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Abstract

In many applications, the objective is to build regression models to explain a response variable 

over a region of interest under the assumption that the responses are spatially correlated. In 

nearly all of this work, the regression coefficients are assumed to be constant over the region. 

However, in some applications, coefficients are expected to vary at the local or subregional level. 

Here we focus on the local case. Although parametric modeling of the spatial surface for the 

coefficient is possible, here we argue that it is more natural and flexible to view the surface as a 

realization from a spatial process. We show how such modeling can be formalized in the context 

of Gaussian responses providing attractive interpretation in terms of both random effects and 

explaining residuals. We also offer extensions to generalized linear models and to spatio-temporal 

setting. We illustrate both static and dynamic modeling with a dataset that attempts to explain (log) 

selling price of single-family houses.
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1. INTRODUCTION

The broad availability of fast, inexpensive computing along with the development of 

very capable, user-friendly geographic information systems (GIS) software has led to the 

increased collection of spatial and spatio-temporal data in such diverse fields as real estate/

finance, epidemiology, environmetrics/ecology, and communications. In turn, this has fueled 

increased spatial modeling and data analysis activity within the statistical community.

In many applications, the objective is to build regression models to explain a response 

variable observed over a region of interest, say D, under the assumption that the responses 

are spatially associated. That is, whereas some spatial modeling may be accomplished 
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through the mean, it is still anticipated that the responses are dependent and that this 

dependence becomes stronger as pairs of responses become closer in space. With continuous 

response that is point referenced, if a normality assumption (perhaps on a transformed scale) 

seems plausible, this dependence is typically modeled directly using a Gaussian process. 

The literature here is enormous. The book by Cressie (1993) is perhaps a place to start. In 

the case of, say, binary or count response, a hierarchical model is often adopted using an 

exponential family model at the first stage and then introducing normally distributed spatial 

random effects into the mean structure on a transformed scale related by a link function (see, 

e.g., Diggle, Tawn, and Moyeed 1998).

In nearly all of this work, the regression coefficients are assumed to be constant across 

the region. In certain applications, this would not be appropriate. The coefficients may 

be expected to vary at the local or subregion level. For instance, Assunçao, Gamerman, 

and Assunçao (1999) introduced a Bayesian space varying parameter model to examine 

microregion factor productivity and the degree of factor substitution in the Brazilian 

agriculture. Agarwal, Gelfand, Sirmans, and Thibadeau (2003), in the context of locally 

stationary spatial modeling, introduced local regression models for factors affecting house 

price at the school district (and sub-school district) level. A flexible modeling approach 

for space-varying regression models was developed with a simulation study by Gamerman, 

Moreira, and Rue (2001). These authors all made the rather restrictive assumption that 

for a given coefficient, it is constant on specified areal units. The levels of the surface 

on these units is modeled using independent or conditionally autoregressive specifications. 

Concerns arise about the arbitrariness of the scale of resolution, the lack of smoothness of 

the surface, and the inability to interpolate the value of the surface to individual locations. 

When working with point-referenced data, it will be more attractive to allow the coefficients 

to vary by location, to envision a spatial surface for a particular coefficient. For instance, 

in our application we also model the (log) selling price of single family houses. Customary 

explanatory variables include the age of the house, the square feet of living area, the square 

feet of other area, and the number of bathrooms. If the region of interest is a city or greater 

metropolitan area, then it is evident that the capitalization rate (e.g., for age), will vary 

across the region. Older houses will have higher value in some parts of the region than 

in other parts. By allowing the coefficient of age to vary with location, we can remedy 

the foregoing concerns. With practical interest in mind, say real estate appraisal, we can 

predict the coefficient for arbitrary properties, not just for those that sold during the period 

of investigation. Similar issues arise in modeling environmental exposure to a particular 

pollutant, where covariates might include temperature and precipitation.

One possible approach would be to model the spatial surface for the coefficient 

parametrically. In the simplest case this would require the rather arbitrary specification of 

a polynomial surface function; a range of surfaces too limited or inflexible might result. 

More flexibility could be introduced using a spline surface over two-dimensional space 

(see, e.g., Luo and Wahba 1998). However, this requires selection of a spline function and 

determination of the number of and locations of the knots in the space. Also, with multiple 

coefficients, a multivariate specification of a spline surface is required. The approach that we 

adopt here is arguably more natural and at least as flexible. We model the spatially varying 

coefficient surface as a realization from a spatial process. For multiple coefficients, we use 
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a multivariate spatial process model. In fact, we use a stationary specification in which 

desired degree of smoothness of process realization can be modeled through the choice of 

covariance function (e.g., the Matèrn class). Kent (1989) and Stein (1999a) have provided 

discussions of univariate process; Banerjee and Gelfand (2003), of multivariate process. A 

nonstationary model results for the data.

We adopt a Bayesian approach for our modeling framework. This is attractive in the 

proposed setting, because we are specifically interested in inference for the random spatial 

effects. In particular, we obtain an entire posterior for the spatial coefficient process at 

both observed and unobserved locations, as well as posteriors for all model parameters. 

Interpolation for a process that is neither observed nor arising as a residual seems 

inaccessible in any other framework. For Gaussian responses, although some inference is 

possible through likelihood methods, it is more limited, and in particular, interval estimation 

relies on possibly inappropriate asymptotics. For non-Gaussian data, approximations will 

almost surely be required, possibly in the form that we provide in Section 7, but still 

inference will be limited.

To clarify interpretation and implementation, we first develop our general approach in the 

case of a single covariate, and thus we have two spatially varying coefficient processes, one 

for “intercept” and one for “slope.” We then turn to the case of multiple covariates. Because 

even in the basic multiple regression setting, coefficient estimates typically reveal some 

strong correlations, the collection of spatially varying coefficient processes is expected to 

be dependent. Hence we use a multivariate process model. Indeed, we present a further 

generalization to build a spatial analog of a multivariate regression model (see, e.g., 

Goldstein 1995). We also consider flexible spatio-temporal possibilities. The previously 

mentioned real estate setting provides site level covariates whose coefficients are of 

considerable practical interest and a dataset of single-family home sales from Baton Rouge, 

LA enables illustration. Except for regions exhibiting special topography, we anticipate that 

a spatially varying coefficient model will prove more useful than, for instance, a trend 

surface model. That is, incorporating a polynomial in latitude and longitude into the mean 

structure would not be expected to serve as a surrogate for allowing the variability across the 

region of a coefficient for say age or living area of a house.

The article is organized as follows. Section 2 details the Gaussian modeling approach for 

a single covariate. Section 3 addresses the multiple-covariate case. Section 4 proposes 

a sequence of varying coefficient specifications in the spatio-temporal setting. Section 

5 comments briefly on model comparison. Section 6 presents an example using the 

aforementioned single-family home sales data. Section 7 concludes with some discussion 

of the generalized linear model setting.

2. THE MODELING APPROACH FOR A SINGLE COVARIATE

Recall the usual Gaussian stationary spatial process model as in, for example, Cressie 

(1993),

Y s = μ s + W s + ϵ s ,
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(1)

where μ(s) = x(s)Tβ and ϵ(s) is a white noise process, that is, E(ϵ(s)) = 0, var(ϵ(s)) = τ2,
cov ϵ(s), ϵ s′ = 0, and W (s) is a second-order stationary mean 0 process independent of 

the white noise process; that is, E(W (s)) = 0, var(W (s)) = σ2, cov W (s), W s′ = σ2ρ s, s′; ϕ , 

where ρ is a valid two-dimensional correlation function.

The W (s) are viewed as spatial random effects, and (1) implicitly defines a hierarchical 

model. Letting μ(s) = β0 + β1x(s), write W (s) = β0(s) and define β0(s) = β0 + β0(s). Then β0(s)
can be interpreted as a random spatial adjustment at location s to the overall intercept β0. 

Equivalently, β0(s) can be viewed as a random intercept process. For an observed set of 

locations s1, s2, …, sn given β0, β1, β0 si  and τ2, the Y si = β0 + β1x si + β0 si + ϵ si , i = 1, …, n, 

are conditionally independent. The first-stage likelihood is

L β0, β1, β0 si , τ2; y = τ2 − n
2exp − 1

2τ2 ∑ Y si

− β0 + β1x si + β0 si
2 .

(2)

In obvious notation, the distribution of β0 = β0 s1 , …, β0 sn
T  is

f β0 ∣ σ0
2, ϕ0 = N 0, σ0

2H0 ϕ0 ,

(3)

where H0 ϕ0 ij = ρ0 si − sj; ϕ0 . For all of the discussion and examples that follow, we adopt 

the Matèrn correlation function, ρ(h, ϕ) ∝ (γ( h ))vKv(γ( h )). Here Kv is a modified Bessel 

function, ϕ = (γ, v), where γ is a decay parameter and v is a smoothness parameter (see Stein 

1999a for a more in-depth discussion). With a prior on β0, β1, τ2, σ0
2, and ϕ0, specification of 

the Bayesian hierarchical model is completed. Under (2) and (3), we can integrate over β0, 

obtaining the marginal likelihood

L β0, β1, τ2, σ0
2, ϕ0; y

= σ0
2H0 ϕ0 + τ2I − 1

2

× exp − 1
2 y − β01 − β1x T σ0

2H0 ϕ0 + τ2I −1

× y − β01 − β1x ,

(4)

where x = x s1 , …, x sn
T .

We note analogies with usual Gaussian random-effects models where Y ij = β0 + β1xij + αi + eij, 

with αi iid N 0, σα
2  and ϵij iid N 0, σϵ

2 . In this case, replications are needed to identify 
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(separate) the variance components. Because of the dependence between the β0 si , 

replications are not needed in the spatial case, as (4) reveals. Also, if U(s) denotes the 

total error in the regression model, then U(s) is partitioned into “intercept process” error and 

“pure” error.

If the Bayesian model is fitted using the marginal likelihood in (4) with simulation-based 

model fitting, then samples essentially from the posterior f β0, β1, τ2, σ0
2, ϕ ∣ y  are obtained. 

But then samples from β0 ∣ y can be obtained one-for-one because

f β0 ∣ y = ∫ f β0 ∣ β0, β1, τ2, σ0
2, ϕ0, y

× f β0, β1, τ2, σ0
2, ϕ0 ∣ y

(5)

where

f β0 ∣ β0, β1, τ2, σ0
2, ϕ0, y

= N 1
τ2I + 1

σ0
2 H0

−1 ϕ0
−1 1

τ2 y − β01 − β1x ,

1
τ2I + 1

σ0
2 H0

−1 ϕ0
−1

.

We can also obtain samples from the posterior of the β0(s) process at a new location, say snew, 

to provide interpolation for the β0(s) surface. Specifically,

f β0 snew ∣ y = ∫ f β0 snew ∣ β0, σ0
2, ϕ0 f β0, σ0

2, ϕ0 ∣ y .

(6)

The first density under the integral is a univariate normal that can be written down directly 

from the specification of β0(s). For the prediction of y snew  given y, we require

f y snew ∣ y = ∫ f y snew ∣ β0, β1, β0 snew , τ2

× f β0 snew ∣ β0, σ0
2, ϕ0

× f β0, β0, β1, τ2, σ0
2, ϕ0 ∣ y .

(7)

The first term under the integral sign is a normal density. Again, it is straightforward to 

obtain samples from this predictive distribution.

The foregoing development immediately suggests how to formulate a spatially varying 

coefficient model. Suppose that we write

Y s = β0 + β1x s + β1 s x s + ϵ s .
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(8)

In (8), β1(s) is a second-order stationary mean 0 Gaussian process with variance σ1
2 and 

correlation function ρ1 ⋅ ; ϕ1 . Also, let β1(s) = β1 + β1(s). Now β1(s) can be interpreted as a 

random spatial adjustment at location s to the overall slope β1. Equivalently, β1(s) can be 

viewed as a random slope process. In effect, we are using an infinite-dimensional function to 

explain the relationship between x(s) and Y (s).

Expression (8) yields an obvious modification of (2) and (3). In particular, the resulting 

marginalized likelihood becomes

L β0, β1, τ2, σ1
2, ϕ1; y

= σ1
2DxH1 ϕ1 Dx + τ2I − 1

2

× exp − 1
2 y − β01 − β1x T σ1

2DxH1 ϕ1 Dx + τ2I −1

× y − β01 − β1x ,

(9)

where Dx is diagonal with Dx ii = x si . Moreover, with β1 = β1 s1 , …, β1 sn
T , we can sample 

f β1 ∣ y  and f β1 snew ∣ y  using obvious analogs of (5) and (6).

Note that (8) provides a heterogeneous, nonstationary process 

for the data regardless of the choice of covariance function 

for the β1(s) process. Here, var Y (s) ∣ β0, β1, τ2, σ1
2, ϕ1 = x2(s)σ1

2 + τ2 and 

cov Y (s), Y s′ ∣ β0, β1, τ2, σ1
2, ϕ1 = σ1

2x(s)x s′ ρ1 s − s′; ϕ1 . As a result, we observe that in 

practice, (8) is sensible only if we have x(s) > 0. In fact, centering and scaling, usually 

advocated for better-behaved model fitting, is inappropriate here. With centered x(s)’s, we 

would find the likely untenable behavior that var(Y (s)) decreases and then increases in x(s). 
Worse, for an essentially central x(s), we would find Y (s) essentially independent of Y s′
for any s′. Also, scaling the x(s)’s accomplishes nothing. β1(s) would be inversely rescaled, 

because the model identifies only β1(s)x(s).

This leads to concerns regarding possible approximate collinearity of x, the vector of x si ’s, 

with the vector 1. Expression (9) shows that a badly behaved likelihood will arise if x ≈ c1. 

Fortunately, we can reparameterize (8) to Y (s) = β0
′ + β1

′x(s) + β1(s)x(s) + ϵ(s), where x(s) is 

centered and scaled with obvious definitions for β0
′ and β1

′. Now β1(s) = β1
′ /sx + β1(s), where sx

is the sample standard deviation of the x(s)’s.

As after (4), we can draw an analogy with usual longitudinal linear growth curve modeling 

where Y ij = β0 + β1xij + β1ixij + ϵij, that is, a random slope for each individual. Also, U(s), the 

total error in the regression model (8), is now partitioned into “slope process” error and 

“pure” error.

The general specification encompassing (1) and (7) would be
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Y s = β0 + β1x s + β0 s + β1 s x s + ϵ s .

(10)

Expression (10) parallels the usual linear growth curve modeling by introducing both an 

intercept process and a slope process. The model in (10) requires a bivariate process 

specification to determine the joint distribution of β0 and β1. We return to this in Section 

3, but, under independence of the processes, (10) can be easily marginalized over β0 and β1, 

yielding

L β0, β1, τ2, σ0
2, σ1

2, ϕ0, ϕ1; y

= σ0
2H0 ϕ0 + σ1

2DxH1 ϕ1 Dx + τ2I − 1
2

× exp − 1
2 y − β01 − β1x T

× σ0
2H0 ϕ0 + σ1

2DxH1 ϕ1 Dx + τ2I −1

× y − β01 − β1x .

(11)

Again, simulation from f β0 ∣ y , f β1 ∣ y , f β0 snew ∣ y , f β1 snew ∣ y , and f y snew ∣ y  is 

straightforward. The possibility of predicting the spatial surface at arbitrary locations makes 

a compelling case for a Bayesian inference approach. Classical kriging methods cannot 

address this problem, because no β0 si  or β1 si  are observed. Also, in (10), the total error 

has been partitioned into three independent pieces with obvious interpretation. The relative 

sizes of the error components at any si can be studied through E β0 si ∣ y , E β1 si x si ∣ y , 

and E ϵ si ∣ y . To compare the relative variability contributions, we could calculate 

E τ2 ∣ y , E σ0
2 ∣ y , and x‾2E σ1

2 ∣ y , where x‾ = ∑x si /n. In the case where ρ0 and ρ1 are 

isotropic, posteriors for the ranges can be obtained to compare spatial range of the intercept 

process with that of the slope process. The posterior mean surfaces E β0(s) ∣ y  and E β1(s) ∣ y
can be obtained over an arbitrary grid of locations and displayed graphically using standard 

software.

Bayesian models using the marginal likelihoods in either (4), (9), or (11) 

are easily fitted using a slice Gibbs sampler as discussed by Agarwal and 

Gelfand (2001) (see Neal 2002, as well). In particular, under, say (11), we 

add an auxiliary variable U unif 0, L β0, β1, τ2, σ0
2, σ1

2, ϕ0, ϕ1; y . Then the posterior 

β0, β1, τ2, σ0
2, σ1

2, ϕ0, ϕ1, U ∣ y ∝ I U < L π β0, β1, τ2, σ0
2, σ1

2, ϕ0, ϕ1), where π is the prior on the 

marginalized parameters. The slice Gibbs sampler updates U with a uniform draw and 

updates the other parameters with a prior draw subject to the indicator restriction. This 

algorithm is “off-the-shelf,” requiring no tuning. It converges faster than Metropolis 

alternatives and avoids the autocorrelation problem that often arises with these alternatives.
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3. A MULTIVARIATE SPATIALLY VARYING COEFFICIENT MODEL

Here we turn to the case of a p × 1 multivariate covariate vector X(s) at location s, where, for 

convenience, X(s) includes a 1 as its first entry to accommodate an intercept. We generalize 

(10) to

Y s = XT s β s + ϵ s ,

(12)

where β(s) is assumed to follow a p-variate spatial process model. With observed locations 

s1, s2, …, sn, let XT  be n × np block diagonal having as block for the ith row XT si . Then we 

can write Y = XTβ + ϵ, where β is np × 1, the concatenated vector of the β(s) and ϵ N 0, τ2I .

In practice, to assume that the component processes of β(s) are independent is likely 

inappropriate. That is, in the simpler case of simple linear regression, negative association 

between slope and intercept is usually seen. (This is intuitive if one envisions overlaying 

random lines that are likely relative to a fixed scattergram of data points.) The dramatic 

improvement in model performance when dependence is incorporated is shown in the 

example of Section 6. To formulate a multivariate Gaussian process for β(s), we require the 

mean and the cross-covariance function. For the former, following Section 2, we take this to 

be μβ = β1, …, βp
T . For the latter, we require a valid p-variate choice. In the sequel we work 

with a computationally convenient separable choice following Mardia and Goodall (1993) 

(see also Banerjee and Gelfand 2002 in this regard).

More precisely, let C s, s′  be the p × p matrix with (l, m) entry cov(βl(s), βm s′ ) and let

C s, s′ lm = ρ s − s′; ϕ τlm,

(13)

where ρ is a valid scalar correlation function in two dimensions and T p × p is such that 

(T )lm = τlm is positive-definite symmetric. In other words, T  is the covariance matrix 

associated with an observation vector at any spatial location, and ρ captures the attenuation 

in association across space. If we collect the set of ρ s − s′; ϕ  into an n × n matrix H(ϕ) as in 

the previous section, then, with ⊗ denoting the Kronecker product, the distribution of β is

β N 1n × 1 ⊗ μβ, H ϕ ⊗ T .

(14)

As in the previous section, if β = β + 1n × 1 ⊗ μβ, then we can write (12) as

Y s = XT s μβ + XT s β s + ϵ s .

(15)
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In (15), the total error in the regression model is partitioned into p + 1 pieces each with an 

obvious interpretation. Following Section 2, using (12) and (14), we can integrate over β to 

obtain

L μβ, τ2, T , ϕ; y

= X(H(ϕ) ⊗ T)XT + τ2I − 1
2

× exp − 1
2 y − X 1 ⊗ μβ

T X(H(ϕ) ⊗ T)XT + τ2I −1

× y − X 1 ⊗ μβ .

(16)

The possibly daunting form (16) still involves only n × n matrices.

The Bayesian model is completed with a prior f μβ, τ2, T , ϕ ) which we assume to take 

the product form f μβ f τ2 f(T)f(ϕ). Later, these components are normal, inverse gamma, 

inverse Wishart and gamma, and gamma, where ϕ = (γ, ν) under the Matèrn correlation 

function. The model using (16) and such a prior is readily fitted through a sliced Gibbs 

sampler similar to that described at the end of the previous section.

With regard to prediction analogous to (5), f(β ∣ y) can be sampled one-for-one with 

the posterior samples from f μβ, τ2, T , ϕ ∣ y  using f β ∣ μβ, τ2, T , ϕ, y , which is N(Bb, B), 

where B = XTX/τ2 + H−1(ϕ) ⊗ T −1 −1
 and b = XTy/τ2 + H−1(ϕ) ⊗ T −1 1 ⊗ μβ . B is 

np × np, but for sampling β, only a Cholesky decomposition of B is needed 

and only for the retained posterior samples. Prediction at a new location, say 

snew, requires, analogous to (6), f β snew ∣ β, μβ, τ2, T , ϕ . Defining hnew(ϕ) to be the 

n × 1 vector with ith row entry ρ si − snew; ϕ , this distribution is normal with 

mean μβ + hnew
T (ϕ) ⊗ T H−1(ϕ) ⊗ T −1 β − 1nx1 ⊗ μβ = μβ + hnew

T (ϕ)H−1(ϕ) ⊗ I β − 1nx1 ⊗ μβ

and covariance matrix 

T − hnew
T (ϕ) ⊗ T H−1(ϕ) ⊗ T −1 hnew(ϕ) ⊗ T = I − hnew

T (ϕ)H−1(ϕ)hnew(ϕ) T . Finally, the 

predictive distribution for Y snew , f Y snew ∣ y  is sampled analogously to (7).

We conclude this section by noting an extension of (12) when we have repeated 

measurements at location s. That is, suppose that we have

Y s, l = XT s, l β s + ϵ s, l ,

(17)

where l = 1, …, Ls with Ls the number of measurements at s and the ϵ(s, l) still white noise. 

As an illustration, in the real estate context that we mentioned earlier, s might denote the 

location for an apartment block and l indexes apartments in this block that have sold, 

with the lth apartment having characteristics X(s, l). Suppose further that Z(s) denotes an 

r × 1 vector of site level characteristics. For an apartment block, these characteristics might 
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include amenities provided or distance to the central business district. Then (17) can be 

extended to a multilevel model in the sense of Goldstein (1995) or Raudenbush and Bryk 

(2002). In particular, we can write

β s =
ZT s γ1

⋮

ZT s γp

+ W s .

(18)

In (18), γj is an r × 1 vector associated with βj(s) and W(s) is a mean 0 multivariate Gaussian 

spatial process as, for example, earlier. In (18), if the W(s) were independent, then we would 

have a usual multilevel model specification. In the case where Z(s) is a scalar capturing just 

an intercept, we return to the initial model of this section.

4. SPATIALLY VARYING COEFFICIENTS MODELS WITH SPATIO-

TEMPORAL DATA

A natural extension of the modeling of the previous sections is to the case in which data 

are correlated at spatial locations across time. Such data frequently arise in ecological, 

environmental, and meteorological settings. If we assume that time is discretized to a finite 

set of equally spaced points on a scale, then we can conceptualizea time series of spatial 

processes that are observed only at the spatial locations s1, …, sn.

Adopting a general notation that parallels (10), let

Y s, t = XT s, t β s, t + ϵ s, t , t = 1, 2, …, M .

(19)

That is, we introduce spatio-temporally varying intercepts and spatio-temporally 

varying slopes. Alternatively, if we write β(s, t) = β(s, t) + μβ, then we are partitioning 

the total error into p + 1 spatio-temporal intercept pieces including ϵ(s, t), each 

with an obvious interpretation. So we continue to assume that the ϵ(s, t) are iid 

N 0, τ2 , but we need to specify a model for β(s, t). Regardless, (19) defines a 

nonstationary process with E(Y (s, t)) = XT (s, t)β(s, t), var(Y (s, t)) = XT (s, t)Σβ(s, t)X(s, t) + τ2,
and cov Y (s, t), Y s′, t′ = XT (s, t)Σβ(s, t), β s′, t′ X s′, t′ .

We propose four models for β(s, t). Paralleling the customary longitudinaldata modeling 

assumption when the time series are usually short, we could set

model 1: β(s, t) = β(s),

where β(s) is modeled as in the previous sections. Model 1 can be viewed as a local linear 

growth curve model.
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Next, we have

model 2: β(s, t) = β(s) + α(t),

where β(s) is again as in model 1. In modeling α(t), we examine two possibilities. The 

first possibility treats the αk(t) as time dummy variables, taking this set of pM variables 

to be a priori independent and identically distributed. The second possibility models the 

α(t) as a random walk or autoregressive process. The components could be assumed to be 

independent across k, but for greater generality, we take them to be dependent, using an 

analog of (13), replacing s with t and ρ, now a valid correlation function in one dimension. 

Such additivity in space and time has been discussed in the case of usual modeling of the 

error structure by, for example, Gelfand, Ecker, Knight, and Sirmans (2003).

In model 3 we consider an analog of the nested-effects areal unit specification of Waller, 

Carlin, Xia, and Gelfand (1997). (see also Gelfand et al. 2002). In particular, we have

model 3: β(s, t) = β(t)(s)

Here we have spatially varying coefficient processes nested within time. The processes are 

assumed to be independent across t (essentially time dummy processes) and permit temporal 

evolution of the coefficient process. Following Section 3, the process β(t)(s) would be mean 

0, second-order stationary Gaussian with cross-covariance specification at time t, C(t) s, s′ , 

where (C(t) s, s′ )lm = ρ(s − s′; ϕ(t))τlm
(t). We have specified model 3 with a common μβ across 

time, which enables some comparability with the other models that we have proposed. 

However, we can increase flexibility by replacing μβ with μβ
(t).

Finally, model 4 proposes a separable covariance specification in space and time, extending 

work of Gelfand, Zhu, and Carlin (2001):

model 4: β(s, t) such that Σ β s, t , β s′, t′ = ρ 1 s − s′; ϕ × ρ 2 t − t′; γ T ,

where ρ(1) is a valid two-dimensional correlation function, ρ(2) is a valid one-dimensional 

choice, and T  is positive-definite symmetric. Here ρ(1) obtains spatial association as in 

the earlier sections, which is attenuated across time by ρ(2). The resulting covariance 

matrix for the full vector β, blocked by site and time within site, has the convenient form 

H2(γ) ⊗ H1(ϕ) ⊗ T .

In each of the aforementioned models, we can marginalize over β(s, t) as we did in the earlier 

sections. Depending on the model, it may be more computationally convenient to block the 

data by site or by time. We omit the details, noting only that with n sites and T  time points, 

the resulting likelihood will involve the determinant and inverse of an nT × nT  matrix.

Note that all of the foregoing modeling can be applied to the case of cross-sectional data in 

which the set of observed locations varies with t. This is the case with, for instance, our real 
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estate data. We observe a selling price only at the time of a transaction. With nt locations in 

year t, the likelihood for all but model 3 will involve a ∑nt × ∑nt matrix.

5. MODEL COMPARISON

In either the purely spatial case or the spatio-temporal case, we may seek to compare 

models. For instance, in the spatial case from Sections 2 and 3, we can consider models 

in which only a subset of the coefficients vary spatially, where the coefficient processes 

are independent, or where the multivariate dependence version is assumed. In the spatio-

temporal case, we can consider models 1–4 (with possible submodels in the cases of models 

2 and 3).

We use the posterior predictive loss approach of Gelfand and Ghosh (1998). Illustrating in 

the spatio-temporal context, for each (s, t) in (19), let Y new(s, t) be a new observation obtained 

at that location and time for the given X(s, t). If under a particular model, μ(s, t) and σ2(s, t)
denote the mean and variance of the predictive distribution of Y new(s, t) given Y obs (the set of 

all observed Y ’s), then the criterion becomes

Dk = ∑
(s, t)

(Y obs(s, t) − μ(s, t))2 + k ∑
(s, t)

σ2(s, t) .

(20)

In (20), the first term is a goodness-of-fit component (G), and the second term is a penalty 

for model complexity component (P). The constant k weights these components and is often 

set to 1. The model yielding the smallest value of (20) is chosen.

6. AN EXAMPLE

We draw our data from a database of real estate transactions in Baton Rouge, LA, during 

the 8-year period 1985–1992. In particular, we focus on modeling the log selling price of 

single family homes. In the literature it is customary to work with log selling price in order 

to achieve better approximate normality. A range of house characteristics are available. We 

use four of the most common choices: age of house, square feet of living area, square feet of 

other area (e.g., garages, carports, storage) and number of bathrooms. For the static spatial 

case, a sample of 237 transactions was drawn from 1992. Figure 1 shows the parish of Baton 

Rouge and the locations contained in an encompassing rectangle within the parish.

We fitted the following collection of models. In all cases the correlation function is from 

the Matèrn class, that is, ρ s − s′; ϕ ∝ γ s − s′ νKv γ s − s′ . We used priors that are fairly 

noninformative and comparable across models as sensible. We began with a spatial-varying 

intercept and one spatially varying slope coefficient. (The remaining coefficients do not 

vary). The intercept and coefficient processes follow a two-dimensional version of (13). 

There are four such models. The model comparison results are given in Table 1. The 

model with a spatially varying living area coefficient is best here. We then introduce two 

spatially varying slope coefficient processes along with a spatially varying intercept using 
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a three-dimensional version of (13). There are six models here. Table 2 shows that the 

model with spatially varying age and living area is best. Finally, we allow five spatially 

varying processes; an intercept and four coefficients. We tried a model with five independent 

processes along with a five-dimensional version of (13). From Table 3 the five-dimensional 

model using (13) is far superior, and the independence model is clearly worst, supporting 

our earlier intuition.

The prior specification used for the five-dimensional dependent process model are 

as follows. We take vague N 0, 105I  for μβ; a five-dimensional inverted wishart, 

IW (5, diag( . 001)), for T , and inverted gamma, IG(2, 1), for τ2 (mean 1, infinite variance). 

For the Màtern correlation function parameters ϕ and v, we assume gamma priors 

G(2, . 1) (with mean 20 and variance 200). For all of the models, three parallel 

chains were run to assess convergence. Satisfactory mixing was obtained within 3,000 

iterations for all the models; another 2,000 samples were generated and retained for 

posterior inference. The resulting posterior inference summary is provided in Table 4. 

We note a significant negative overall age coefficient with significant positive overall 

coefficients for the other three covariates. These are as expected. The contribution to 

spatial variability from the components of β is captured through the diagonal elements 

of the T  matrix scaled by the corresponding covariates after the discussion at the end 

of Section 2. We see that the spatial intercept process contributes most to the error 

variability with, perhaps surprisingly, the “bathrooms” process second. Clearly, spatial 

variability overwhelms the pure error variability τ2 , showing the importance of the spatial 

model. The dependence between the processes is evident in the posterior correlation 

between the components. In fact, under (13), it is straightforward to calculate that 

cov βl(s), βm(s + h) / cov βl(s), βl(s + h) cov βm(s), βm(s + h) = T lm/ T llTmm, regardless of h. We 

find the anticipated negative association between the intercept process and the slope 

processes (apart from that with the “other area” process). Under the Matérn correlation 

function, by inverting ρ( ⋅ ; ϕ) = . 05 for a given value of the decay parameter γ and the 

smoothing parameter v, we obtain the range, that is, the distance beyond which spatial 

association becomes negligible. Posterior samples of (γ, ν) produce posterior samples for the 

range. The resulting posterior median is roughly 4 km over a somewhat sprawling parish, 

which measures roughly 22 km × 33 km. The smoothness parameter suggests processes with 

mean squared differentiable realizations (v > 1). Figure 2 shows the posterior mean spatial 

surfaces for each of the processes. The contour plots are evidently quite different. Table 5 

considers a sample of 20 holdout sites on which the model can be validated; in fact, the 

validation is done with all of the models from Table 3. The entries in bold indicate validation 

failures. We find that for the first model, 19 of 20 predictive intervals contain the true value 

while for the independence model, 18 of 20 do so. More importantly, notice how much 

shorter these intervals are using the five-dimensional model.

Turning to the dynamic models proposed in Section 5, we returned to the Baton Rouge 

database, drawing a sample of 120 transactions at distinct spatial locations for the years 

1989–1992. We compare models 1–4. In particular, we have two versions of model 2; 2a 

has the α(t) as four iid time dummies, and 2b uses the multivariate temporal process model 
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for α(t). We also have two versions of model 3; 3a has a common μβ across t, whereas 3 b 

uses μβ
(t). In all cases, we used the five-dimensional spatially varying coefficient model for 

β’s. Table 6 gives the results. Model 3, in which space is nested within time, turns out to be 

the best, with model 4 following closely behind. Finally Table 7 summarizes the posterior 

inference summary for model 3b. The overall coefficients (μβ
(t)) do not change much over 

time; however, there is some indication that spatial range does change over time.

7. THE GENERALIZED LINEAR MODEL SETTING

We briefly consider a generalized linear model version of (12), replacing the Gaussian first 

stage with

f y si ∣ θ si = ℎ y si exp θ si y si − b θ si ,

(21)

where, using a canonical link, θ si = XT si β si . The specification generates the models of 

Diggle et al. (1998). In (19), we could include a dispersion parameter with little additional 

complication.

The resulting first-stage likelihood becomes

L β:y = exp ∑y si XT si β si − b XT si β si .

(22)

Taking the prior on β in (14), the Bayesian model is completely specified with a prior on ϕ,
T , and μβ.

This model can be fitted using a conceptually straightforward Markov chain Monte Carlo 

algorithm in the form of a Gibbs sampler, which would update the components of μβ and 

β using adaptive rejection sampling (Gilks and Wild 1992). With an inverse Wishart prior 

on T , the resulting full conditional of T  is again inverse Wishart. Updating ϕ is usually 

very awkward, because it enters in the Kronecker form in (14). Metropolis updates are 

hard to design but offer perhaps the best possibility. Also problematic is the repeated 

componentwise updating of β. This hierarchically centered parameterization (Gelfand, Sahu, 

and Carlin 1995, 1996) is preferable to working with μβ and β, but the algorithm still runs 

very slowly with autocorrelation problems.

An alternative to componentwise updating is to introduce blocked Metropolis updating 

through a Langevin diffusion (see, e.g., Roberts, Gelman, and Gilks 1997; Christensen, 

Möller, and Waagepetersen 2000). Updating the entire np × 1 vector β seems unrealistic. 

Blocking β by component process is essentially computationally intractable, and blocking 

β by site creates strong autocorrelation problems. Clearly, more work is needed to provide 

efficient model-fitting strategies for these models.
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Figure 1. 
Locations Sampled Within the Parish of Baton Rouge for the Static Spatial Models.
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Figure 2. 
Mean Posterior Spatial Surfaces for the 5-D SVC Model: (a) Intercept Process, (b) Age 

Process, (c) Living Area Process, (d) Other Area Process, (e) Bathrooms Process.
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Table 1.

Values of Posterior Predictive Model Choice Criterion for Two-Dimensional Models (intercept process is 

always included)

Model G P D

Living area 69.87 46.24 116.11

Age 74.52 44.58 119.10

Other area 70.24 49.87 120.11

Bathrooms 78.02 52.93 130.95
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Table 2.

Values of Posterior Predictive Model Choice Criterion for Three-Dimensional Models (intercept process is 

always included)

Model G P D

Age, living area 61.38 47.83 109.21

Age, other area 63.80 48.45 112.25

Age, bathrooms 67.25 48.66 114.91

Living area, other area 72.35 50.75 123.10

Living area, bathrooms 78.47 49.28 127.75

Other area, bathrooms 74.58 47.44 122.02
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Table 3.

Values of Posterior Predictive Model Choice Criterion (over all models)

Model G P D

Five-dimensional model 42.21 36.01 78.22

Three-dimensional model (best) 61.38 47.83 109.21

Two-dimensional model (best) 69.87 46.24 116.11

Independent process model 94.36 59.34 153.70
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Table 4.

Inference Summary for the Five-Dimensional Multivariate Spatially Varying Coefficients Model

Parameter 2.5 % 50 % 97.5 %

β0 (intercept) 9.908 9.917 9.928

β1 (age) −.008 −.005 −.002

β2 (living area) .283 .341 .401

β3 (other area) .133 .313 .497

β4 (bathrooms) .183 .292 .401

T11 .167 .322 .514

x‾1
2T22 .029 .046 .063

x‾2
2T33 .013 .028 .047

x‾3
2T44 .034 .045 .066

x‾4
2T55 .151 .183 .232

T12/ T11T22 −.219 −.203 −.184

T13/ T11T33 −.205 −.186 −.167

T14/ T11T44 .213 .234 .257

T15/ T11T55 −.647 −.583 −.534

T23/ T22T33 −.008 .011 .030

T24/ T22T44 .061 .077 .098

T25/ T22T55 −.013 .018 .054

T34/ T33T44 −.885 −.839 −.789

T35/ T33T55 −.614 −.560 −.507

T45/ T44T55 .173 .232 .301

ϕ (decay parameter) .51 1.14 2.32

v (smoothness parameter) .91 1.47 2.87

range (in km) 2.05 4.17 9.32

τ2 .033 .049 .077
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