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Targeting mRNA-coding genes in prostate
cancer using CRISPR/Cas9 technology with a
special focus on androgen receptor signaling
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Abstract

Background Prostate cancer is among prevalent cancers in men. Numerous strategies have been proposed to
intervene with the important prostate cancer-related signaling pathways. Among the most promising strategies is
CRISPR/Cas9 strategy. This strategy has been used to modify expression of a number of genes in prostate cancer cells.

Aims This review summarizes the most recent progresses in the application of CRISPR/Cas9 strategy in modification
of prostate cancer-related phenotypes with an especial focus on pathways related to androgen receptor signaling.

Conclusion CRISPR/Cas9 technology has successfully targeted several genes in the prostate cancer cells. Moreover,
the efficiency of this technique in reducing tumor burden has been tested in animal models of prostate cancer. Most
of targeted genes have been related with the androgen receptor signaling. Targeted modulation of these genes have
affected growth of castration-resistant prostate cancer. PI3K/AKT/mTOR signaling and immune response-related
genes have been other targets that have been successfully modulated by CRISPR/Cas9 technology in prostate cancer.
Based on the rapid translation of this technology into the clinical application, it is anticipated that novel treatments
based on this technique change the outcome of this malignancy in future.
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Introduction

The CRISPR system is an innovative genome editing
apparatus that is able to reform the outline of cancer
research and treatment. Its capacity to accurately target
and edit certain genetic mutations that initiate the growth
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of E. coli K-12, they came across a certain set of 29
nucleotide repeats located downstream of the iap gene.
These repeats were interspersed with five 32-nucleotide
non-repetitive sequences [1-3]. This discovery, sparked
intense curiosity and laid the foundations for the subse-
quent impressive progress in CRISPR research.

In 1989, Francisco Mojica, a researcher from the Uni-
versity of Alicante, discovered an outstanding feature of
the CRISPR system. Two years following the discovery of
Ishino et al., Mojica discovered a strange structure with
a roughly palindromic pattern. This repetitive structure
comprised a section of about 30 bases alternating with
a spacer of 36 bases [4]. Mojica also observed the same
repeats in the intimately associated organism H. volca-
nii, highlighting the intriguing nature of these sequences.
He called these structures Short Regular Spaced Repeats
(SRSRs). But as the scientific community investigated
their function, they were eventually renamed “clustered
regularly interspaced palindromic repeats” (CRISPR) [5].

In 2005, the role of CRISPR loci in adaptive immu-
nity was discovered independently by three groups of
researchers: Bolotin et al.; Mojica et al. and Pourcel et al.
[6]. Their joint observations revealed an intriguing pat-
tern: the spacer sequences of CRISPR loci were not ran-
domly arranged; instead, they appeared to be originated
from phage DNA and conjugative plasmids. This discov-
ery implied that the unique spacer regions actually serve
as a kind of immune memory and provide protection
against invading phage or plasmid DNA [6].

The theory that CRISPR contributed to the adaptive
immunity was additionally confirmed by Barrangou et
al. They artificially altered the spacer sequences of the
CRISPR clusters of phage-resistant S. thermophiles. By
deleting the spacer, the phage-resistant strains converted
susceptible to phage infection again, demonstrating that
CRISPR loci play a direct role in adaptive immunity [7].

At the same time, Horvath and his team conducted
another experiment that provided further evidence for
the CRISPR-adapted immune system notion. They inte-
grated the new phage DNA into the CRISPR array and
demonstrated effective protection against further phage
attacks [8].

These primitive hypotheses provided intriguing clues
about the potential mechanism of CRISPR-encoded
defense against phage invasion. In addition, the findings
of subsequent research showed that the CRISPR/Cas
systems incorporate tiny fragments of foreign DNA into
the CRISPR locus. In-depth transcriptional analysis of
small RNAs revealed that the spacer sequences between
CRISPR loci and certain repetitive sequences were tran-
scribed as an elongated transcript and processed into
small CRISPR-associated transcripts, named CRISRR
RNA (crRNAs) [6].
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Subsequently, Siksnys et al. cloned the complete
CRISPR-Cas locus from S. thermophiles [9]. Their
experiments confirmed the capacity of this system to
deliver resistance against foreign plasmids [9]. They
also explained how the RuvC domain of Cas9 cuts
the non-complimentary DNA strand, while the HNH
domain cuts the complementary strand. It was further
shown that Cas9 can be trained to target a specific site
by altering the crRNA sequence [10]. At the same time,
another group found that trans-activating CRISPR RNA
(tracrRNA) creates a duplex with crRNA and directs
Cas9 to its targets [11]. In 2012, Jinek et al. made a sig-
nificant scientific contribution with their groundbreaking
research [12]. The main focus of their study was on the
exact mechanism of Cas9 protein binding to the foreign
DNA and its cleavage. They identified the essential com-
ponents required for the CRISPR/Cas system to operate
in genome editing. It turned out that Cas9, the mature
crRNA, and the protospacer-adjacent motif (PAM) alone
do not trigger the Cas9-mediated cleavage of plasmid
DNA. Nevertheless, the inclusion of tracrRNA, a crRNA
that attaches to the target DNA, together with magne-
sium resulted in successful cleavage reactions. Jinek and
his colleagues conducted various experiments to under-
stand the function of Cas9 and tracrRNA in the CRISPR/
Cas system [12]. After understanding the process, they
designed small guide RNAs (sgRNA) that resembled the
tracrRNA-crRNA complex, and simplified the process of
an adaptable system. Since Cas9 is an RNA-programmed
enzyme, it permit targeting and cleavage of certain DNA
sequences [12].

In 2013, another major breakthrough was accom-
plished. In fact, it was development of two orthologs of
Cas9 from S. thermophilus and S. pyogenes, which were
successfully applied to mouse and human cells [13]. Dur-
ing the same year, another group developed type II bacte-
rial CRISPR/Cas system with modified gRNA in human
cells, which opened up new opportunities for CRISPR
technology [14].

The CRISPR/Cas9 system has been further modified
and adapted for various types of genomic applications,
including genome regulation [15]. This development
illustrates the power and flexibility of the CRISPR/Cas9
system in a wide diversity of genome-related studies
[15]. Figure 1 shows a schematic representation of dif-
ferent milestones in the application of CRISPR/Cas9
technology.

CRISPR/Cas structures and mechanisms

There are three major types of CRISPR/Cas systems
described as Type I (Cas3), Type II (Cas9) and Type III
(Cas 10) [16]. Type I Cas genes encode helicases having
ATPase activity on single-stranded DNA [17]. Type II
Cas genes encode a multiple-domain protein working for
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Fig. 1 Timeline of important events leading to application of CRISPR/Cas9 technology

the DNA cleavage and crRNA maturation [12]. In com-
bination with Cas9, all CRISPR/Cas systems with Type II
genes contain Casl and Cas2. Type III CRISPR/Cas genes
encode CaslO, a multiple domain protein with palm
domain [18]. In addition to Cas10 which is the active unit
of this type of systems, other subunits exist in Type III
loci, including a subunit that encodes Cas5 groups and
numerous RAMP subunits for Cas7 [19]. While Cas9 is
helpful for editing purposes, the method of cleavage of
Cas3 makes it unsuitable for this purpose. In fact, Cas3
pinpoints its target sequence and starts single stranded
DNA degradation in a way that can continue up to mul-
tiple kilobases [20]. Finally, Type III effector systems spe-
cifically spot and cleave RNA molecules [21].

The CRISPR/Cas systems exist on both chromosomal
and plasmid DNA [22]. These systems are a portion
of adaptive immune systems evolved by bacteria and
archaea to guard themselves against invading phages and
are made up of diverse CRISPR and Cas genes. The large
Cas effector protein, which has one multidomain per
protein, forms a complex with crRNA during the inter-
ference process [23].

CRISPRs contain a leader (which is adjacent to the first
repeat of the CRISPR loci and is the promoter of CRISPR
arrays), short direct repeats (which form hairpin configu-
ration to stabilize the secondary structure of the RNA),
and non-repetitive spacers (which capture foreign DNA
sequences) [24, 25].

The CRISPR/Cas9 class II systems expressed by bac-
teria and archaea can hold a small section of the viral
gene, a so-called spacer, in to the CRISPR array. When
the same virus re-invades the cells, the bacteria can dis-
tinguish the virus from the spacer and lyse the virus by

cutting its DNA. This process includes three phases,
namely adaptation, expression and interference. When
the foreign DNA enters the host cell, Cas1 and Cas2 pro-
teins distinguish the PAM in the foreign DNA structure,
and afterwards catch the DNA sequence neighboring
the PAM as a protospacer [26]. Then, the Cas1/2 protein
complex cuts the protospacer from the foreign DNA to
make a spacer that is incorporated between two repeat
sequences at the 5 end of the CRRSPR array [27, 28].
At the expression phase, CRISPR array is transcribed
to create tracrRNA and crRNA precursor. The latter is
trimmed into mature crRNA by the assistance of RNase
III nuclease and Cas9. Then, repeats and tracrRNA make
a double-stranded RNA (tracrRNA-crRNA) through
pairing of complementary bases. This structure accu-
mulates into the effector complex with the nuclease and
Cas9 [29]. When the tracrRNA: crRNA duplex is pro-
cessed, it can direct Cas9 to DNA sequences correspond-
ing to the crRNA guide sequence [30]. In the interference
phase, the Cas9 effector protein binds to the guide RNA
before target recognition and cleavage. Afterwards, Cas9
protein is directed to the appropriate PAM sequence in
a sequence-specific manner [31]. PAMs have a crucial
role in the discrimination of self DNA from foreign DNA,
since they are present only in the exogenous DNA, pre-
venting the activation of the CRISPR mechanism for self-
deletion. In fact, protospacer sequences inserted into the
CRISPR locus are not cut since they are not adjacent to a
PAM sequence [32].

In brief, pairing of crRNA with the complementary
bases on the target strand creates an R-loop configura-
tion that ultimately causes cutting of the target and non-
target strands by Cas9, leading to flat-end cut at three
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nucleotides upstream of the PAM [33]. This cleavage
leads to formation of a double-strand break in the tar-
get sequence which in turn triggers two repair mecha-
nisms: (1) non-homologous end joining (NHE]) and (2)
Homology directed repair (HDR). NHE] pathway is an
error-prone repair mechanism that repairs DNA dou-
ble-strand break by inserting indels, thereby leading to
diverse mutations in the open reading frames of the tar-
gets region [34, 35]. HDR is an innate DNA repair mech-
anism, which is triggered by double-strand DNA breaks
[36]. This DNA repair mechanism could be used to repair
the DNA double-strand breaks mediated by CRISPR
[33, 37]. The DNA cleavage induced by sgRNA can be
repaired by introducing a donor template into the target
cells. The donor DNA harbors the intended insertions or
modifications. The insertions are flanked with DNA seg-
ments that are homologous to the cleaved DNA. There-
fore, the cells HDR mechanism inserts the desired gene
into the targeted DNA segment by utilizing the donor
template [14, 38].

CRISPR/Cas9 in cancer treatment

Although there has been considerable advancement
in cancer treatment in recent decades, the continued
mortality rate from this disease demonstrates the criti-
cal necessity for novel and more competent therapeutic
modalities. CRISPR/Cas9-mediated genome editing is
a potent research tool which provides vast promise in
cancer therapeutic application, and it has been widely
utilized in the research laboratories, due to its high speci-
ficity, efficiency, and accuracy, which have facilitated
detection of the role of various oncogenes and tumor
suppressors in the cancer cells [39-43]. The CRISPR/
Cas9 tool has been also exploited to specifically target
tumor-suppressors in order to suppress or diminish the
tumorigenesis by reestablishing the functions of these
genes [44]. It has also been used to recognize the hetero-
geneity of cancer cells and possible therapeutic targets
for diverse cancer cells [45]. This technique has a poten-
tial to be used for repair of specific mutations, gene edit-
ing, knockdown of specific oncogenes, and engineered
T cell immunotherapy [46]. In addition, CRISPR/Cas9
tool was used as a programmable base editing system
to telomerase in order to demonstrate that base-editing
of TERT rigorously affects cancer cell survival. In fact,
haploinsufficiency of TERT resulted in telomere abra-
sion and growth retardation, showing the potential of
TERT inactivation in cancer therapy [47]. The capacity of
CRISPR/Cas9 system for editing of oncogenic mutations
has also been confirmed [46]. CRISPR/Cas9 has also
been applied in the clinical settings. In a phase I clini-
cal trial, CRISPR/Cas9 PD-1-edited T cells were used in
patients with advanced lung cancer. Results confirmed
the feasibility and safety of this technique [48]. Here, we
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discuss the novel therapeutic aspects of this technology
in the treatment of prostate cancer.

Prostate cancer

Prostate cancer is a very complicated disease with differ-
ent genetic factors contributing to its pathogenesis [49].
Recent advancements in CRISPR technology offer a novel
approach to targeting the specific genes associated with
prostate cancer, leading to the development of new thera-
peutic strategies [50]. We discuss these studies in differ-
ent sections of this article.

CRISPR-mediated modification of androgen
receptor (AR) signaling

Due to the importance of AR in the pathogenesis prostate
cancer, different methods were used to modulate this sig-
naling pathway in prostate cancer. At the gene level, small
interference RNA was used with great success [51, 52]. In
addition, next-generation AR signaling inhibitors, bone-
targeting substances, and poly(ADP-ribose) polymerase
inhibitors have also been developed for such purpose
[53]. CRISPR technology was also used by several groups
as a tool for modification of this pathway (Table 1). For
instance, Wei et al. employed the CRISPR/Cas method
to effectively eliminate the AR gene in androgen- posi-
tive prostate cancer cells. Three distinct single sgRNAs
were developed to target various regions of the AR gene.
The investigators discovered the optimal sgRNA that
effectively targeted the AR gene, leading to the inhibi-
tion of androgen-sensitive prostate cancer development.
The AR sgRNA-guided CRISPR/Cas method induced
targeted breaks in the AR gene, leading to cellular apop-
tosis and inhibition of the cell proliferation. The results
showed that the CRISPR/Cas system might be an effec-
tive weapon for the treatment of this cancer [54].

Several other genes were found to be regulated by AR
signaling. For instance, prostate-specific antigen (PSA) is
among androgen-responsive genes [55]. This proto-onco-
gene is widely found in embryonic and prostate cancer
cells, and is absent in normal prostate cells. A research
team inspected the conditional transcriptional regula-
tion of the PSA promoter and its application for the
gene therapy. A CRISPR/dCas9-KRAB system was con-
structed using the PSA promoter to repress transcription
of the PSA gene. This inhibition consequently resulted in
the blockage of tumor growth and migration, and induc-
tion of apoptosis. Therefore, this study underlined the
ability of the CRISPR-dCas9-KRAB system to control
PSA expression as a therapeutic strategy for the prostate
cancer gene therapy [56].

The steroid type II 5-alpha-reductase (SRD5a2)
enzyme facilitates the conversion of testosterone to
dihydrotestosterone, which are hormones associated
with prostate cancer and benign prostatic hyperplasia.
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Suppression of SRD5a2 activity is regarded as a possible
therapy for these disorders; however, current pharma-
cological treatments have certain side effects, and novel
therapeutic modalities are desirable. Akbaba et al. estab-
lished a cationic liposome preparation that encapsulates
Cas9 protein and carries sgRNA on its surface. Such well-
structured liposome exhibited favorable physicochemical
characteristics, stability, low cytotoxicity, efficient cellular
intake, and high gene knockout efficiency. The Lipo/Cas9
with sgRNA resulted in a 29.7% reduction in relative
SRD5a2 mRNA expression. The research indicated men-
tioned liposomal formulation is a promising method for
treating prostate cancer or BPH while avoiding the side
effects associated with current medications [57].

Survivin is another molecule that plays a role in both
AR-dependent and AR-independent drug resistance
in prostate cancer. Its expression was up-regulated by
androgen in both AR-positive LNCaP and AR-negative
prostate cancer cells [58]. CRISPR-mediated silencing of
Survivin induced apoptosis of prostate cancer cells [59].

NANOG is another factor that is involved in AR signal-
ing. It can reprogram prostate cancer cells to castration
resistance through suppressing the AR/FOXA1 signal-
ing route [60]. In another study, Kaneda and colleagues
demonstrated the role of NANOG and its pseudogenes
in prostate cancer. Using the CRISPR/Cas9 technology,
researchers obtained NANOG- and NANOGP8-knock-
out DU145 cells and examined their malignant features.
Knockout of NANOG and NRFP8 significantly inhibited
various malignant characteristics of these cells, namely
sphere construction, anchorage-independent growth,
migration ability, and chemoresistance. NANOG and
NANOGPS8 knockout did not suppress in vitro cell pro-
liferation. However, the tumorigenic ability of cells was
reduced significantly. It was revealed that both NANOG
and NANOGPS8 have an equivalent role in the aggres-
siveness of prostate cancer. This study highlighted the
possibility of CRISPR-based targeting of NANOG and
NANOGSS for the treatment of prostate cancer by inhib-
iting the malignant characteristics of cancer cells [61].

Another group achieved a great success by develop-
ing mice prostate models with the TMPRSS2-ERG gene
fusion, a common genetic alteration in prostate cancer.
Gene fusion was successfully induced by a CRISPR/Cas9-
based technique, leading to the overexpression of ERG,
a crucial factor in prostate development, in cancer cells.
Treatment with the AR antagonist nilutamide led to the
restoration of the fusion transcript expression to normal
ERG levels. This novel model offered a helpful platform
for studying the underlying processes of TMPRSS2-ERG
fusion and exploring potential therapeutic interventions
[62].

NKX3.1 is a homeodomain transcription factor that
has androgen-responsive regions in its 3’ untranslated
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region [63]. The suppressor gene NKX3.1 has a cru-
cial role in prostate cancer by acting as a gatekeeper.
NKX3.1 is haplo-insufficient, and pathogenic decrease
in its protein level might be due to genetic loss, reduced
transcription, and elevated protein degradation result-
ing from inflammatory reactions or PTEN loss. CRISPR/
Cas9 method was used to introduce a missense muta-
tion in murine Nkx3.1 to substitute alanine with serine
at aminoacid 186, the region that is target for Dyrklb
phosphorylation. The Nkx3.15184/~ mouse exhibited ele-
vated Nkx3.1 protein levels, decreased prostate size, nor-
mal histology, decreased cell growth as well as enhanced
DNA labeling. The findings demonstrated that modifica-
tion of only Nkx3.1 can lead to longstanding control over
precancerous alterations related to DNA damage in the
prostate. This also displayed the feasibility of CRISPR-
guided modulation of NKX3.1 as a therapeutic strategy
for prostate cancer [64].

Figure 2 demonstrates a number of genes in the AR
signaling that were targeted by CRISPR/Cas9 in prostate
cancer.

CRISPR-mediated modification of PI3K/AKT/mTOR
pathway

PI3K/AKT/mTOR pathway as one of the important path-
ways in the carcinogenesis of prostate cancer has been
the focus of several CRISPR-mediated knockout studies
in this field (Table 2). PI3K/AKT pathway is hyperacti-
vated in nearly all advanced prostate cancers, mostly via
PTEN loss [65, 66]. The serine/threonine protein kinase
mTOR belongs to the PI3BK/AKT/mTOR pathway and
controls cell growth, proliferation, survival, autophagy,
and metabolism [67]. This protein establishes two dis-
tinctive complexes, namely mTORC1 and mTORC2.
Notably, DEPTOR is a common constituent of both com-
plexes that directly binds to mTOR to inhibit the activity
of both complexes [68]. DEPTOR expression was consid-
erably reduced in prostate cancer samples, in correlation
with disease progression. CRISPR-mediated depletion of
DEPTOR enhanced proliferation, survival, migration, and
invasive capacity of these cells. This intervention led to
activation of cell proliferation and survival, and induction
of an AKT-dependent epithelial-mesenchymal transition
(EMT) and nuclear translocation of -catenin leading to
cell migration and invasive features. Most notably, Dep-
tor knockout speeded prostate tumor growth in animal
models through activation of mTOR signaling. Therefore,
reactivation DEPTOR might be suggested as a therapeu-
tic strategy for prostate cancer [69].

In another recent study, a flexible aptamer-liposome
CRISPR/Cas9 chimera was developed for effective and
targeted transfer of CRISPR/Cas9 into specific cells.
The chimera had an RNA aptamer that precisely bound
cells that expressed the prostate-specific membrane
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Fig.2 Anoverview of different genes in the AR signaling targeted by CRISPR/Cas9 in prostate cancer, and consequences of gene editing on cell prolifera-
tion, autophagy, migration and angiogenesis. Figure was depicted using BioRender

antigen. Conjugating cationic liposomes with aptam-
ers enabled directed delivery of therapeutic CRISPR/
Cas9 molecules to tumor cells, resulting in significant
gene silencing effects in vitro. Besides, in vivo assays
demonstrated that prostate cancer regressed follow-
ing gene silencing. This innovative approach offers
a universal method for cell-type-specific transfer of
CRISPR/Cas9, addressing an important challenge for
the extensive therapeutic application of CRISPR/Cas9
and other nucleic acid agents [70].

In addition, CRISPR/Cas9 technology was employed
to simultaneously modify several genes in mouse pros-
tate cells. The researchers focused on investigating the
function of the activating protein-1 (AP-1) transcrip-
tion factor, which is composed of JUN and FOS sub-
units and has a crucial role in several types of cancer.
They discovered that loss of either JunB or Fos, in con-
junction with Pten loss, resulted in the progression
of prostate cancer to an invasive stage. On the con-
trary, lack of Fos enhanced the expression of Jun and
CRISPR knockout of Jun also reduced cell proliferation
in this context. In brief, JunB and Fos exhibited tumor
suppressor functioned by suppressing invasive disease.
However, Jun functioned as an oncogene and increased
cell proliferation. This demonstrated that AP-1 fac-
tors are involved in the different stages of progression
of this type of cancer and displayed dual functions as
tumor suppressor and oncogene in this process [71].

In another study, GPRC6A, a gene associated with
prostate cancer, was investigated, focusing on a

polymorphism known as “Y.K” situated in the third
intracellular loop that evolved in most humans and
replaced the ancestral RKLP. Notably, this variant is
prevalent in all human-originated prostate cancer
cell lines. The researchers created GPRC6A-deficient
PC-3 cells using CRISPR/Cas9 technique and exam-
ined its consequences on cell proliferation and migra-
tion. Their findings demonstrated that these cellular
responses were blocked by targeting GPRC6A in vitro.
At the same time, in a xenograft mouse model, their
evidence indicated that the proliferation of GPRC6A-
deficient PC-3 cells and their resistance to osteocalcin-
related progression of prostate cancer was reduced
compared to control cells that expressed GPRCG6A.
The results suggested that GPRC6A might be a poten-
tial antagonist for treating prostate cancer, particularly
in addressing racial disparities in the disease [72].

The androgen-responsive gene, NKX3.1 can also
affect the activity of PI3K/AKT pathway. CRISPR-
mediated deletion of exon 1 of this gene led to
increased weight of prostate. Ki67 was densely stained
in the epithelial cells of these animals, while p53 lev-
els were suppressed in these cells. In addition, PI3K/
AKT/mTOR pathway was inhibited in NKX3.1-knock-
out cells [73]. Figure 3 shows selected genes from
PI3K/AKT/mTOR pathway that have been targeted by
CRISPR/Cas9 in prostate cancer.
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3 g 8 & 5 SETE B CRISPR-mediated modification of immune-related
= = =k oo s o genes
o 2 A group of other genes, namely those related to immune
5 2 s function has been the target of CRISPR-mediated edit-
g g 2 ing in the prostate cancer (Table 3). Most of these genes
g % ?“2 were enriched in thedNF-KB sign;ling pathway. TUBB4A
2 o ° is an over-expressed gene in human prostate cancer,
qé (1%} % whose expression is related with aggressive phenotype
ki i g and poor patient survival. CRISPR-mediated TUBB4A
PR = knockout reduced cell growth and migration but induced
520 g g s g DNA damage through elevating YH2AX and 53BP1 lev-
gz g ST 58 els. Notably, TUBB4A knockout led to severe DNA
£ %ﬂ 5] %j - g €3 damage, reduced NF-«B signaling response, and retarda-
é %l § i g é ‘_3 = § x5 tion of tumor growth and metastases. Mechanistically,
55T 8% i ._.E - g(%)’ 5 TUBB4A knockout reduced MYH9-mediated GSK3p
s %’ 55 5 5 &> = 29 & ubiquitination and degradation, resulting in inactivation
3 28528 EZ % qi g of B-catenin signaling and its pertinent EMT [74].
£ % é e % g g g § g @ g T In an attempt to find the mechanisms by which conver-
g |3 rg“ % % 2 o 53 = % c % sion of different FGFR isoforms participates in the pro-
g 85 E58 3 S g 3 % Lo gression prostate cancer, Wang et al. conducted a study.
S |E8 3832 ER =R e They reported that FGF promoted NF-xB signaling in
prostate cancer cells and in association with FGFR1
= expression. CRISPR/Casp-mediated of FGFR1 disruption
§ ; retracted both FGF activity and NF-kB signals. Further
=) X fgj o a experiments revealed that the role of FGFR1 in stimula-
B g s ¢ % tion of NF-kB signaling is mediated by TGF B-activating
c B _ - 2 kinase 1 (TAK1). In fact, FGFR1 promoted NF-kB sig-
c % t—; a [ s naling through decreasing TAK1 degradation and thus
-% é £ E g i g g s maintaining continued NF-kB activation. Collectively,
%’ § 2 o § 5 % é o g2 this study revealed that FGFR1 promoted progression
g g S% £ % £gcg E E of prostate cancer through induction of inflammatory
2 |82 g ZC> 2 ES § 2 g v g responses in the tumor microenvironment [75]. Figure 4
§ g, GgJ & g % é £ é g Eg demonstrates selected targeted genes in prostate cancer
S g8 L2 EFeEE 2% participating to the immune responses.
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% tate cancer progression and metastasis. Its expression is
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?ﬁ o E " researchers demonstrated that a DNA methyltransfer-
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Fig. 3 Targeting PI3K/AKT/mTOR pathway by CRISPR/Cas9 in prostate cancer. Modification of expression of these targets has led to reduction of prostate

cancer cell proliferation. Figure was depicted using BioRender

with various roles, to investigate its precise role in
cancer development. This study utilized CRISPR/Cas9
technology to knockout Lcn2 expression in a meta-
static and invasive prostate cancer cell line, PC3. This
study aimed to evaluate the efficacy of combining Lcn2
knockdown with cisplatin, a widely used chemothera-
peutic medication. The researchers co-transfected PC3
cells with the control CRISPR/Cas9 plasmid and the
human Lcn2 CRISPR/Cas9-knockout plasmid or the
HDR CRISPR/Cas9 plasmid. Stable cells were selected
with puromycin. Then, the PC3 cells with Lcn2 knock-
out (Lcn2-KO) were treated with and without cispla-
tin, focusing on their proliferative ability, apoptosis
rate, and migratory capabilities. Their study revealed
that suppressing Lcn2 in PC3 cells repressed cell pro-
liferation and enhanced the effectiveness of cisplatin.
The significant decrease in expression of Lcn2 expres-
sion resulted in increased cisplatin induced apoptosis
in PC3 cells. Moreover, cell migratory ability of PC3
cells decreased following Lcn2 knockout by CRISPR/
Cas9 technology. The results demonstrated how Lcn2
can be both a reliable biomarker for prostate cancer
diagnosis and prognosis in addition to a potential ther-
apeutic target. The study also suggested that CRISPR-
based technology to target Lcn2 may lead to improved
disease outcomes for patients with extremely aggres-
sive prostate cancer [77].

Based on recent advancements, researchers investi-
gated the molecular biology of aberrant gene expres-
sion in prostate cancer cells. Yang et al. employed

CRISPR interference (CRISPRi) and CRISPR activa-
tion (CRISPRa) techniques to control the transcription
of ITGB5, TIMP1 and TMEM176B in prostate cancer
cells. Various cellular experiments were conducted to
define the involvement of these gens in prostate can-
cer, and it was discovered that their activation has an
inhibitory effect on prostate cancer. Furthermore,
these three genes were found to synergistically influ-
ence cancer cell proliferation, invasion and migratory
capacity, highlighting their potential as therapeutic
targets [78].

Another research team conducted a genome-wide
CRISPR/Cas9 investigation on a mouse prostate can-
cer model to identify potential gene targets that might
improve the effectiveness of docetaxel chemotherapy.
Transcription elongation factor A-like 1 (TCEALIL)
was identified as the most appropriate gene among
the 17 candidate genes. Although the specific func-
tion of TCEALL1 is not yet completely clarified, it is
supposed to regulate transcription in a promoter-
dependent manner. Inhibition of TCEAL1 in several
human prostate cancer cell lines increased effect of
docetaxel, suggesting a potential target for combina-
tion therapy Investigators. Using gene culture analysis
and flow cytometry, researchers further verified that
loss of TCEALL, in conjunction with docetaxel, alters
the cell cycle profile. findings supported TCEALL as a
potential option for enhancing the therapeutic effect
of docetaxel [79].
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Fig. 4 Targeted genes by CRISPR/Cas9 in prostate cancer participating to the immune responses. Figure was depicted using BioRender

Discussion

Prostate cancer, a prevalent and deadly disease with lim-
ited treatment options, requires innovative approaches to
address its progression and overcome therapy resistance.
Recent advancements in CRISPR technology have revo-
lutionized research in this field, resulting in a significant
progress in the detection and treatment of prostate can-
cer. Moreover, application of CRISPR-based techniques
for gene regulation has offered opportunities to inves-
tigate gene function in cancer cells. In fact, it has dem-
onstrated the role of interaction between classical tumor
suppressors and epigenetic factors in the pathogenesis of
this type of cancer [80].

The recent projects utilizing CRISPR technology in
prostate cancer research have also provided new per-
ceptions about the diagnostic and therapeutic strategies
for this disease. Actually, the capacity of CRISPR/Cas
system to target RNA has provided novel approaches to
tumor diagnostics. However, most of applied research
in this field has used mice models of cancer, thus mak-
ing translation of the obtained data to clinical application
challenging.

Most notably, mentioned experiments have shown
that CRISPR/Cas9-mediated suppression of a number
of genes can enhance therapeutic effects of conventional
chemotherapeutic agents, suggesting novel combinatory
regimens for treatment of prostate cancer. This technique
has also facilitated identification of molecular events that
contribute to each phase of prostate cancer development
and progression. In fact, genome-wide CRISPR activation

and inhibition screening has shown several drivers and
inhibitors of metastasis cascades in prostate cancer [81].
Thus, several potential molecular targets for combating
diverse aspects of carcinogenesis have been uncovered
using this technique. In vivo application of CRISPR tech-
nology has unveiled the function of several commonly
mutated genes in prostate cancer and their differential
effects in the promotion of tumor growth and regulation
of cell fate and dissemination.

As a novel therapeutic option, chimeric antigen recep-
tor (CAR) T cell therapies were found to be safely tol-
erated in patients with prostate cancer. Moreover, this
treatment led to TCR repertoire diversity and modula-
tion of the tumor immune niche in a group of patients
[82]. Meanwhile, CRISPR/Cas9 technique offered an
effective way for enhancement of the proliferation abil-
ity and perseverance of CAR-T cells in the body. This
tool was used in CAR-T cells to produce a memory phe-
notype, decrease exhaustion, and find novel targets to
enhance the anti-tumor ability [83].

The main obstacle to bringing CRISPR technology
into the clinic is the delivery of CRISPR/Cas to prostate
tumors. An optimal targeted delivery system should have
a safe vehicle protecting RNA from nuclease degrada-
tion in the circulation; and a targeting moiety/ligand that
specifically recognizes the receptor and efficiently direct
cargo into a specific tissue or cell [70]. In fact, this strat-
egy requires a highly specific targeting ligand that has
high affinity to a cellular receptor [84]. Thus, recognition
of specific receptors on prostate cancer cells which are
not expressed on normal cells can enhance the efficiency
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of this system. Among different delivery systems, the
aptamer-liposome-CRISPR/Cas9 chimera has been
proved to have a significant cell-type binding specific-
ity, an extraordinary gene silencing impact in vitro, and a
noticeable effect on in vivo regression of prostate tumors
[70].

CRISPR therapy has experienced a truly extraordinary
achievement, since it has been translated into the clini-
cal application in just 11 years [85]. A number of clinical
trials of CRISPR therapy are currently recruiting patients
with hematological malignancies (NCT05885464) or
solid tumors (NCT05795595). Thus, it is expected that
this technology revolutionizes current therapy of cancer
in near future. At this time, identification of appropriate
targets for this system is a priority. In the context of pros-
tate cancer research and therapy, this target should have
an indispensible role in the carcinogenesis being dysreg-
ulated in a wide array of patients with different pathologi-
cal features.
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