolved these
spot-to-spot and test-to-test variation issues through VCI and
OA by taking advantage of the statistical benefits derived from
the redundancy of multiple test spots on the test membrane,
similar in concept to “swarm sensing”.52 Our experiments on
cTnI spiked/clinical sample assays showed that excluding the
compromised spots ensures data integrity, achieving more

reliable and consistent assay results without a trade-off in assay
sensitivity (Figure 3b−d). This approach mitigates errors
inherently associated with paper-based sensors (due to the use
of inexpensive components such as paper membranes, the
possibility of nonuniformity in fluid dispersion, and potential
defects during the antibody spotting and sensor assembly
processes), demonstrating that high-sensitivity analyte meas-
urements at the picogram per milliliter level can be reliably
achieved using the low-cost assay platform of our hs-VFA.
Additionally, incorporating OA during the assay development
and validation stages has the potential to reduce sensor
production costs by leveraging the spot position-dependent
exclusion rate (Figure 3, insets i,ii). For example, by selecting 6
test spot positions that consistently exhibit a <30% exclusion
rate, we anticipate a 36% reduction in the cost of antibodies
(equivalent to $0.7 per test). This reduction is significant, as
antibodies purchased at low volumes account for >50% of the
unit sensor cost (Table S4); we should also emphasize that
over large-volume manufacturing practices, the overall cost per
test can be reduced to <$1 per test.

In this study, we validated hs-VFA by selecting serum
samples that were processed to exclude coagulants and blood
cells. While our primary focus is on point-of-care testing by
healthcare workers trained to handle serum extraction quickly,
we also recognize the potential of using whole blood with the
hs-VFA platform. By integration of a rapid blood separation
tool enabling the on-site extraction of a small volume of serum
(i.e., 50 μL), the hs-VFA platform could not only expedite
turnaround times in medical facilities but also enable various
at-home testing applications.

CONCLUSIONS
We developed a deep learning-enhanced paper-based hs-VFA
platform that achieved highly sensitive (LoD, 0.2 pg/mL) and
precise (average CV < 7%) quantification of cTnI in serum
samples within 15 min per test, showcasing significant progress
in advancing high-performance POC sensors. Notably, the
performance enhancement of hs-VFA platform was achieved
without compromising key attributes inherent to POCT, such
as low cost, simple operation, rapid assay times, and digital
connectivity, which underscore the significance of our study.
Our results highlight the potential to democratize diagnostic
testing by demonstrating that high-quality assays, traditionally
limited to high-end clinical analyzers in central laboratories,
can be performed on cost-effective POC platforms. We
envision this technology being widely used to expedite global
diagnostic equity for testing challenging disease biomarkers.

METHODS
Antibody Conjugation to AuNP. Antibody conjugation to a 15

nm AuNP is based on physical adsorption. In brief, the anti-cTnI
detection antibody (10 μL, 1 mg/mL; 19C7, Hytest) was suspended
in 15 nm AuNPs (1 mL; BBI Solutions) mixed with 100 mM borate
buffer (100 μL, pH 8.5; Thermo Scientific). Following a 1 h
incubation using a rotary mixer (20 rpm) at room temperature (RT),
the conjugate was blocked for 2 h by adding bovine serum albumin
(BSA; 10 μL, 10% w/w; Thermo Scientific). Then the conjugate
underwent three rounds of centrifugal washing (21380 g, 25 min, 4
°C) using a 10 mM borate buffer (pH 8.5). Next, the final conjugate
pellet was resuspended in storage buffer (100 μL) containing 5% w/w
trehalose (Sigma), 0.5% w/w protein saver (Toyobo), 0.2% v/v
Tween 20 (Sigma), and 1% v/v Triton X-100 (Sigma) in 10 mM PBS
(pH 7.2; Thermo Scientific). The absorption spectra and concen-
tration of the conjugate were analyzed by using a microplate reader
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(Synergy H1; BioTek). The conjugates were stored at 4 °C at 9 OD
concentrations until they were ready for use.
Sensing Membrane Preparation and hs-VFA Assembly. The

sensing membrane fabrication involves four steps: printing, heating,
antibody spotting, and blocking. A wax printer (Xerox) was used to
print and compare 17 reaction areas outlined by a black background
onto a nitrocellulose membrane (NC, 0.2 μm; Bio-Rad). The wax-
printed membranes were baked (120 °C, 55 s) in a forced air
convection oven (Across International) to melt the wax on the
membrane’s top side. This created a 3D compartment with
hydrophilic reaction areas against a hydrophobic background.
Considering heat convection inside the baking chamber, we uniformly
prepared up to 30 sensing membranes (arranged in a 6 × 5 array, with
1 mm gaps between membranes) in a single baking batch. The anti-
cTnI capture antibody (0.8 μL, 1 mg/mL; 560 Hytest) and goat anti-
mouse IgG (0.8 μL, 0.1 mg/mL; Southern Biotech) were respectively
dispensed onto the test and positive control spots. The batch
membrane sheet was subsequently dried in an oven (37 °C, 15 min).
The membrane sheet was then immersed in a 1% w/w BSA solution
for blocking (30 min, at RT). After another round of drying, the
membrane sheet (37 °C, 15 min) was divided into individual sensing
membranes using a razor.

All the paper materials for hs-VFA were prepared as previously
outlined.41 Briefly, raw paper materials were precisely cut by using a
CO2 laser cutting system (Trotec). The top case for immunoassay
(1st top) was assembled by sequentially stacking engineered paper
layers (absorption layer, flow diffuser, first spreading layer, interpad,
second spreading layer, and supporting layer) with double-sided
adhesive foam tape as an assembly frame. A concentric circular
pattern in the flow diffuser and outer contour in the supporting layer
were prepared using the same wax-printing/baking process as the
sensing membrane. The flow diffuser, interpad, and supporting layer
were treated with 1% w/w BSA solution for blocking. The bottom
case was prepared by stacking five absorption pads and affixing the
sensing membrane on top using adhesive foam tape. The
configurations of all paper layers can be found in Figure S13.
hs-VFA Cartridges. The plastic cartridges for hs-VFA were 3D-

printed using Form 3 (gray resin, Formlabs) with 100 μm resolution
mode. The design of the bottom and first top cases aimed to compress
the stacked paper materials by 25% of the initial total paper layers’
thickness, enhancing flow diffusion, assay uniformity, and efficiency
(Figure S4a). For the second top case used for signal amplification, a
transparent acrylic window (16.3 × 16.3 × 1 mm3, laser-cut) was
affixed to the 3D-printed cartridge by using a clear acrylic adhesive.
Foam tape was employed as a gasket to prevent reagent leakage in the
second top case. The transparent window has four ventilation outlets
(0.8 mm in diameter) at each corner. These outlets are designed to
remove air from the reaction chamber, facilitating the inflow of the
reagent solution. The reagent inlet of the second top case was
designed to hold a volume of up to 1 mL of solution.
Portable Reader and Image Analysis. A custom-designed

portable reader was assembled using 3D-printed parts (i.e., housing,
LED holder, and cassette tray) and low-cost off-the-shelf components
(i.e., LEDs [DigiKey], macro lens [Edmund Optics], Raspberry Pi,
camera module V2−8 megapixel [Adafruit], and touch screen display
[Elecrow]). The 3D-printed custom parts were produced by Object
30 (Stratasys) and Ultimaker 3 (Ultimaker) 3D printers. The LED
module contained four green LEDs (532 nm) for time-lapse imaging
and two white LEDs for bright-field imaging arranged in a circular
shape. The wavelength of the green LEDs was selected based on the
absorption spectrum of the AuNPs used in this work, which had peak
absorption in the 520−560 nm range (Figure S3). All LEDs were
polished from the front to provide an even light distribution across
the sensing membrane. The reader was designed for easy pedestal
installation with four optical posts, enabling both hand-held and
benchtop use. The user interface of the image capture software
consisted of a real-time camera screen and input fields with user-
adjustable parameters (i.e., exposure time, the number of images to
capture, and capture interval, Figure S1) for automated time-lapse

imaging. All images were captured in raw format under consistent
imaging conditions (100 μs exposure time and 30 s interval).

After the end of the hs-VFA operation (per test), captured time-
lapse images (N = 3) were processed by an automated image
segmentation code that extracted the green channel from the RGB
images, segmented all 17 immunoreaction spots from the activated
sensing membrane and averaged pixels within each segmented spot to
generate 17 intensity values per image (sij, t, i ∈ {Test, Pos, Neg}, type
of immunoreaction; j, spot repeat within the given type; t, time point).
These intensity values of time-lapse images were further normalized
by the corresponding background intensities (bij, t) from the sensing
membrane image captured before the start of the hs-VFA operation,
and raw absorption signals for each time-lapse image were calculated
as

=I
s
b

1i
j t i

j t

i
j t

,
,

, (5)

Alike spots within each immunoreaction type were averaged,
resulting in a total of 3 × N raw absorption signals (Iit) per assay,
where N = 3 is the total number of captured images during time-lapse
operation.
Assay Operation. Assay operation comprises two main steps:

immunoassay and signal amplification. For the immunoassay, the
bottom case is assembled with the first top case. The process begins
by activating the device with the addition of first running buffer (200
μL), which consists of 1% v/v Triton X-100 and 1% v/v BSA in PBS
(10 mM, pH 7.2). After the sample was allowed to completely absorb
to paper layers for 30 s, a mixture (100 μL) of the sample (serum, 50
μL) and conjugate (2.5 OD, 50 μL) is added following immediate
mixing. This mixture is left for 1 min to ensure complete absorption.
Next, second running buffer (300 μL) is introduced. This buffer
contains 3% (v/v) Tween 20, 1% (v/v) albumin, 0.5% (w/w) protein
saver, and 1% (w/w) trehalose in PBS (10 mM, pH 7.2). Its purpose
is to maintain the flow of solutions within the hs-VFA structure and to
wash away any unbound conjugate and target molecules from the
sensing membrane, thereby minimizing nonspecific binding. The first
top case is removed after 8.5 min and replaced with the second top
case for Au-ion reduction-based signal amplification. In this step, 500
μL of a reagent solution containing 10 mM HAuCl4 (Sigma) and 10
mM H3NO (Sigma) in PBS is added to supply the reagent to the
sensing membrane and absorption pads. After 3 min, when the
reagent feeding is complete, the second top case is removed and the
bottom case is transferred to the reader for time-lapse imaging. A total
assay time of 15 min was determined through a series of timed
experiments (repeats with >300 activated cartridges), with each
process step carefully monitored. The immunoassay incubation was
tested and optimized to ensure complete binding and washing within
10 min, followed by a 5 min signal amplification and readout phase.
Computational analysis of the assay data took <1 s per sample,
including <50 ms for the blind inference of cTnI concentration by the
trained neural network models, which is negligible compared to the
immunoassay time.
cTnI Spiked and Clinical Serum Samples. The cTnI spiked

serum samples were prepared for assay optimization and validation by
spiking cTnI standard antigen (I-T-C complex purified from the
human heart; Lee Biosolutions) into cTnI-free serum (Hytest). To
obtain various concentrations of cTnI, we performed serial dilutions
using the same serum. The cTnI antigen was stored at −80 °C after
being aliquoted into 1 μL portions. A fresh solution was prepared
immediately before each assay to prevent potential antigen
degradation. Clinical serum samples containing cTnI were provided
by UCLA Health. This study was approved by the UCLA Institutional
Review Board (IRB no. 20−002084). Patient consent was waived
since these specimens were pre-existing remnant samples collected
independent of this research project. The ground truth values of the
clinical samples were determined using a standard analyzer (Access,
Beckman Coulter) at UCLA Health immediately after collection. The
analyzer had a cutoff level of 40 pg/mL, which quantified samples
with cTnI levels ≥40 pg/mL and displayed results below the cutoff as
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<40 pg/mL. We tested 54 clinical samples, including 35 samples with
cTnI levels ≥40 pg/mL and 19 samples with cTnI levels <40 pg/mL
(Table S1). Additionally, we tested 8 serially diluted clinical samples
derived from two stocks. Clinical samples were stored at −80 °C and
were thawed immediately before the assay at 4 °C for 1 h.
Computational Analysis of hs-VFA Signals. Prior to neural

network-based analysis, all of the assays activated during clinical
sample testing underwent computational assay validation, which
consisted of two steps: VCI and OA. At the VCI step, individual
assays were excluded from the clinical sample data set based on the
ratio between raw intensities from positive (IPost ) and negative (INeg

t )
control spots. An assay was excluded if the ratio did not fall into the
CI calculated according to

< < =r
I
I
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t
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(6)

where rLowt and rHigh
t are calculated as ±1.96 SD from the mean of the

distribution of the positive and negative control ratios of 120 assays
(i.e., 80 spiked samples and 40 clinical samples), N = 3 is the total
number of captured images during time-lapse operation.

Next, during the OA step, individual test spots from each assay
were excluded based on 95% acceptance range from the statistical
distribution of the NTest = 10 test spots:
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where j = 1...NTest, t = 1...N is time point, and 2.262 is the t-score for a
two-tailed test with 9 degrees of freedom (i.e., NTest − 1). Averages
(<ITestj, t >) and SDs (σ(ITestj, t )) were calculated over the test spot repeats
on the same paper-based test membrane (i.e., j = 1...10)
independently for each of the 3 membrane images captured during
the time-lapse operation.

In addition to OA based on absolute test spot values (termed the
statistical OA model), we also performed OA based on differential
spot values (i.e., the OA-D model). The 95% acceptance range for
OA-D was defined as

< > *
<

<
< > + *

I I

N
I

I I

N

2.262 ( )

2.262 ( )

Test Diff
j t

Test Diff
j t

Test
Test Diff
j t

Test Diff
j t

Test Diff
j t

Test

,
,

,
,

,
,

,
,

,
,

(8)

ITest, Dif f
j, t = ITestj, t + 1 − ITestj, t , j = 1...NTest, t = 1...N − 1. Uniformity and

reproducibility of hs-VFA after applying the statistical OA model
showed superior improvement compared to CV before any OA and
CV after applying the OA-D model (Figure 3b, Supplementary Note
3 in the SI); therefore, we selected the statistical OA method for data
refinement of the clinical samples. Refined hs-VFA signals after OA
are defined as Ii, Reft .

Time-lapse response from hs-VFA using the OA-refined signals
(Ii, Reft ) was further calculated according to eq 1 (i.e., ITime‑lapse). During
the sensor optimization and testing on spiked samples (Figure 3c,d),
time-lapse signals (ITime‑lapse) were normalized by the time-lapse signal
from the negative control sample generating normalized time-lapse
signals (INormalized, Time‑lapse, see eq 2). For the clinical sample test
(Figure 3e), we used time-lapse signals without normalization
(Iw/o Normalized, Time‑lapse = ITime‑lapse) in order to minimize variations
between different testing batches.
Neural Network-Based Analysis. The neural network-based

analysis consisted of classification and quantification parts and a total
of three independent shallow fully connected neural networks,
including one network for classification between samples from ≥40
pg/mL and <40 pg/mL concentration ranges (i.e., DNNClassif ication),
and two networks for quantification of cTnI in ≥40 pg/mL range (i.e.,
DNNQuantif ication and DNNLow), see Figure 4a. Inputs to all three neural
networks represented the time-lapse hs-VFA signals calculated from

the three time-lapse images according to eq 1 (i.e., ITime‑lapse). The
input signal was standardized according to the formula:

=
< >

I
I I

I( )Time lapse
st Time lapse Time lapse

Time lapse (9)

where <ITime‑lapse> and σ(ITime‑lapse) are the mean and the SD of the
time-lapse signal, respectively, calculated over the training data set.

The classification network (DNNClassif ication) consisted of 3 hidden
layers (512, 256, 128 units) with “ReLU” activation functions and L2
regularization for all layers (see Figure S7). Each hidden layer was
followed by a batch standardization layer. The output layer had 1 unit
with a “sigmoid” activation function. The loss function that we used
was binary cross-entropy compiled with Adam optimizer, a learning
rate of 1e-4 and a batch size of 5. Binary cross-entropy loss (LBCE) is
defined as

=
=

L
N

y y y y1
( log( ) (1 ) log(1 ))BCE

b i

N

i i i i
1

b

(10)

where yi are the ground truth labels (i.e., “1” for samples from ≥40
pg/mL concentration range and “0” for samples from <40 pg/mL
concentration range), yi′ are the predicted labels, and Nb is the batch
size.

The quantification part consisted of two independent fully
connected neural networks (namely, DNNQuantif ication and DNNLow).
DNNQuantif ication contained 3 hidden layers (256, 128, and 64 units),
each with “ReLU” activation functions and L2 regularization. DNNLow
consisted of 2 hidden layers (128 and 64 units), each with “ReLU”
activation functions and no regularization (Figure S8). Each hidden
layer in both models was followed by a batch standardization layer.
The loss function for both models was the mean squared logarithmic
error (MSLE) compiled with Adam optimizer, a learning rate of 1e-4
and a batch size of Nb = 5. MSLE loss is defined as

= + +
=

MSLE
N

y y1
(log( 1) log( 1))

b i

N

i i
1

2
b

(11)

where yi are the ground truth cTnI concentrations and y′i are the
predicted concentrations. Both of these quantification models
(DNNQuantif ication and DNNLow) predicted cTnI concentrations (y′i)
in pg/mL. Architectures of all three neural networks were optimized
through a 4-fold cross-validation on the validation sets.

The classification model (DNNClassif ication) was trained on 64 serum
samples from 32 patients and validated on 42 samples from 21
patients (i.e., serum from each patient was tested in duplicate with
two activated hs-VFAs per patient). Out of 64 training samples, 54
were clinical samples and the remaining 10 were diluted samples. The
optimal classification network (DNNClassif ication) achieved 84.6%
sensitivity and 93.8% specificity on the validation set (Figure S9a).
The optimized model was further blindly tested on 46 additional
serum samples from 23 patients, achieving a sensitivity and specificity
of 97.1% and 83.3%, respectively, as reported in the Results section.

The quantification stage was only used when DNNClassif ication blindly
classified the sample as ≥40 pg/mL. DNNQuantif ication was trained on 64
samples from 32 patients and validated on 22 samples from 11
patients. cTnI concentrations in the training samples were in 40−
40,000 pg/mL range, while cTnI concentration range for the
validation set was 50−5,000 pg/mL. Quantification results from
DNNQuantif ication revealed the final cTnI concentration measurement
per sample if and only if its blind inference agreed with DNNClassif ication
inference (see Figure 4a). For 10 out of 22 validation samples, the
blind inference results of DNNQuantif ication were in the <40 pg/mL
range, contradicting the predictions from the classification model (i.e.,
all of these samples were classified into ≥40 pg/mL range by
DNNClassif ication). As illustrated in Figure 4, such samples were further
processed by a second quantification network, DNNLow, which was
used as an adjudicative model. If the blind inference from DNNLow still
disagreed with DNNClassif ication, the sample was labeled as undeter-
mined; otherwise, the prediction from DNNLow was used as the final
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concentration measurement result for the cases where DNNClassif ication
and DNNQuantif ication disagreed with each other. DNNLow was trained
separately from DNNQuantif ication on 34 serum samples (from 17
patients) with cTnI ground truth levels below 1,000 pg/mL and
validated on 10 samples (from 5 patients) with cTnI concentrations
in 50−200 pg/mL range.

One out of 10 validation samples processed by DNNLow had <40
pg/mL concentration prediction and it was labeled as “undeter-
mined”. Predictions of the optimized quantification models on the
rest of the validation samples (i.e., 21 samples) had a high correlation
with the ground truth cTnI concentrations quantified by an FDA-
cleared analyzer with a Pearson’s r of 0.962 (Figure S9b). For the
blind testing set composed of 18 new serum samples, these networks
achieved a Pearson’s r of 0.965 as reported in the Results section.
Training sets for both DNNQuantif ication and DNNLow included samples
in <40 pg/mL range and during the training process, MSLE loss for
such samples was increasing only if the predicted concentration was
≥40 pg/mL. Incorporation of the samples under 40 pg/mL cutoff
into the training sets helped to create more robust quantification
models and achieve reliable cTnI quantification despite a limited
number of training samples.
Statistical Analysis. For assay validation and cTnI spiked serum

sample tests, all experimental data were presented as the mean of at
least three measurements ± SD. Clinical sample test results were
derived from the mean of duplicate measurements ± SD. Further
details regarding experimental replicates are provided in the
corresponding figure legends. The CV was calculated by dividing
the SD by the mean (%). Group differences were assessed using an
unpaired two-sample t-test, with statistical significance set at P < 0.05.
In addition to CV, we used MAE to estimate repeatability between
duplicated samples, defined as

=
| |

+
MAE

Rep Rep

Rep Rep
1 2

1 2 (12)

where Rep1 and Rep2 are first and second repeats of the serum sample,
respectively.
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