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Abstract 

Background In group-sequential designs, it is typically assumed that there is no time gap between patient enroll-
ment and outcome measurement in clinical trials. However, in practice, there is usually a lag between the two time 
points. This can affect the statistical analysis of the data, especially in trials with interim analyses. One approach 
to address delayed responses has been introduced by Hampson and Jennison (J R Stat Soc Ser B Stat Methodol 75:3-
54, 2013), who proposed the use of error-spending stopping boundaries for patient enrollment, followed by critical 
values to reject the null hypothesis if the stopping boundaries are crossed beforehand. Regarding the choice of a trial 
design, it is important to consider the efficiency of trial designs, e.g. in terms of the probability of trial success (power) 
and required resources (sample size and time).

Methods This article aims to shed more light on the performance comparison of group sequential clinical trial 
designs that account for delayed responses and designs that do not. Suitable performance measures are described 
and designs are evaluated using the R package rpact. By doing so, we provide insight into global performance 
measures, discuss the applicability of conditional performance characteristics, and finally whether performance gain 
justifies the use of complex trial designs that incorporate delayed responses.

Results We investigated how the delayed response group sequential test (DR-GSD) design proposed by Hampson 
and Jennison (J R Stat Soc Ser B Stat Methodol 75:3-54, 2013) can be extended to include nonbinding lower recruit-
ment stopping boundaries, illustrating that their original design framework can accommodate both binding and non-
binding rules when additional constraints are imposed. Our findings indicate that the performance enhancements 
from methods incorporating delayed responses heavily rely on the sample size at interim and the volume of data 
in the pipeline, with overall performance gains being limited.

Conclusion This research extends existing literature on group-sequential designs by offering insights into differences 
in performance. We conclude that, given the overall marginal differences, discussions regarding appropriate trial 
designs can pivot towards practical considerations of operational feasibility.
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Introduction
Pipeline data are known to be a problem in trials with 
time-to-event data but they can also cause issues in trials 
with continuous or categorical endpoints if the outcome 
is only available after some time lag. Many clinical trial 
designs for continuous or binary endpoints assume that 
the outcome measurement is immediately available once 
the patient has been recruited. In cases where interim 
results are used to make modifications or decide on the 
trial continuation, a potential outcome delay needs to be 
taken into consideration. Most group-sequential and also 
adaptive design methodology does not consider explic-
itly this potential delay in the availability of the outcome 
measurement, while especially group-sequential trial 
designs are frequently applied, e.g., [1]. Tsiatis and David-
ian [2] state: “Typically, the interim analysis is based only 
on the data from subjects for whom the outcome has 
been ascertained”. Nevertheless, this approach not only 
neglects the potential for obtaining more robust evidence 
but also gives rise to ethical and regulatory concerns. 
The ethical concern arises from treating subjects without 
subsequently using their data, posing a potential con-
flict with regulatory guidelines, such as those stipulated 
by the European Medicines Agency (EMA) [3], which 
demands the use of all patient data. As a consequence, 
effort has been put into the development of methods that 
aim at formally incorporating the pipeline data into a 
testing strategy in order to comply with the requirement 
to use all data for testing. Different methods that address 
the issue of incorporating pipeline patients into testing 
strategies have been proposed in earlier work [4–7].

Note that we use the term delayed responses syn-
onymously to time-lagged outcome where the delay is 
associated with the outcome itself. However, we define 
overrunning as the additional data collection, e.g., due to 
ongoing randomization during an interim analysis. There 
exists separate literature on the topic of overrunning 
[8–10], where, e.g., the deletion method [5] is known 
for long but also to be not that powerful. The method by 
Whitehead describes calculating the boundary for signifi-
cance testing using the overrunning data while ignoring 
the data based on which the recruitment has been ter-
minated beforehand [5]. Other methods involve p-value 
combination tests to combine data from before and after 
stopping recruitment [10, 11].

Schmidt et  al. [6] consider the problem of overrun-
ning in case of sequential trials with discrete data and 
multiple hypotheses. They address the challenge of 
incorporating pipeline patients into the testing strategy, 
particularly when some hypotheses have already been 
rejected without considering pipeline data, while oth-
ers remain unrejected (at least) until that data becomes 
available. To address this, they propose a solution that 

requires a “second rejection” of the previously rejected 
hypotheses, now including the pipeline patients. Their 
approach is based on the concept of conditional error 
functions. Furthermore, the EMA includes a section on 
overrunning in their reflection paper on methodologi-
cal issues in confirmatory clinical trials planned with 
an adaptive design [3]. They comment on primary end-
points not being immediately observed or a continuation 
of randomization during the interim analysis and state 
that the decision needs to be based on the final results 
of the trial. Mehta and Pocock [12] propose the “prom-
ising zone approach” for sample size recalculation in 
their article and compare the new design considering the 
pipeline patients against ignoring them. However, they 
do not formally incorporate those pipeline patients into 
the design but simply add them to the expected sam-
ple size. Due to the therefore too conservative interim 
boundaries and thus a low probability for stopping early, 
the impact of pipeline patients on the expected sample 
size is quite small. Jennison and Turnbull [7] extended 
the work by Mehta and Pocock [12]. In addition to intro-
ducing different ways of adapting the sample size, they 
apply these methods to an example with pipeline data. 
Jennison and Turnbull do not compare error-spending 
group-sequential designs and delayed response group-
sequential designs. Their focus lies on the presentation of 
optimal solutions but less on whether design complexity 
that is introduced by pipeline data can justify a potential 
performance gain. Hampson and Jennison [4] proposed 
several delayed response group-sequential designs that 
incorporate pipeline data into a testing strategy. Their 
general idea is to split the interim decision on an irrevers-
ible recruitment stop and a subsequent hypothesis test in 
case stopping was indicated. They consider both error- 
spending tests and the fraction of information in pipeline 
and compare optimal delayed response group-sequen-
tial designs and standard group-sequential designs with 
immediate response with respect to the expected sample 
size. They do not compare the delayed response error 
spending designs to a standard group-sequential error 
spending design.

The topic of pipeline data in group-sequential trial 
designs is still a topic of ongoing discussion. Tsiatis and 
Davidian [2] suggested a general group-sequential frame-
work for clinical trials with delayed response outcomes 
that accounts for baseline and time-dependent covari-
ates. They show that the associated test statistics main-
tain the independent increments structure. Schüürhuis 
et al. [13] recently introduced a group-sequential design 
that integrates delayed responses, focusing on the pos-
sibility of reopening a trial after a potential intermediate 
pause. Their approach involves establishing recruitment 
stopping boundaries based on the probability of halting 
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the trial for efficacy once the pipeline data becomes avail-
able, i.e. the interim conditional power. Mukherjee et al. 
[14] considered delayed response in two-stage single-arm 
trials (referring usually to phase 2 trials). Recently, they 
also conducted research on two-arm trials [15]. They did 
an in-depth analysis of the impact of delayed responses 
when standard group-sequential methods are applied. 
However, they did not consider group-sequential meth-
ods developed for delayed responses and their work can 
therefore be seen as an extensive diagnosis of pitfalls 
of standard group-sequential methods when delayed 
responses are prominent.

The goal of this paper is a more holistic evaluation of 
delayed response designs than it can be found in the lit-
erature so far. Especially, we are interested in whether 
a potential gain in performance can justify the use of 
more complex designs addressing pipeline data. Moreo-
ver, we want to evaluate the influence of the amount of 
pipeline data. Hence, it is crucial to define appropriate 
performance criteria. Standard effect measures are the 
average sample size, (conditional) power as well as early 
stopping probabilities. We apply the delayed response 
group-sequential methods as they have been newly 
implemented in the R package rpact [16].

The structure of the manuscript is as follows: After 
a brief recapitulation of group-sequential designs we 
describe the methods used for dealing with delayed 
responses, as well as give some background on per-
formance evaluation. As our primary objective is to 
emphasize designs that are both practically relevant and 
commonly applied, our paper concentrates on nonbind-
ing stopping boundaries, which are preferred and rec-
ommended over their binding counterparts [17, 18]. 
Afterwards, we present the results of an extensive com-
parative study evaluating the performance gain of sta-
tistical methods accounting for delayed responses over 
standard group-sequential methods as well as the influ-
ence of the amount of pipeline data. We close with a 
discussion where we also give further insights into the 
practical applicability of the performance measures used 
in the manuscript with the R package rpact.

Group sequential designs
We consider two-stage group -sequential study designs 
including one interim analysis, with two equally sized 
arms of sample size n (in the intervention group I and 
control group C). More precisely, we assume the end-
point to be normally distributed

Xi,C ∼ N (µC , σ
2),

Xi,I ∼ N (µI , σ
2), i = 1, ..., n,

with common but unknown standard deviation σ . We 
test the one-sided hypotheses

Due to the group -sequential design, the hypothesis is 
tested after n1 < n patients per group have been included 
into the first stage and potentially also after a second 
stage. Continuation with the second stage takes place 
only if the trial was not stopped for efficacy or futility at 
the interim analysis. The interim test statistic is given by

with means X̄1,I and X̄1,C as well as pooled standard devi-
ation Spool,1 . The trial stops for efficacy if Z1 ≥ u1 and for 
futility if Z1 ≤ l1 , where u1 and l1 represent the upper and 
lower boundaries of the continuation region. In conven-
tional group-sequential designs, these critical values can 
be calculated as quantiles from a multivariate normal 
distribution. Corresponding local significance levels can 
be determined based on α-spending functions [19], such 
as those mimicking the boundaries proposed by O’Brien 
Fleming [20] or Pocock [21] (see Appendix A). Whenever 
the first stage test statistic falls between l1 and u1 , the trial 
is continued with a second stage where a separate test 
statistic is calculated:

Note that Z2 consists solely of the second-stage data, 
i.e. n2 = n− n1 additionally recruited patients per group. 
The final test decision is based on the combination of the 
first and second stage data, given here by the inverse nor-
mal combination test [22]:

where w1,w2 are weights which were defined at the plan-
ning stage of the trial. Throughout this paper, the weights 
are set as w1 =

n1
n  and w2 =

√

n2
n  , ensuring that Z1+2 

simply corresponds to a t-test statistic based on all trial 
data. The null hypothesis is finally rejected if

where u2 denotes the critical value at the second study 
stage. Instead of fixing an interim sample size at n1 , 
group-sequential designs can also be characterized by 
the information rate I1 = n1

n
 , which denotes the frac-

tion of observations available at interim per arm. In the 
evaluations presented in “Results” section, we adopt this 

H0 : µI − µC ≤ 0 versusH1 : µI − µC > 0.

Z1 =
X̄1,I − X̄1,C

Spool,1
·

√

n1

2
,

Z2 =
X̄2,I − X̄2,C

Spool,2
·

√

n2

2
.

Z1+2 =
w1Z1 + w2Z2
√

w2
1 + w2

2

,

Z1+2 ≥ u2,
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parameterization as it aligns more naturally with the uti-
lization of error-spending functions.

Delayed response case
In the standard group-sequential design setting out-
lined in “Group sequential designs”  section, an implicit 
assumption is that, upon conducting the interim analysis, 
data from all recruited patients is considered in the calcu-
lation of test statistics. However, practical scenarios may 
introduce a temporal gap of �t between patient recruit-
ment and the measurement of the primary outcome, 
attributed to factors such as multiple treatment applica-
tions or administrative delays. This is often referred to as 
“delayed responses”. Assuming successive entry of patients 
into the trial, the consequence is that a certain number of 
patients n�t (or, equivalently, a certain fraction of infor-
mation I�t ) has been recruited, yet their data is unavail-
able for interim analysis. In the following, we consider the 
error-spending tests by Hampson and Jennison [4] who 
introduced a delayed response group-sequential test that 
considers pipeline data from the planning stage onward.

Initially, delayed response group-sequential designs follow 
a similar process to standard group-sequential designs. That 
is, after observing n1 < n patients per group, the interim test 
statistic Z1 is evaluated as before. In the delayed response 
setting, let now n�t represent the number of patients still in 
the pipeline upon observation of Z1 . We denote

Z̃1 =
X̃1,I − X̃1,C

S̃pool,1
·

√

ñ1

2

as the test statistic after additionally observing the out-
standing responses, signified by the use of a tilde, where 
ñ1 = n1 + n�t . More specifically, X̃1,I , X̃1,C , and S̃pool,1 
represent the groupwise means and pooled standard 
deviation computed using the additional pipeline data. 
Similar to a standard group-sequential design, the vec-
tor of test statistics Z = (Z1, Z̃1,Z1+2)

t is known to fol-
low the canonical multivariate normal distribution, 
allowing the application of standard group-sequential 
design theory for the calculation of critical values and 
performance characteristics. As outlined in the previous 
descriptions, the method introduced by Hampson and 
Jennison splits the interim analysis into a decision on 
recruitment continuation, followed by a potential stop 
for efficacy. We represent the continuation region as the 
open interval (l1,u1) and denote {d1, d2} as the interim 
and final stage critical value for efficacy assessment. Note 
that d2 becomes relevant only if recruitment is contin-
ued at the interim stage, i.e. if Z1 ∈ (l1,u1) . Figure 1 pre-
sents an illustration of the study design. In this design, we 
observe efficacy at interim only if Z1 /∈ (l1,u1) triggering 
a recruitment stop, followed by Z̃1 ≥ d1 . In other words, 
the mechanism leading to an interim efficacy stop differs 
between a delayed response design and a standard group-
sequential design. As a result, the application of standard 
group-sequential boundaries to determine the boundary 
set {l1,u1, d1, d2} is not straightforward. Hampson and 
Jennison made multiple proposals regarding the determi-
nation of those. Due to their similarity to standard group-
sequential methods, we will present two error-spending 
versions in the following.

Fig. 1 Structure of the delayed response group-sequential method by Hampson and Jennison [4]; x-axis: observation progress expressed in terms 
of sample size n per arm; y-axis: critical values on Z−scale; Different study paths, corresponding decision critical values {d1, d2} and resulting sample 
sizes are highlighted in red (continue to final analysis) and blue (perform hypothesis test at interim)
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Delayed response group‑sequential design according 
to Hampson and Jennison (2013) with nonbinding lower 
boundary (DR‑GSD)
Among other methods, Hampson and Jennison (2013) 
proposed employing error-spending theory to define the 
boundary set {l1,u1, d1, d2} [4]. In their original publica-
tion, the approach is formulated such that the resulting 
lower boundary is binding. Since our focus is on designs 
with nonbinding boundaries, we demonstrate that their 
framework can also accommodate nonbinding lower 
boundaries. As done in their work, we start by defining 
{u1, d2} as the solutions to

where α1 < α represents the fraction of type I error that 
is planned to be spent at interim. In order to obtain a 
lower boundary, it is additionally required that

where, analogically, β1 < β is the fraction of type II error 
to be spent at interim and δ̃ denotes an assumption on 
the unknown true effect. Since the type I error rate is 
spent assuming to continue the trial after observing 
Z1 < u1 , the resulting boundary l1 will be nonbinding. 
If α1 and β1 are obtained from standard error-spending 
designs, {u1, l1, d2} are simple error-spending boundaries. 
In the design proposed by Hampson and Jennison [4], the 
interim test for significance occurs only when the recruit-
ment has been stopped beforehand, while the amount 
of pipeline data does not necessarily need to be known 
upon recruitment termination. Hence, the type I error 
rate can be written as

To fully exhaust α , they proposed determining d1 by solv-
ing the equation

This aims to balance the probability of achieving promis-
ing results with Z1 while subsequently accepting H0 , with 
the probability of halting recruitment due to non-prom-
ising results with Z1 , followed by rejecting H0 afterwards 
under H0 . With

Pδ=0(Z1 ≥ u1) = α1 and

Pδ=0(Z1 < u1,Z1+2 ≥ d2) = α − α1,

Pδ=δ̃ (Z1 ≤ l1) = β1 and

Pδ=δ̃ (Z1 ∈ (l1,u1),Z1+2 < d2) = β − β1,

Pδ=0(Z1 /∈ (l1,u1), Z̃1 ≥ d1)+ Pδ=0(Z1 ∈ (l1,u1),Z1+2 ≥ d2),

(1)
Pδ=0(Z1 ≥ u1, Z̃1 < d1) = Pδ=0(Z1 ≤ l1, Z̃1 ≥ d1).

Pδ=0(Z1 /∈ (l1,u1), Z̃1 ≥ d1) = Pδ=0(Z1 ≥ u1, Z̃1 ≥ d1)+ Pδ=0(Z1 ≤ l1, Z̃1 ≥ d1)

(1)
=Pδ=0(Z1 ≥ u1, Z̃1 ≥ d1)+ Pδ=0(Z1 ≥ u1, Z̃1 < d1)

= Pδ=0(Z1 ≥ u1) = α1,

we can immediately see that constraint (1) leads to type I 
error rate control if l1 was a binding boundary. Since

type I error rate control is also guaranteed when declar-
ing the l1 to be nonbinding, demonstrating that the 
original Hampson and Jennison design also covers non-
binding lower recruitment stopping boundaries.

Such a delayed response design allows for H0 rejection, 
even if recruitment has been stopped due to undesirable val-
ues of Z1 . To account for this consideration, a revised delayed 
response design, maintaining the same underlying structure, 
has been suggested [23]. In this adaptation, boundary deter-
mination ensures that the design precludes a rejection deci-
sion after halting recruitment upon crossing l1.

Repeated rejection group‑sequential design (RR‑GSD)
In the preceding section, we illustrated that the design 
proposed by Hampson and Jennison [4] can also accom-
modate nonbinding lower recruitment stopping bounda-
ries. However, this design permits the rejection of the null 
hypothesis at interim stages following recruitment halt due 
to non-promising results. A modified version for determin-
ing {u1, l1, d1, d2} was proposed by Jennison and Hampson 
[23] posing the following constraints:

see also Schüürhuis et al. [13]. With the restriction that 
l1 < u1 , we can rewrite Eq. (2) as

showing that these equations can be solved numeri-
cally using the multivariate normal distribution pre-
sented in “Delayed response case”  section [13]. Given 
{u1, l1, d1, d2} , we have three equations as given by (2), 
but four unknown boundaries. Jennison and Hampson 
[23] therefore suggested fixing d1 = �−1(1− α) and 
solving the equations above for {l1,u1, d2} iteratively. 
With this method, it is no longer permitted to reject at 
interim after observing Z1 ≤ l1 since the type I error 
rate is spent with regards to crossing the upper bounda-
ries {u1, d1} only. Put differently, the null hypothesis can 

Pδ=0(Z1 /∈ (−∞,u1), Z̃1 ≥ d1) ≤ Pδ=0(Z1 /∈ (l1,u1), Z̃1 ≥ d1) ≤ α1,

(2)
Pδ=0(Z1 ≥ u1, Z̃1 ≥ d1) = α1,

Pδ=0(Z1 < u1,Z1+2 ≥ d2) = α − α1,

Pδ=δ̃ (Z1 ≤ l1 ∪ (Z1 ≥ u1 ∩ Z̃1 < d1)) = β1,

Pδ=δ̃ (Z1 ≤ l1 ∪ (Z1 ≥ u1 ∩ Z̃1 < d1))

=Pδ=δ̃ (Z1 ≤ l1)+ Pδ=δ̃ (Z1 ≥ u1 ∩ Z̃1 < d1),
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only be rejected if positive outcomes are observed during 
both, the recruitment interruption and in the subsequent 
statistical test. Moreover, the lower recruitment stopping 
boundary l1 can be considered nonbinding, as d2 is calcu-
lated assuming to proceed with the trial after observing 
Z1 < u1 . Note that, similar to a standard group-sequen-
tial design, crossing l1 can be directly interpreted as an 
observation of futility, in contrast to the DR-GSD.

Performance evaluation
When comparing different design options and judging 
how well a specific design performs, precise performance 
criteria need to be specified. Up to now, standard evalu-
ation measures, such as average sample size or overall 
power, are nearly always applied. However, there is no 
mutual agreement upon which set of criteria should be 
used when comparing such different designs. In general, 
there exist two different points of views for performance 
evaluation. Both the global and the conditional perspec-
tive are valid and focus on a different aspect.

Global performance criteria
The global evaluation perspective refers to the situation 
of evaluating the study design no matter whether the trial 
stops early at the interim analysis or it continues with 
the second stage. Standard measures in the non-delayed 
response setting are the expected overall sample size

where

is a random variable depending on Z1 and the global 
power

E[N ] = n1 + n2(Z1),

n2(Z1) =

{

0 if Z1 ∈ (l1,u1),
n2 if Z1 /∈ (l1,u1)

Pow = Pδ=δ̃ (Z1 ≥ u1)+ Pδ=δ̃ (Z1+2 ≥ u2 ∩ Z1 ∈ (l1,u1)),

referring to the probability of correctly rejecting the null 
hypothesis either at the interim or the final analysis. Fur-
thermore, the probability for an early efficacy and futility 
stop

are often reported.
When designs that account for delayed responses are 

applied, the expected sample size incorporates the pipe-
line data as well leading to

and the power of the DR-GSD is given by

Correspondingly, the early efficacy and futility stopping 
probability for delayed response group sequential designs 
is given by

Note that that there exist several approaches for com-
bining global performance measures into a single value in 
the literature, e.g. outweighing the global power against 
the average sample size [7]. A summary of expressions for 
the global performance criteria for the different designs 
introduced in “Delayed response case”  section can be 
found in Table 1.

A note on conditional performance criteria
The other point of view for comparing the designs is the 
conditional perspective, and usually it is recommended 
to evaluate a design from both the global and condi-
tional perspective. Evaluating group-sequential or adap-
tive designs conditionally involves considering only cases 
where the interim test statistic suggests no early stopping 
for efficacy or futility. Here, this means that performance 
criteria such as power and expected sample size are con-
ditional on having observed some Z1 ∈ (l1,u1).

Pδ=δ̃ (Z1 ≥ u1) and Pδ=δ̃ (Z1 ≤ l1)

EDR[N ] = n1 + n�t + n2(Z1),

PowDR = Pδ=δ̃ (Z1 /∈ (l1,u1), Z̃1 ≥ d1)+ Pδ=δ̃ (Z1 ∈ (l1,u1),Z1+2 ≥ d2).

Pδ=δ̃ (Z1 /∈ (l1,u1), Z̃1 ≥ d1) and Pδ=δ̃ (Z1 /∈ (l1,u1), Z̃1 < d1).

Table 1 Global performance characteristics for the GSD, DRGSD and DRD under consideration of pipeline data; Note that the 
boundary sets between those methods differ, see “Delayed response case” section

Abbreviations: GSD Group-sequential design, DR-GSD Delayed response group-sequential design, RR-GSD Repeated rejection group-sequential design

Design P(futility) P(reject at interim) Power

GSD Pδ=δ̃ (Z1 ≤ l1) Pδ=δ̃ (Z1 ≥ u1) Pδ=δ̃ (Z1 ≥ u1)+

Pδ=δ̃ (Z1+2 ≥ u2 ∩ Z1 ∈ (l1, u1))

DR-GSD Pδ=δ̃ (Z1 /∈ (l1, u1), Z̃1 < d1) Pδ=δ̃ (Z1 /∈ (l1, u1), Z̃1 ≥ d1) Pδ=δ̃ (Z1 /∈ (l1, u1), Z̃1 ≥ d1)+

Pδ=δ̃ (Z1 ∈ (l1, u1), Z1+2 ≥ d2)

RR-GSD Pδ=δ̃ (Z1 ≤ l1 ∪ (Z1 ≥ u1 ∩ Z̃1 < d1)) Pδ=δ̃ (Z1 ≥ u1, Z̃1 ≥ d1) Pδ=δ̃ (Z1 ≥ u1, Z̃1 ≥ d1)+

Pδ=δ̃ (Z1 ∈ (l1, u1), Z1+2 ≥ d2)
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An example of a comprehensive conditional perfor-
mance metric is the conditional performance score pro-
posed by Herrmann et  al. [24]. This score incorporates 
both the conditional expected sample size (CN) and the 
conditional power (CP). For both metrics, measures of 
location and variation are considered, represented by 
their expected values and variances. For some details on 
the score, refer to Appendix B.

Since conditional performance measures involve 
conditioning on study continuation at interim, a fair 
comparison between designs is only possible when 
the continuation criteria are consistent. Given that 
we exclusively examine group-sequential trial designs 
with a fixed second-stage sample size of n2 , the con-
ditional expected sample size is consistent across all 
designs whenever Z1 ∈ (l1,u1) . Specifically, we have 
that Eδ=δ̃[N |Z1 ∈ (l1,u1)] = n1 + n2 , and correspond-
ingly, Varδ=δ̃[N |Z1 ∈ (l1,u1)] = 0 . Therefore, when 
considering conditional sample size metrics, the com-
parison between the designs yields equal results. 
In contrast, the conditional power, defined as 
CP := Pδ=δ̃ (Z1+2 ≥ d2|Z1 ∈ (l1,u1)) , additionally 
depends on the critical value d2 . For DR-GSD and GSD, 
where {l1,u1, d2} are determined to be the same, the con-
ditional power is identical for both designs. Comparisons 
with the RR-GSD are not reasonably interpretable due to 
differing continuation regions.

The conditional performance score introduced by Her-
rmann et al. [24] incorporates not only conditional per-
formance metrics but also their deviation from target 
values. Appendix B and Appendix C summarize these 
target values, demonstrating that, as long as pipeline 
data is available, a standard group-sequential design not 
accounting for those does not differ in terms of target 
values from the delayed response model considered in 
this work. Consequently, aggregating conditional perfor-
mance measures still yields equal performance, provided 
the continuation region and final stage critical value are 
the same across the designs under comparison. Overall, 
while the conditional performance score itself is a suit-
able tool for the evaluation of delayed response designs 
with the same continuation region, it does not provide 
sensible insights into performance comparison between a 
standard group-sequential design and a delayed response 
design. This is due to the fact that upon conditioning on 
continuation, the designs are equivalent. In conclusion, 
for the remainder of our work, we will focus solely on the 
performance difference from a global perspective.

Results
As recommended in the preceding section, the perfor-
mance assessment of diverse study designs can be con-
ducted from both a global and a conditional perspective. 

In the following, we will employ only the global perspec-
tive to evaluate the designs outlined in “Group sequential 
designs” section, as conditional measures are not mean-
ingful in this specific scenario. Our primary focus is on 
determining whether the formal integration of pipeline 
data into a testing strategy results in improved global 
performance. We will examine various scenarios detailed 
in Table 2. The spending functions are selected to mimic 
O’Brien-Fleming boundaries and Pocock boundaries, see 
Appendix A for details. The former boundaries exhibit 
monotonically decreasing upper limits, while the latter 
produce nearly constant critical values for efficacy assess-
ment. Given that the error-spending proposal by Hamp-
son and Jennison [4] incorporates β-spending for futility 
assessment, we will adopt a similar approach. Specifically, 
we will utilize β-spending functions aligned with the Poc-
ock and O’Brien-Fleming α-spending functions.

Furthermore, our performance comparison will center 
on examining the impact of two key parameters: (1) the 
timing of the interim analysis, represented by the infor-
mation fraction I1 , and (2) the fraction of information 
still in the pipeline, denoted as I�t . This section begins 
with an evaluation of the aforementioned scenarios from 
a global perspective, that is, of power and expected sam-
ple size. As the designs differ particularly in terms of the 
mechanism that potentially leads to an interim efficacy 
or futility stop, we also examine the interim probability 
of stopping for efficacy or futility. For all evaluations, 
we make extensive use of the R package rpact (version 
3.4.0) by Wassmer and Pahlke [16].

Global performance
In this section, we provide the power and expected 
sample size evaluation for the scenarios listed in Table 2 
for the Pocock-like and O’Brien-Fleming-like bound-
ary design separately. Note that in standard group-
sequential designs, although pipeline data are not used 

Table 2 Summary of the considered parameter constellations 
for performance comparison

Parameter Values

Significance level α 0.025

Type-II error β 0.2

Effect δ [−0.4, 0.8]

Standard deviation σ 1

Maximum sample size per arm nmax 200

Interim information fraction I1 {0.3, 0.4, 0.5}

Pipeline information fraction I�t {0.1, 0.2, 0.3}

Spending functions O’Brien-Fleming-type 
spending, Pocock-type 
spending
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for decision-making, pipeline data are still included 
in the expected sample size calculation, as detailed in 
“Performance evaluation” section. In addition to power, 
we also provide results concerning the probability of 
early trial termination due to efficacy or futility. In that, 
the plots will all have the same structure, consisting 
of 3x3 grids. The columns contain the interim infor-
mation fraction I1 in increasing order, while the rows 
contain the amount of information fraction in pipeline 
I�t , again ordered increasingly. This is done in order to 
illustrate the simultaneous impact of those parameters 
on performance differences. The x-axes represent the 
effect δ , and the y-axes the probabilities and expected 
sample size values. Different designs correspond to dif-
ferent line colors as follows:

• Green: DR-GSD
• Yellow: GSD
• Blue: RR-GSD

For the plots containing probabilities, linetype is used 
as an additional tool to distinguish interim from overall 
power and futility from efficacy. For the expected sam-
ple sizes, we used different linetypes to highlight over-
lapping lines. Note that values of δ < 0 are included to 
examine the probability to stop for futility.

Pocock‑like boundaries
Figure  2 illustrates the power in the Pocock-like case 
for different information fraction settings. At first, the 
methods barely differ in power when the interim analysis 
occurs early and there is limited data in the pipeline (see 
e.g. upper left plot). This pattern is consistent for both 
total and interim power. Upon closer inspection, one can 
see that the DR-GSD has a slightly larger power than the 
other methods. That is, the delayed response method is 
slightly superior over the non-delayed response method 
in case futility is set up equivalently. As the amount of 
data in the pipeline increases, the RR-GSD demonstrates 
higher interim power compared to other methods due 
to its more liberal stopping criteria (see lower left plot). 
With I1 = 0.4 and I�t = 0.2 , we find that the probabil-
ity of rejecting H0 at interim is 0.496 for the GSD, 0.507 
for DR-GSD, and 0.606 for RR-GSD when δ = 0.3 . This 
reflects an approximately 10% increase in the probabil-
ity to reject H0 at interim with the RR-GSD. Examining 
overall power, we observe 0.878 for the GSD, 0.889 for 
DR-GSD, and 0.882 for RR-GSD, suggesting minor dif-
ferences in overall power within this setting. Concerning 
futility, the probability of stopping early is 0.069 for the 
GSD, 0.057 for the DR-GSD, and 0.069 for the RR-GSD, 
indicating a slightly smaller probability for DR-GSD. 
As I1 increases, the differences between the methods 

Fig. 2 Probabilities for early stopping and power of the different considered designs at effect sizes δ , depending on I1 ∈ {0.3, 0.4, 0.5} 
and I�t

∈ {0.1, 0.2, 0.3} . The maximum sample size is set to nmax = 200 for both arms. Abbreviations: GSD: Group-sequential design; DR-GSD: 
Delayed response group-sequential design; RR-GSD: Repeated rejection group-sequential design
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become more pronounced, revealing that the overall 
power gain of delayed response methods can be attrib-
uted to a slightly larger interim power (see lower right 
plot). That is, the power of the delayed response design 
is particularly increased in regards to interim stopping, 
while global power is comparable across the whole range 
of effect sizes. Regarding the probability to stop for futil-
ity, we obtain similar curves for the DR-GSD and GSD 
especially under H0 . On the other hand, we observe that 
the the RR-GSD has a decreased probability to stop for 
futility as compared to the other methods for effect sizes 
δ � 0.2 . As the effect increases, the probability to stop for 
futility becomes the smallest for the DR-GSD.

Figure  3 illustrates expected sample size values in the 
Pocock-like case. Notably, all designs result in sample 
size savings compared to a correspondingly planned 
single-stage design with an overall sample size of 400. 
Firstly, we observe that, for any setting, the DR-GSD and 
GSD methods do not differ in terms of expected sample 
size, indicated by the overlapping yellow and green lines. 
This similarity arises because the expected sample size is 
influenced by the probability of proceeding to the second 
stage Pδ(Z1 ∈ (l1,u1)) , and (l1,u1) is the same for both 
designs (see Table  D1 in the supplementary material). 

Substantial differences are only evident when comparing 
RR-GSD with the other two designs (see e.g. lower left 
plot). For small or negative effect sizes, the RR-GSD yields 
larger expected sample sizes. However, for positive effect 
sizes of δ � 0.25 , the expected sample size values drops 
below those of the other designs. This effect is espe-
cially pronounced for small I1 and large I�t . For instance, 
consider a trial planned with I1 = 0.3 , while there is 
I�t = 0.3 of information in pipeline, referring to to the 
lower left plot. In this scenario, the expected sample sizes 
for for δ = −0.1 are as follows: GSD = 271.1 , DR-GSD 
= 271.1 , and RR-GSD = 291.5 . However, for δ = 0.3 , 
we observe different values: GSD = 345.2 , DR-GSD 
= 345.2 , and RR-GDS = 324.0 . Note that as I1 increases 
(late interim) and I�t is smaller (low amount of pipeline 
data), the difference between the expected sample sizes 
diminishes. The observed pattern can be attributed to the 
following: In RR-GSD, the parameter β1 influencing the 
determination of futility boundaries l1 and d1 is divided 
across two possibilities: - Z1 ≤ l1 or Z1 ≥ u1 ∩ Z̃1 < d1 . 
Consequently, l1 becomes conservative, making it less 
likely to stop for Z1 ≤ l1 , resulting in a wide continua-
tion region (see Table D1 in the supplementary material). 
Therefore, the trial is more likely to continue for small or 

Fig. 3 Total expected sample size Eδ[N] of the different considered designs at effect sizes δ , depending on I1 ∈ {0.3, 0.4, 0.5} and I�t
∈ {0.1, 0.2, 0.3} . 

The maximum sample size is set to nmax = 200 for both arms. Abbreviations: GSD: Group-sequential design; DR-GSD: Delayed response 
group-sequential design; RR-GSD: Repeated rejection group-sequential design
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negative effects, leading to a larger expected sample size. 
Conversely, this method allows for stopping for efficacy 
only when observing Z1 ≥ u1 ∩ Z̃1 ≥ d1 , whereas for DR-
GSD, efficacy stop is concluded if Z1 /∈ (l1,u1) ∩ Z̃1 ≥ d1 . 
Thus, the efficacy stopping criteria are more liberal, 
resulting in lower expected sample sizes for RR-GSD. 
This aligns with the increased probability of stopping at 
the interim, as shown in Fig. 2. The minimum sample size 
ñ1 = (I1 + I�t )nmax is an increasing function in I1 and 
I�t . Hence, as I1 and I�t increase, the minimum sample 
size ñ1 also increases, such that we observe larger mini-
mum values and a reduced value range in the bottom 
right corner of the plot grid.

O’Brien‑Fleming‑like boundaries
In this section, we present analogous performance results 
for the O’Brien-Fleming-like case in Fig.  4, beginning 
with relevant probabilities (see (a)) and subsequently 
addressing expected sample size (see (b)).

In terms of power, the qualitative differences from the 
previous case are marginal. The observed differences are 
clearly less pronounced than in the Pocock-case. This is 
attributable to the generally more conservative nature 
of interim boundaries for efficacy with O’Brien-Fleming 
designs (see Table  D1 in the supplementary material). 
In contrast to the previous case, where RR-GSD exhib-
ited notably higher expected sample sizes for small and 
negative effects, this effect is no longer present. Again, 
this is due to the fact that the use of O’Brien-Fleming-like 
spending functions results in comparable boundary sets 
for the RR-GSD, whereas with the Pocock-like spending 
functions, the interim boundaries are notably different 
(see Table D1 in the supplementary material).

Power and expected sample size simulation
In “Performance evaluation”  section, we argued that a 
holistic performance evaluation should not only include 
location but also variation measures, given that perfor-
mance characteristics inherently involve randomness 
that stems from random data. As closed-form formulas 
for the variance of power and expected sample size are 
not readily available, we employ simulations to assess 
the variability of the considered performance metrics. 
For computational efficacy, we simulated the test statis-
tics directly, using the knowledge about their underlying 
multivariate normality. This simulation was implemented 
using the |mvtnorm| package (version 1.1-3) by Genz 
et al. [25]. We generated nsim = 10, 000 test statistics for 
all stages and counted the number of rejections at interim 
and final stages, given that no interim stop occurred 
earlier. By repeating this procedure k = 100 times, we 
obtained an empirical distribution of power and expected 

sample size values for the different designs shown in 
Fig. 5. Note that as the number of repetitions k increases, 
the distribution of values tends to center around the true 
value, resulting in smaller boxes in the boxplots. There-
fore, to maintain clarity in discerning between the meth-
ods, we opted to set k = 100.

Figure  5 displays boxplots representing the empiri-
cal distributions of power and expected sample size val-
ues. The colors are again representative of the methods. 
The expected sample size is marginally smaller for the 
RR-GSD, aligning with the previous findings, while no 
notable power differences are apparent. Examining the 
variance of power between simulation runs, we observe 
small differences, as indicated by the y-axis ranging from 
0.8 to 0.86. Similarly, the variance of the expected sam-
ple size is small, leading to the conclusion that none of 
the methods exhibits superiority in terms of the extent to 
which performance characteristics vary based on random 
data.

Practical example
We illustrate various design approaches using the schiz-
ophrenia trial presented in Mehta and Pocock [12]. The 
trial is a two-arm randomized controlled phase III clini-
cal trial comparing a verum drug against an active com-
parator drug in patients with negative symptoms of 
schizophrenia. The primary endpoint of this trial is meas-
ured using the Negative Symptoms Assessment Scale 
(NSA), as detailed by Alphs et  al. [26]. This endpoint 
is considered a quantitative variable, with an assumed 
effect size of δ = 1.6 and a standard deviation of σ = 7.5 
in both groups.

To achieve a power of at least 80% at a one-sided sig-
nificance level of α = 0.025 , a fixed design would require 
a sample size per group of approximately

resulting in a total sample size of N = 690 . We will use 
this sample size for all of the four considered designs to 
compare power and expected sample size.

In Mehta and Pocock’s paper [12], they assume an aver-
age recruitment rate of 8 patients per week, leading to 
an overall recruitment period of approximately 86 weeks 
( 690/8 ≈ 86 weeks). Each patient requires �t = 26 weeks 
until the outcome can be ascertained, creating a delayed 
response situation. The authors propose an interim 
analysis after observing data from n1 = 200 patients in 
total, which occurs after (200/8+ 26) = 51 weeks. At 
this point, with n1 = 200 observed patients, there are 
additional n�t = 26 · 8 = 208 patients in the pipeline, 
resulting in a total of ñ1 = 408 patients. In terms of infor-
mation rates, we hence have that I1 = 200/690 ≈ 0.29 , 

n = 2(z1−α + z1−β)
2
(σ

δ

)2

≈ 345,
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Fig. 4 Probabilities for early stopping, power and total expected sample size Eδ[N] of the different considered designs at effect sizes δ , depending 
on I1 ∈ {0.3, 0.4, 0.5} and I�t

∈ {0.1, 0.2, 0.3} . Note that the curves of the different methods are all displayed, but mainly overlapping. Therefore, 
the lines are slightly shifted to make all lines visible. Abbreviations: GSD: Group-sequential design; DR-GSD: Delayed response group-sequential 
design; RR-GSD: Repeated rejection group-sequential design
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and Ĩ1 = 408/690 = 0.59 . Table 3 below summarizes the 
planning assumptions.

For illustration purposes, we compare the designs 
using commonly used Pocock-like spending functions. 
In Table  4, we display the different boundary sets for 
the parameter configuration given in Table  3. Further, 
we present power, probability to stop for futility and 
expected sample size per arm. All of the designs are set 
up at a one-sided alpha level of 2.5% and we use β = 0.2 
for the β-spending lower boundaries.

The table indicates that the boundary sets of GSD and 
DR-GSD for the continuation region (l1,u1) are equal, 
whereas those of RR-GSD differ. Specifically, the bounds 
are lower, making the recruitment more likely to stop for 
promising effects but less likely for non-promising effects 
upon observation of n1 outcomes. Additionally, it is 
worth noting that the decision critical value of DR-GSD 
( d1 = 1.584 ) is relatively small, attributed to the notably 
large amount of pipeline data. The power and expected 
sample size values of all designs are comparable and there 
is no method clearly superior to others. However, there is 
a slight power gain observed with the delayed response 
methods compared to the standard group-sequential 
method, without a noticeable increase in expected sam-
ple size. Note particularly that the probability to prove 
efficacy at interim is larger for the RR-GSD method due 
to the comparatively liberal upper recruitment stopping 
boundary, leading to a decrease in expected sample size.

Discussion
Group-sequential designs are widely recognized for 
improving the flexibility and efficiency of clinical trial 
setups with respect to sample size, time and cost thereof. 

Fig. 5 Boxplot of simulated power and expected sample size values for an O’Brien-Fleming design with I1 = 0.5 , I�t
= 0.2 at δ = 0.3 and σ = 1 ; 

Maximum sample size is nmax = 200 per Arm. Note that the differences may appear slightly more pronounced due to the narrow y-axis scaling 
but are actually negligible as also shown in Fig. 4. Abbreviations: GSD: Group-sequential design; DR-GSD: Delayed response group-sequential 
design; RR-GSD: Repeated rejection group-sequential design

Table 3 Summary of the considered parameter constellation for 
practical example

Parameter Values

Effect δ 1.6

Standard deviation σ 7.5

Maximum sample size per arm nmax 345

Interim information fraction I1 0.29

Pipeline information fraction I�t 0.3

Table 4 Boundary sets {l1, u1, d1, d2} and theoretical global performance characteristics for GSD, DR-GSD, and RR-GSD for the example 
in Mehta and Pocock [12], where I1 = 0.29 and I�t = 0.3

Abbreviations: GSD Group-sequential design, DR-GSD Delayed response group-sequential design, RR-GSD Repeated rejection group-sequential design

Method (l1, u1) d1 d2 P(futility) P(reject at interim) Power Eδ[N]

Fixed design NA NA 1.960 NA NA 0.80 690

GSD (0.259, 2.322) NA 2.119 0.106 0.208 0.722 601.286

DR-GSD (0.259, 2.322) 1.584 2.119 0.089 0.224 0.739 601.286

RR-GSD (−0.164, 1.815) 1.960 2.043 0.098 0.329 0.737 569.222
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However, there has been limited attention given to han-
dling patients recruited whose outcome measures are not 
immediately available during interim assessments. Our 
work aims at exploring to which degree group-sequential 
designs can enhance performance when accounting for 
data from delayed responses, rather than overlooking it 
as an inherent issue. Regarding performance evaluation, 
we argue that a meaningful performance comparison 
between group-sequential and delayed response group-
sequential methods is best approached from a global 
perspective. This is because conditioning on interim 
results eliminates any differences, as long as the condi-
tion remains constant. Nevertheless, we introduce an 
adjusted version of the conditional performance score 
proposed by Herrmann et al. [24] in the appendix. While 
this score may not be an ideal tool for comparing stand-
ard group-sequential methods with delayed response 
group-sequential methods, it can still provide insights 
into overall performance by considering the location 
and variation of both conditional power and conditional 
expected sample size.

From a global performance evaluation perspective, 
the differences between the three candidate designs 
are negligible in most of the settings considered in this 
paper. While the global power has been found to differ 
at most by 2%, we note a considerably higher probability 
of rejecting the null hypothesis at interim with the RR-
GSD. Therefore, if the choice of a trial design is made in 
realistic anticipation of early stopping, the RR-GSD may 
be deemed preferable. In terms of expected sample size, 
distinctions become apparent primarily with the RR-GSD 
as well. This observation can be attributed to its lower 
values for u1 and l1 , resulting in a higher probability of 
halting recruitment when Z1 ≥ u1 , but a lower probabil-
ity when Z1 ≤ l1 . As a result, the expected sample size 
can exhibit lower or higher values compared to other 
methods, depending heavily on the true but in practice 
unknown effect size.

When drawing decisions about different clinical trial 
designs, it is crucial not only to assess their perfor-
mance from a statistical point of view, but also to explore 
their practicality and logistical feasibility. To get a more 
holistic view on the applicability of the designs, opera-
tional aspects of those will be taken into account in the 
following.

Concerning software implementation, standard group-
sequential designs constitute a well-established set of 
methods. Correspondingly, software packages such as 
rpact offer necessary tools for a hands-on implemen-
tation, planning and analysis of these designs. Addition-
ally, the method proposed by Hampson and Jennison 
(2013) utilizing a binding error-spending recruitment 
stopping boundary, is mainly based on concepts from 

error-spending group-sequential designs. It deviates 
only through incorporation of the additional constraint 
needed to calculate the decision boundary. The DR-GSD 
has also been implemented for K-stage group-sequential 
designs in rpact, covering the implementation aspect 
but not extending to the analysis at this point. In contrast, 
for the delayed response group-sequential method with 
a nonbinding recruitment stopping boundary, the deter-
mination of the boundary set involves constraints slightly 
different from those used in standard group-sequential 
methods. Therefore, planning such a trial, especially with 
more than two stages, would require some implementa-
tion work. In summary, while tools for the execution and 
planning of standard group-sequential methods and the 
DR-GSD are readily available and diverse, the RR-GSD 
currently lacks a (commercial) software implementa-
tion. However, this design can easily be implemented 
using functionalities from rpact as well, as illustrated, 
for example, in the publicly available vignettes accessible 
through  https:// fpahl ke. github. io/ gsdwdr/ and https:// 
www. rpact. org/ vigne ttes/ plann ing/ rpact_ delay ed_ respo 
nse_ desig ns/. When planning a delayed response group-
sequential trial, several factors should be taken into con-
sideration. At first, the efficacy of these designs depends 
on the amount of information available during interim 
analysis and the number of concurrent pipeline patients. 
This introduces a new planning parameter distinct from 
standard group-sequential methods. In practice, predict-
ing the number of outstanding pipeline patients dur-
ing interim analyses may be challenging. Therefore, trial 
planning should involve diverse scenarios, including vari-
ous possible recruitment schemes (linear, constant, expo-
nential) and different time behavior between recruitment 
and observations (constant, random). Simulations might 
provide a valuable tool to evaluate the robustness of 
delayed response designs in regards to a spectrum of 
possible sample sizes. The incorporation of a recruit-
ment stopping decision leads to several challenges in the 
conduct. Communicating to halt a trial solely to draw a 
terminal decision on recruitment, not efficacy, might be 
challenging and there is a risk of misunderstanding the 
recruitment stopping as “premature efficacy or futility”. 
Consequently, care should be taken when interpreting 
interim results. Schüürhuis et  al. [13] have addressed 
this concern by proposing a delayed response group-
sequential method that allows for restarting the trial after 
having paused it, reducing the terminal nature of the 
recruitment stopping analysis. Secondly, the generally 
complicated study designs magnifies in large trials, par-
ticularly multicenter trials. For instance, managing par-
allel recruitment stopping poses a particular challenge, 
especially across multiple continents and time zones. 
Fortunately, error-spending methods offer flexibility by 

https://fpahlke.github.io/gsdwdr/
https://www.rpact.org/vignettes/planning/rpact_delayed_response_designs/
https://www.rpact.org/vignettes/planning/rpact_delayed_response_designs/
https://www.rpact.org/vignettes/planning/rpact_delayed_response_designs/
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utilizing the actual trial information available, which may 
deviate from planning assumptions due to factors such as 
non-simultaneous stopping among participating centers, 
to establish decision boundaries.

Our paper started raising the question whether or not 
more complex designs accounting for delayed responses 
can be justified by a corresponding improvement in 
expected sample size and power. We found that regarding 
global performance, a notable gain in power is evident 
primarily in the probability of rejecting the null hypoth-
esis at interim using the RR-GSD. Since this method 
also has a slightly lower expected sample size under the 
alternative and is designed to not allow for contradic-
tory results - such as shifts from negative outcomes dur-
ing recruitment stops to significant results at decision 
analysis - it may be considered the most recommendable 
method. Interestingly, however, the overall performance 
gain is limited, while no performance loss can be seen. 
This observation is valuable, allowing to shift the discus-
sion of possible trial design choices from theoretical to 
practical properties as well. Finally, to address the ques-
tion posed in the title, “What is the point of applying 
these methods?”, our response shall be as follows: While 
the performance gains from using delayed response mod-
els may be modest in the scenarios considered in here, 
the key advantages rather lie in regulatory and ethical 
considerations that support the use of delayed response 
group-sequential designs rather than simply discarding 
pipeline data. Additionally, in practice, delayed response 
designs can introduce a more structured decision-mak-
ing process, reducing ambiguities during interim analy-
ses. However, to fully realize these potential advantages, 
further research is required to effectively implement 
these methods, and practical experience is necessary to 
apply the designs effectively.

Our study also exhibits some limitations. At first, we 
restricted the designs under consideration to those with 
nonbinding lower boundaries to cover primarily designs 
of practical relevance. Moreover, we focused our analy-
sis on continuous endpoints and designs featuring only 
one interim analysis. In the context of multistage designs, 
the influence of the number of pipeline patients on design 
performance and applicability may vary, especially with 
varying numbers of interim analyses. Furthermore, our 
focus was on designs based on standard error-spending 
group-sequential theory, given their widespread practical 
use. Other methodologies, including optimal designs, the 
incorporation of short-term endpoints for decision-making, 
and Bayesian approaches, represent potential directions for 
future research. Additionally, our comparison was centered 
on standard group-sequential methods ignoring pipeline 
patients, contrasted with methods that formally incorporate 
such data. This approach offers insights into the trade-off 

between neglecting and integrating pipeline data. Alterna-
tive perspectives, as demonstrated in Mukherjee et al. [15], 
could be evaluating the trade-off between disregarding the 
pipeline patients versus waiting for their data to become 
available for inclusion. This alternative approach naturally 
introduces an additional performance characteristic – the 
expected trial duration. Since the expected trial duration 
clearly depends on assumptions regarding recruitment pat-
tern and delayed response behaviour, the inclusion of this 
parameter introduces a level of complexity that falls outside 
the scope of our current work.
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