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Introduction: Respiratory sentinel surveillance sys-
tems leveraging computerised medical records (CMR) 
use phenotyping algorithms to identify cases of 
interest, such as acute respiratory infection (ARI). 
The Oxford-Royal College of General Practitioners 
Research and Surveillance Centre (RSC) is the English 
primary care-based sentinel surveillance network.
Aim: This study describes and validates the RSC’s new 
ARI phenotyping algorithm.
Methods: We developed the phenotyping algorithm 
using a framework aligned with international inter-
operability standards. We validated our algorithm by 
comparing ARI events identified during the 2022/23 
influenza season in England through use of both old 
and new algorithms. We compared clinical codes com-
monly used for recording ARI.
Results: The new algorithm identified an additional 
860,039 cases and excluded 52,258, resulting in a net 
increase of 807,781 cases (33.84%) of ARI compared 
to the old algorithm, with totals of 3,194,224 cases 
versus 2,386,443 cases. Of the 860,039 newly identi-
fied cases, the majority (63.7%) were due to identifica-
tion of symptom codes suggestive of an ARI diagnosis 
not detected by the old algorithm. The 52,258 cases 
incorrectly identified by the old algorithm were due to 
inadvertent identification of chronic, recurrent, non-
infectious and other non-ARI disease.
Conclusion: We developed a new ARI phenotyping 
algorithm that more accurately identifies cases of ARI 
from the CMR. This will benefit public health by pro-
viding more accurate surveillance reports to public 
health authorities. This new algorithm can serve as a 
blueprint for other CMR-based surveillance systems 
wishing to develop similar phenotyping algorithms.

Introduction
Respiratory sentinel surveillance involves monitoring a 
representative sample of the population to identify and 
track respiratory pathogens of epidemic or pandemic 
potential. In its 2023 Mosaic framework, the World 
Health Organization (WHO) sets out how global senti-
nel surveillance should monitor respiratory viruses [1]. 
Sentinel systems typically measure the rate of clini-
cal indicators such as influenza-like illness (ILI) and 
acute respiratory infection (ARI) to monitor community 
disease. Influenza-like illness is an influenza-specific 
indicator, whereas ARI is a more inclusive concept, 
capturing a broader range of clinical presentations [2]. 
For effective sentinel surveillance, indicators must be 
reported in a timely manner to determine if health sys-
tems are at risk of being overwhelmed [3,4].

The use of routinely collected data, held on comput-
erised medical records (CMR), facilitates systematic 
and automated computation of indicator rates and can 
increase the timeliness of surveillance reporting [5]. 
Most CMRs have inbuilt clinical terminologies, such 
as Systematized Nomenclature of Medicine (SNOMED) 
– Clinical Terms (CT) or International Classification of 
Disease (ICD) with which important clinical data, such 
as diagnoses and symptoms, are coded [6-9].

Computerised medical record-based surveillance sys-
tems use algorithms to identify cases of interest, 
such as ARI, from the medical records [10]. These case 
detection algorithms typically include a description 
of the clinical logic behind the algorithm and clinical 
codelists that map to a relevant case definition [11]. 
Finally, the clinical logic and codelists are translated 
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into a machine-readable computer programme. The 
programme is run against the CMR to extract cases of 
interest. These algorithms are commonly referred to as 
phenotyping algorithms and codelists are also known 
as value sets or refsets [11,12].

The Oxford-Royal College of General Practitioners 
(RCGP) Research and Surveillance Centre (RSC) runs the 
English primary care sentinel surveillance network and 
has been undertaking CMR-based research and surveil-
lance for more than 20 years [13,14]. The RSC provides 
bi-weekly ARI surveillance and reports to the United 
Kingdom (UK) Health Security Agency (UKHSA). In late 
2023, the RSC updated its methodological approach 
to developing phenotyping algorithms [11]. This new 
framework uses international standards of interoper-
ability and supports the principals of open science by 
allowing algorithms to be published in online libraries 
in a standard format [15].

Recently, the RSC has used this new framework to 
update its ARI phenotyping algorithm. The motiva-
tion for developing this algorithm was to review and 
improve the accuracy of ARI case identification. We 
planned to increase cases correctly identified and 
reduce cases incorrectly identified. Improving our ARI 
indicator will benefit public health by providing more 
accurate and valid surveillance reports to our partners 
at UKHSA. In addition, and in the spirit of open science, 
we are publishing the algorithm here and opening it to 
external scrutiny.

This study aimed to describe and validate the new 
RSC ARI phenotyping algorithm by comparing the new 
and old algorithms. Specifically, we undertook three 
analyses: (i) comparing codelists developed for the 

new algorithm with those of the old algorithm; (ii) com-
paring ARI cases identified from the CMR by the new 
algorithm with those identified by the old algorithm; 
(iii) comparing the estimated weekly rate of ARI by 
age group and risk group status using the new vs old 
algorithms.

Methods

Study setting
The RSC works in collaboration with the UKHSA and 
has been collecting primary care surveillance data 
since 1957 [13]. Currently, the RSC collects data from 
the CMR of more than 18 million patients based at more 
than 1,800 RSC member primary care practices and 
covers just under a third of the population of England. 
Coded clinical events are recorded by clinicians dur-
ing patient encounters and administrators in primary 
care using SNOMED codes [9]. The RSC receives date-
stamped SNOMED-recorded events from all its regis-
tered practices.

In addition to monitoring key respiratory indicators, 
the RSC also undertakes virological sampling of a sub-
set of cases allowing assignment of virological diag-
noses [13]. Surveillance reports at the RSC are derived 
from the primary care data and linked to virological 
sampling results data. The RSC’s primary care data are 
available in near real-time, arriving with a lag of only 
2–4 days.

Updated approach to phenotyping algorithms
Health Level 7’s (HL7) Fast Healthcare Interoperability 
Resources (FHIR) is a widely adopted international 
standard for exchange of healthcare information [16]. 
The FHIR can be used in conjunction with Clinical 

What did you want to address in this study and why?
Public health authorities increasingly use routinely collected electronic patient records to identify trends 
in respiratory infections such as coronavirus or influenza. Computer algorithms are needed to identify 
respiratory infections in the electronic patient record. We wanted to test a new algorithm for identifying 
cases of acute respiratory infections from electronic patient records of primary care clinics in England.

What have we learnt from this study?
Our new algorithm was more accurate at identifying cases of probable acute respiratory infection in 
electronic patient records. Overall, it identified 807,781 (34%) more cases of respiratory infection than the 
old algorithm.

What are the implications of your findings for public health?
The new algorithm allows better quality and consistent data to be supplied to public health officials. More 
accurate data means public health authorities can more reliably identify unusual or increased virus activity. 
We explain the inner workings of our algorithm which allows it to be used by other scientists or public 
health professionals, and also allows for healthy scrutiny by other experts in the field.
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Quality Language (CQL), a healthcare-specific program-
ming language, for sharing phenotyping algorithms 
in a human- and machine-readable format [17]. We 
have adopted the Phenotype Execution and Modelling 
Architecture (PhEMA) approach to phenotyping algo-
rithm development [18]. The PhEMA is a collaborative 
framework developed by a number of institutions in 
the United States designed to facilitate the develop-
ment of CMR-based phenotyping algorithms. It incor-
porates elements from the FHIR framework and CQL. A 
description of how the RSC uses this new methodology 
can be found in Jamie et al. [11].

Clinical logic
Previously, the RSC monitored ARI through a number 
of specific surveillance indicators, principally ILI and 
upper/lower respiratory tract infections (URTI and 
LRTI). We did not have an overall ARI indicator. For com-
parison, in this study, the old ARI codelist was defined 
as a combination of the old ILI, URTI and LRTI codelists.

We developed our new clinical logic through discussion 
with clinical, public health and informatics experts in 
our research group. The clinical logic was designed to 
capture the range of possible presentations of ARI. We 
took a practical view that ARI is a hierarchical indicator, 
with ARI at the top of the hierarchy (level 1), and there 

being several child (level 2) and grandchild (level 3) 
indicators. To cover the range of possible infections we 
included four level 2 indicators in our model: ILI, exac-
erbation of chronic lung disease (ECLD), LRTI and URTI 
(Figure 1). We used the 2018 European Union (EU) ARI 
case definition [19]. We used the RSC case definition 
for ILI and developed case definitions for ECLD, LRTI 
and URTI through expert consensus within our group; 
these definitions are appended in the Supplement, 
part S1.

For each of these level 2 indicators, we identified rel-
evant level-3 indicators of which there were 16 in total. 
Consistent with our previous approach, cases of ARI 
were defined when ARI events were recorded more than 
28 days from the previous recorded event to reduce the 
chance of duplicate case counting. The CQL files show 
the machine-readable and human-readable logic of our 
algorithm; the script is appended in the Supplement, 
part S2.

The level 1 and 2 indicators represent our main sur-
veillance indicators. Influenza may infect any part of 
the respiratory tract, therefore ILI could technically 
be regarded as an URTI or a LRTI [20]. We made the 
decision to separate ILI into its own level 2 condi-
tion to reduce the complexity of the model. This is a 

Figure 1
The 3-level hierarchical model of the acute respiratory infection clinical logic

COPD: chronic obstructive pulmonary disease; NOS: not otherwise specified.
The ARI-NOS indicator includes codes not specific enough be included in another level 2 or 3 indicator.
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practical modification of our clinical logic. In addition, 
we created a separate level 2 group ‘ARI not otherwise 
specified (NOS)’ that included two level 3 concepts, a 
clinical concept where ARI is coded but there is no spe-
cific information that allows us to assign it to a level 2 
or 3 indicator, and a suspected COVID-19 concept. We 
produced a flow sheet for clinicians to use with sug-
gested clinical terms which we make available in the 
Supplement, part S3.

Codelist development
Like many clinical terminologies, SNOMED codes 
form a hierarchy. However, a key difference between 
SNOMED and other terminologies is that SNOMED 
codes are polyhierarchical where any individual code 
may have multiple parent codes. This adds complexity 
but also allows more flexible rules to be developed for 
selecting codes. SNOMED CT’s Expression Constraint 
Language (ECL) is a formal language used to define 
rules for selecting appropriate SNOMED codes, to cre-
ate dynamic, rule-bound codelists [21]. The new frame-
work takes a rule-based approach and fully leverages 
the SNOMED polyhierarchy through use of ECL. We 
used our in-house ‘SNOMED helper tool’ to develop ECL 
rule-based SNOMED codelists for each level 3 indicator. 
An example ECL script is available in the Supplement, 
part S4 and all resultant codelists are provided in 
Supplement part S5. A total of 16 individual codelists 
were developed: one for ILI, three for ECLD, four for 
LRTI, six for URTI and two under the level-2 ‘ARI-NOS’ 
group. Acute respiratory infection can be defined as a 
composite of all 16 level-3 codelists. Codelists at levels 
1 and 2 were inferred through combinations of level 3 
codelists. A more detailed description of how codelists 
were defined using ECL is available in the Supplement, 
part S4.

Algorithm validation

Part 1: Codelist comparison
Initially, we compared the old and new codelists. We 
compared all new level 1 codes (derived by combining 
all 16 level 3 codelists) with the combination of the old 
extensional codelists for ILI, LRTI and URTI. To compare 
these codelists, we performed a set analysis to estab-
lish the number of codes present in each codelist and 
the number of intersecting codes.

Part 2: Acute respiratory infection case comparison
We used the old and new algorithms to extract ARI 
cases from the RSC CMR for the 2022/23 surveillance 
season, starting from International Organization for 
Standardization (ISO) week 39 in 2022 and finishing in 
ISO week 38 in 2023. We compared codes from the old 
and new algorithms that are responsible for identify-
ing most cases of ARI from the CMR. We also looked at 
cases identified by the old algorithm that are no longer 
identified by the new algorithm and codes identified by 
the new algorithm but not previously identified by the 
old algorithm.

Part 3: Acute respiratory infection weekly rate 
comparison
We calculated the overall rate of ARI and the rate by age 
band and risk group as cases per 100,000 by for the 
surveillance year 2022/23. We used three age bands: 
0–17 years, 18–69 years and 70 years and older. Risk 
groups were defined based on those published in the 
UK Immunisation Against Infectious Disease Book [22]. 
We calculated the weekly ARI and level 2 indicator 
rates using the new algorithm, comparing with the old 
indicators, and presented these as time series plots of 
level-2 indicators. No comparison was made between 
the new ECLD or ARI-NOS indicator as no equivalent 
existed previously. The data extracted for the analysis 
for part 3 were not identical to those used for part 2. 
This is because we did not always have reliable denom-
inator data for every primary care practice. Data quality 
checks thus eliminated cases from some practices for 
which a denominator could not be reliably calculated.

Data analysis
All data required for this analysis were stored in the 
secure RSC servers within several Structure Query 
Language (SQL) databases. Further information about 
the security infrastructure and procedures of the RSC 
can be seen in the Supplement, part S6. We used an 
instance of R statistical software (R Core Team, 2023, 
version 4.3.1) housed within the secure server for all 
analysis [23]. Only anonymous data, such as aggre-
gated results or summary figures, can be extracted 
from the secure server.

Results

Part 1: Codelist analysis
The old ARI codelist contained 821 unique SNOMED 
codes compared with 544 in the new codelists, repre-
senting a 33.7% (n = 277) reduction in the total number 
of codes (Table 1). There were 417 codes that appeared 
in both the old and new codelists, 404 that appeared 
only in the old and 127 that appeared only in the new 
codelist; a graphical representation of this is available 
in the Supplement, part S7. With the new algorithm, 
304 of the 544 SNOMED codes were used to record ARI 
cases. Of these, 25 codes were responsible for identi-
fying 90.5% of all events; therefore, 279 codes were 
responsible for identifying the remaining cases. For 
the old algorithm, 346 of the 821 codes were used to 
record cases. Of these, 16 codes were responsible for 
90.6% of all events and 330 for the remaining cases.

Part 2: Acute respiratory infection case analysis
Old and new cases of ARI were derived from the 
same study population. The new algorithm identified 
3,194,224 ARI cases compared with the 2,386,443 
cases identified by the old algorithm (Table 1). This 
represents a 33.8% (n = 807,781) increase in the num-
ber of cases detected. Of the cases identified using the 
old algorithm, 52,258 (2.2%) were no longer identified 
by the new algorithm. Cases of ARI detected by the new 
algorithm were most commonly URTIs (58.3%), followed 
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by LRTIs (30.9%), ARI-NOS (6.9%), ECLD (4.4%) and 
finally ILI (1.5%).

The new algorithm identified 28.7% more cases of 
LRTI, 13.0% more cases of URTI, and an almost identi-
cal number of cases of ILI compared with the old algo-
rithm. The three most commonly recorded codes using 
both the new and old algorithm were ‘Lower respira-
tory tract infection’, ‘Upper respiratory infection’ and 
‘Viral upper respiratory tract infection’ (Figure 2).

Thirteen codes were responsible for 90.4% of the 
52,258 ARI cases no longer detected by the new algo-
rithm (Figure 3). The reasons these cases were no 
longer included were varied. Of the 52,258 cases now 
excluded, 22,862 (43.7%) represented chronic condi-
tions, 15,695 (30.0%) were non-infective conditions and 
7,515 (14.4%) represented recurrent disease. Thirteen 
codes were responsible for 91.1% of the 860,039 
cases of ARI now included by the new algorithm but 
not included with the old algorithm (Figure 3). Of the 
860,039 cases now included, 547,550 (63.7%) were 
symptomatic codes that very probably represented ARI 

cases, 199,299 (23.2%) represented ARI-NOS cases 
and 71,464 (8.3%) were ECLD cases.

Part 3: Acute respiratory infection weekly rate 
analysis
When looking at weekly ARI rates per 100,000 of the 
population, we excluded practices that did not pro-
vide reliable denominator data, thus case numbers 
were less than shown in Table 1. The new ARI algorithm 
identified 2,478,473 cases from practices with reli-
able denominator data during the study period com-
pared with 1,965,341 cases with the old, representing 
an additional 513,132 cases (Table 2). The median ARI 
weekly rate increased from 205.6 to 258.9 per 100,000 
population, representing a 25.9% increase with the new 
algorithm. While rates of indicators increased when 
using the new algorithm, trends over the course of the 
2022/23 season remained the same (Figure 4). There 
was no meaningful change in the rates of ILI across all 
age bands and risk group categories (Table 2). However, 
rates increased across all age bands and risk groups 
categories for ARI as a whole, LRTI and URTI; we append 
the detailed numbers in the Supplement, part S8.

Table 1
Number of codes within level 1 and level 2 codelists and the corresponding number of acute respiratory infection cases 
identified during the influenza season, England, 2022/23

Level Codelist
Codelist size ARI cases

Old New Old New % Change
Level 1 ARI 821 544 2,386,443 3,194,224 33.8

Level 2

URTI 448 206 1,647,236 1,862,191 13.0
LRTI 377 243 766,707 987,203 28.7

ARI-NOS NA 14 NA 219,310 NA
ECLD NA 49 NA 141,482 NA

ILI 43 49 47,815 47,812 0.0

ARI: acute respiratory infection; ARI-NOS: acute respiratory infection-not otherwise specified; ECLD: exacerbations of chronic lung disease; 
ILI: influenza-like illness; LRTI: lower respiratory tract infection; NA: no old codelist available for comparison; URTI: upper respiratory tract 
infection.
As a small number of ambiguous codes may appear in more than one level 2 codelist, the number of codes in level 2 codelists does not sum to 
the total number in the level 1 codelists. 

Table 2
Median weekly rate of respiratory infection per 100,000 of the population for level-1 and level-2 indicators using new and 
old algorithms, England, 2022/23

 Level  Indicator
ARI cases Weekly rate/100,000

Old New Old New % Change
Level 1 ARI 1,965,341 2,478,473 205.6 258.9 25.9

Level 2

URTI 1,357,932 1,556,881 140.7 159.0 13.0
LRTI 639,062 827,064 67.4 86.4 28.1
ECLD NA 119,036 NA 12.5 NA

ILI 46,529 46,526 3.1 3.1 0.0

ARI: acute respiratory infection; ECLD: exacerbations of chronic lung disease; ILI: influenza-like illness; LRTI: lower respiratory tract infection; 
NA: no old indicator available for comparison; URTI: upper respiratory tract infection. 
Note that ECLD is a new indicator and does not have a suitable comparator. The rate is based on a mean weekly denominator of 17,433,074 
subjects. As a small number of ambiguous codes may appear in more than one level 2 codelist, the number of codes in level 2 codelists 
does not sum to the total number in the level 1 codelists (n = 513,132). The rate of ARI-NOS was not available as these data are reported 
prospectively and ARI-NOS rate is not currently calculated separately.
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A. Old algorithm: top 30 most commonly recorded ARI codes identified (n = 2,386,443 cases)  

B. New algorithm: top 30 most commonly recorded ARI codes identified (n = 3,194,224 cases) 
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Figure 2
SNOMED code frequency for cases of acute respiratory infection detected by the old and new algorithm, England, 2022/23

ARI: acute respiratory infection; COPD: chronic obstructive pulmonary disease; LRTI: lower respiratory tract infection; RTI: respiratory tract 
infection; SNOMED: systematised nomenclature of medicine; URTI: upper respiratory tract infection.
The code descriptions have been shortened for formatting purposes.
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A. Old algorithm only: top 30 most commonly recorded ARI codes identified (n = 52,258 cases)  

B. New algorithm only: top 30 most commonly recorded ARI codes identified (n = 860,039 cases)  

Figure 3
SNOMED code frequency for cases of acute respiratory infection only identified using the old algorithm or new algorithm, 
England, 2022/23

ARI: acute respiratory infection; COPD: chronic obstructive pulmonary disease; LRTI: lower respiratory tract infection; RTI: respiratory tract 
infection; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; SNOMED: systematised nomenclature of medicine; URTI: upper 
respiratory tract infection.
The code descriptions have been shortened for formatting purposes.
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Discussion
We developed a new digital phenotyping algorithm for 
identifying cases of ARI from the CMR to support the 
RSC’s respiratory sentinel surveillance programme. 
Use of this algorithm has improved the overall accu-
racy of ARI case detection. To develop this algorithm, 
we used the RSC’s newly adopted framework built 
around international standards of interoperability. 
Publication of the algorithm definitions and codelists 
upholds the principles of open science and allows use 
of these methods as a blueprint for others in the field 
of CMR-based surveillance [24].

Our new algorithm improved the accuracy of ARI case 
detection by increasing correctly identified cases by 
33.8% and reducing incorrectly identified cases by 
2.2%. Overall, this resulted in a 25.9% increase in the 
estimated median weekly rate of ARI for the influenza 
surveillance year 2022/23. This included a substantial 
increase in the rate of URTI and LRTI. The increase in 
detected cases was largely driven by the inclusion of 
new symptom codes and the newly included ARI-NOS/
ECLD codelists, whereas the reduction in incorrectly 

identified cases was due to the removal of codes repre-
senting mainly chronic disease, recurrent disease and 
complications of ARI. Calculation of new 5-year aver-
ages for ARI and level 2 indicators using retrospective 
data allows changes in rates to be correctly interpreted 
despite changes in codelists.

The improved accuracy of ARI case detection has 
important public health implications. More accurate 
case identification enhances the robustness and valid-
ity of surveillance reports for our UKHSA partners. The 
estimated rates we now report are more likely to be 
reflective of the true rate of ARI in primary care. The 
inclusion of new codes increases the sensitivity of the 
surveillance system to detect low levels of disease. 
This is of value when aggregating the rate across a 
range of variables such as age, risk group, location and 
vaccination status. This aids identification of groups 
disproportionately affected by ARI. Although the reduc-
tion in incorrectly identified cases was small (2.2%), it 
represents an important incremental improvement in 
the quality of the indicator. The system is no longer 
susceptible to false-positive surges of ARI caused by 
increased recording of these inaccurate codes.

The case counts and rate of ILI overall and by age band 
and risk group did not change. The similarity in ILI 
case numbers occurred as the new and old ILI codel-
ists were very similar. This points to the fact that our 
old ILI indicator was well maintained and is reflective 
of its historical public health importance. However, 
non-influenza viruses such as severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) and respiratory 
syncytial virus (RSV) may present in a clinically hetero-
geneous manner. Having robust ARI and ILI indicators 
supports integrated surveillance of a range of respira-
tory viruses including SARS-CoV-2 and RSV [25]. This 
also makes the system more robust to the emergence 
of new respiratory pathogens presenting with varied 
clinical features.

Using the RSC’s new framework for developing pheno-
typing algorithms was beneficial for two main reasons. 
Firstly, the use of FHIR-based international standards 
supports the future sustainability and interoperabil-
ity of our systems. This feature will be important as 
the RSC evolves its secure links to other healthcare-
based data systems. Secondly, adopting human- and 
machine-readable languages (CQL and SNOMED’s ECL) 
facilitates sharing of interpretable algorithm defini-
tions [18]. While ECL is fully integrated into our system, 
we are still working towards full integration of CQL. 
Finally, the standards used here could be applied to 
any CMR-based surveillance system internationally. 
Although not all systems use SNOMED, the principles 
could be applied broadly. The main challenge is that 
the technical bar to developing such systems is high.

The WHO Mosaic Framework describes the surveil-
lance activities that should be undertaken nationally 
to support comprehensive respiratory surveillance 
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Figure 4
Weekly acute respiratory infection indicator rates old vs 
new algorithm, England, 2022/23 (old n = 1,965,341, new 
n = 2,478,473)

ECLD: exacerbations of chronic lung disease, ILI: influenza-
like illness; LRTI: lower respiratory tract infection, URTI: upper 
respiratory tract infection.
Trends of weekly indicator rates per 100,000 of the population 
from the old and new indicators. Note, no new indicator is seen 
for ILI as the rates are nearly identical. No old indicator is seen for 
ECLD as there was no old comparator. The y-axes are on different 
scales to allow adequate comparison of old and new trend lines.
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[1]. The RSC plays a growing role in all three Mosaic 
domains: detection, characterisation and intervention 
evaluation. The new algorithm will support disease 
detection through its enhanced accuracy [26]. With a 
clearly defined ARI population we will be better placed 
to characterise cases, for example, associated symp-
toms, signs and severity. We are already planning the 
development of a severe-ARI (SARI) indicator to sup-
port characterisation of disease severity. The RSC 
already undertakes intervention evaluation through 
well-established vaccine effectiveness studies [27].

We have highlighted a number of strengths of this work, 
but also acknowledge a number of limitations. Firstly, 
the CMR is primarily a tool to support clinical manage-
ment of patients. The system relies on high-quality 
coding from primary care practitioners and therefore, 
as with all CMR-based surveillance data, quality is a 
challenge. However, we have provided educational 
material to primary health care centres in the RSC net-
work to facilitate effective ARI coding, which is also 
appended here in the Supplement, part S3. Secondly, 
the inclusion of ECLD could identify non-infective exac-
erbations. However, many ECLDs are infective and 
probably represent an unrecognised cohort in our pre-
vious surveillance reports. The data presented show 
that the ECLD rate peaks in winter, suggesting many 
of these exacerbations are likely to be infective. Also, 
we recognise that many cases of URTI and LRTI prob-
ably occur in individuals with underlying chronic lung 
disease. At present, the ECLD codelist includes codes 
that mention an exacerbation and a chronic disease in 
a single code, for example ‘exacerbation of asthma’, 
and we do not assign patients to a risk group (such as 
chronic lung disease) prospectively for our surveillance 
report due to the computational expense. Despite this, 
when looking at the overall ARI indicator, we can say 
we are detecting previously unidentified cases. We 
plan to review the inclusion of ECLD at the end of the 
next season. Finally, although virological samples are 
taken in a proportion of patients with ARI, we have 
no clear reference standard for what truly represents 
a case of ARI and therefore calculating sensitivity and 
specificity is difficult. Comparing the old with the new 
algorithm has helped to us overcome this challenge. In 
the future, we plan to undertake an analysis linked to 
the virology data.

Conclusion
The development of our new phenotyping algorithm 
represents an advancement in the RSC’s respiratory 
surveillance. This work has increased the accuracy of 
our public health reporting, which increases the RSC’s 
ability to meet key respiratory surveillance standards 
set out by WHO. Moving forward, our work emphasises 
the need for continued research to refine ARI coding in 
primary care, which will improve data quality and aid 
in the characterisation of disease severity, ultimately 
contributing to more effective public health responses. 
Furthermore, sharing of our algorithm specification 
supports collaborative global surveillance efforts and 

disseminates innovation that can further automated 
CMR-based surveillance.
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