Skip to main content
. 2024 Oct 3;7:1406365. doi: 10.3389/fdata.2024.1406365

Table 3.

Evaluating the performance of several machine learning models including Support Vector Machine (SVM), Lasso Regression, Ridge Regression, Random Forest (RF), and XGBoost, for various treatments.

Treatment Criteria SVM Lasso Ridge RF XGBoost
cDMARDs Sensitivity 0.946 0.944 0.946 0.955 0.955
Specificity 0.806 0.830 0.789 0.860 0.852
Precision 0.923 0.932 0.917 0.944 0.941
Accuracy 0.906 0.911 0.900 0.927 0.925
Biologics Sensitivity 0.946 0.947 0.955 0.953 0.948
Specificity 0.814 0.831 0.807 0.868 0.852
Precision 0.935 0.940 0.933 0.953 0.947
Accuracy 0.912 0.917 0.916 0.931 0.923
Combination Sensitivity 0.956 0.962 0.958 0.959 0.952
Specificity 0.814 0.840 0.809 0.851 0.856
Precision 0.934 0.944 0.933 0.947 0.948
Accuracy 0.918 0.930 0.918 0.930 0.927
ADA Sensitivity 0.960 0.965 0.971 0.971 0.965
Specificity 0.631 0.754 0.646 0.846 0.800
Precision 0.874 0.913 0.880 0.944 0.928
Accuracy 0.870 0.908 0.882 0.937 0.920
ETA Sensitivity 0.929 0.943 0.943 0.943 0.936
Specificity 0.769 0.769 0.769 0.872 0.769
Precision 0.936 0.937 0.937 0.964 0.936
Accuracy 0.894 0.906 0.906 0.928 0.900
INF Sensitivity 0.902 0.964 0.973 0.973 0.955
Specificity 0.463 0.870 0.833 0.889 0.852
Precision 0.777 0.939 0.924 0.948 0.930
Accuracy 0.759 0.934 0.928 0.946 0.922
RIT Sensitivity 0.909 0.938 0.931 0.925 0.934
Specificity 0.875 0.890 0.846 0.897 0.890
Precision 0.945 0.952 0.934 0.955 0.952
Accuracy 0.899 0.923 0.906 0.917 0.921
TOC Sensitivity 0.968 0.963 0.974 0.970 0.967
Specificity 0.667 0.732 0.699 0.756 0.764
Precision 0.931 0.943 0.938 0.949 0.950
Accuracy 0.915 0.922 0.925 0.932 0.931
ABA Sensitivity 0.857 0.888 0.882 0.901 0.907
Specificity 0.861 0.851 0.832 0.931 0.881
Precision 0.908 0.905 0.893 0.954 0.924
Accuracy 0.859 0.874 0.863 0.912 0.897