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Abstract Overweight and obesity are leading causes of cardiometabolic dysfunction. Despite extensive investigation, the mechanisms me-
diating the increase in these conditions are yet to be fully understood. Beyond the endogenous formation of advanced glycation 
endproducts (AGEs) in overweight and obesity, exogenous sources of AGEs accrue through the heating, production, and con-
sumption of highly processed foods. Evidence from cellular and mouse model systems indicates that the interaction of AGEs 
with their central cell surface receptor for AGE (RAGE) in adipocytes suppresses energy expenditure and that AGE/RAGE con-
tributes to increased adipose inflammation and processes linked to insulin resistance. In human subjects, the circulating soluble 
forms of RAGE, which are mutable, may serve as biomarkers of obesity and weight loss. Antagonists of RAGE signalling, through 
blockade of the interaction of the RAGE cytoplasmic domain with the formin, Diaphanous-1 (DIAPH1), target aberrant RAGE 
activities in metabolic tissues. This review focuses on the potential roles for AGEs and other RAGE ligands and RAGE/DIAPH1 
in the pathogenesis of overweight and obesity and their metabolic consequences.
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1. Introduction
1.1 Scope of the problem
Data reported by the National Institute of Diabetes and Digestive and 
Kidney Diseases from the 2017–2018 National Health and Nutrition 
Examination Survey using body mass index (BMI)1 measures indicate that 
approximately one in three adults is overweight; two in five adults have 
obesity; and one in 11 adults has severe obesity.2 Data from the same 
source indicate that during ages 2–19, one in six children and adolescents 
is overweight; one in five children and adolescents has obesity; and one in 
16 children and adolescents suffers with severe obesity.3

Yet, despite the burden of overweight and obesity, durable solutions and 
treatments are not fully available. With regard to personalized approaches 
to weight loss, there remain hurdles in terms of optimal behavioural inter-
ventions and suitable biomarkers to predict and track the efficacy of poten-
tial interventions. In this context, advanced glycation endproducts (AGEs) 
are formed during normal metabolism and aging4,5 and to increased degrees 
during obesity and hyperglycemia.6 AGEs stimulate various cellular pathways 

by interacting with their central cell surface receptor, receptor for advanced 
glycation endproduct (RAGE). Recent research has uncovered novel roles 
for the RAGE pathway in adipocyte physiology that may directly relate to 
the pathogenesis of obesity; furthermore, research has identified the poten-
tial utility of tracking the AGE/RAGE axis in human obesity and cardiometa-
bolic disease. This review will focus on the biology of AGE/RAGE pathway in 
overweight and obesity and their cardiometabolic complications.

2. RAGE/Diaphanous-1 (DIAPH1) 
axis
2.1 RAGE is a multi-ligand receptor
RAGE was discovered on account of its ability to bind and to transduce AGE 
signals; in the years after its discovery, reports uncovered the multi-ligand na-
ture of RAGE, in that multiple members of the S100/calgranulin family; am-
photerin [more recently known as high mobility group box 1 (HMGB1)]; and 
amyloid beta peptide (Aß) were identified as ligands of RAGE.7–10 Later 
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studies revealed that RAGE also binds species such as phosphatidylserine, 
C1q, and lysophosphatidic acid (LPA).11–13 RAGE, an immunoglobulin (Ig) 
superfamily receptor whose extracellular domains are composed of one 
Variable (V)-type domain followed by two Constant (C)-type domains, is ex-
pressed by multiple types of cells, such as vascular and immune cells, as well 
as adipocytes.14 The complexity of these extracellular domains was further 
supported by the findings that while most of the RAGE ligands bind at the 
V-type Ig domain or to the V-C1 Ig domains, other ligands, such as certain 
members of the S100/calgranulin family, bind to the C-type Ig domains.15

For these reasons, it was postulated that effective pharmacological targeting 
of RAGE through antagonism of intracellular RAGE signal transduction 
might be superior to targeting the extracellular domains.

2.2 The cytoplasmic domain of RAGE binds 
to DIAPH1: implications for signal 
transduction
To discover the mechanisms of RAGE signal transduction, a 
yeast-two-hybrid assay was employed to reveal molecules that might bind 
to the cytoplasmic domain of RAGE; through this approach, it was discov-
ered that the intracellular domain of RAGE binds to the formin molecule, 
Diaphanous-1 (DIAPH1).16 Specifically, the cytoplasmic domain of RAGE 
binds to the formin homology 1 (FH1) domain of DIAPH1; mutational ana-
lyses and consequent nuclear magnetic resonance (NMR) studies identified 
the precise amino acids in the RAGE cytoplasmic domain which are respon-
sible for binding to DIAPH1.17 When mutations of the RAGE cytoplasmic 
domain that mitigated interaction with DIAPH1 were introduced into cul-
tured cells, RAGE ligand-mediated signalling, proliferation and migration re-
sponses were abrogated.17 Notably, among the functions of the formins are 
activation of pathways such as RHOA, CDC42, and RAC1; studies revealed 
that RAGE ligand-mediated activation of CDC42 and RAC1 in cultured cells 
was blocked when Diaph1 expression was silenced.16 A detailed depiction of 
RAGE–DIAPH1 signal transduction was chronicled in a recent review.18

2.3 The discovery of small molecule 
antagonists that block RAGE–DIAPH1 
interaction
These discoveries, particularly the identification of the precise amino acids in 
the RAGE cytoplasmic domain that bound DIAPH1 led to the discovery of 
small molecule antagonists that block the interaction of the RAGE cytoplas-
mic domain with DIAPH1.19,20 After the screening of a > 59 000 compound 
library, followed by extensive structure–activity–relationship refinements to 
the basic scaffold molecules, a novel chemical probe, called RAGE229, was 
recently identified.20 In a multi-disciplinary approach, RAGE229 was tested 
in binding assays, NMR spectroscopy, and in Förster resonance energy trans-
fer experiments. RAGE229 was shown to block the interaction of the cyto-
plasmic domain of RAGE with DIAPH1. In cellular studies, RAGE229 
antagonized RAGE ligand-mediated cellular migration, signalling and produc-
tion of inflammatory mediators.20 Furthermore, in in vivo models of inflam-
mation, cardiac ischemia/reperfusion injury, impaired wound healing, and 
diabetic kidney disease in mice with type 1- or type 2-like diabetes, 
RAGE229 significantly attenuated RAGE–DIAPH1 binding and molecular/ 
pathological consequences of stimulation of the RAGE/DIAPH1 axis in mur-
ine models.20 These studies support the premise that the ligand/RAGE/ 
DIAPH1 axis may be targeted for testing in clinical trials.

In the context of obesity, what is known about the ligand/RAGE/ 
DIAPH1 axis and what are the implications for human cardiometabolic dis-
ease? The sections to follow address these points and present evidence to 
support key roles for the RAGE axis in the pathogenesis of obesity.

3. The RAGE/DIAPH1 axis, adipose 
tissue, and obesity
Important clues to potential roles for RAGE in obesity were reported in 
numerous studies illustrating the expression of multiple classes of RAGE 

ligands in adipocytes or in adipose tissues in obesity. In those studies, as 
will be detailed below, it was suggested that the production of RAGE li-
gands caused metabolic dysfunctions. 3T3-L1 adipocytes in culture pro-
duced RAGE ligand S100B and S100B interaction with mouse 
macrophage-like cells (RAW264.7) produced cytokines in a 
RAGE-dependent manner.21 In human preadipocyte SW872 cells, expres-
sion of HMGB1 resulted in release of IL6 in a manner blocked by RAGE 
antagonism, but not by blockade of toll-like receptor 2 or 4 (TLR2 or 
TLR4).22 Pathological roles for LPA in mice consuming a high-fat diet 
were illustrated in studies in which the gene encoding autotaxin (enzyme 
which produces LPA), Enpp2, was deleted. Compared with control mice, 
those mice devoid of Enpp2 were protected from high-fat diet-induced 
obesity and displayed reduced hepatic steatosis.23 Other studies indicated 
that compared with lean individuals, adipose tissue from human subjects 
with obesity displayed higher concentrations of carboxymethyl lysine 
(CML)-AGE, in parallel with higher expression of RAGE.6 Interestingly, in 
that study, the authors suggested that CML-AGEs were trapped in the ob-
ese adipose tissue, which might account for the lower concentrations of 
circulating CML-AGE identified in subjects with obesity vs. the lean state.6

It is noteworthy that not all studies report lower circulating concentrations 
of CML or general AGEs in subjects with obesity vs. lean state; this is not 
surprising because AGEs are a heterogeneous group of structures and it is 
established that beyond endogenous lipoxidation-mediated production of 
AGEs in the tissues, dietary AGEs are key contributors to the circulating 
pools of AGEs.24–27 Thus, factors such as the quality and composition of 
a subject’s diet, dietary intake, and the specific conditions during which 
blood samples were obtained (such as fasted vs. fed state or the time of 
day) may affect the final AGE concentrations reported among studies.

It is notable that there is further support for AGEs in the pathogenesis of 
obesity and its consequences; one of the endogenous mechanisms through 
which the AGEs may be generated is through the polyol pathway and the 
roles of its lead enzyme, aldose reductase, in these processes. Previous 
studies implicated aldose reductase in the production of AGEs, which 
led to their pathological actions on endothelial aging via the RAGE path-
way.28 Recently, it was shown that the expression of aldose reductase 
(gene and protein) was increased in human and mouse adipose tissue in 
obesity and that the global genetic deletion or pharmacological antagonism 
of aldose reductase in mice reduced high-fat diet-induced obesity.29

Hence, the ligand/RAGE axis plays a role in obese adipose tissue physi-
ology and the ligands of RAGE may mediate pathological effects in metabol-
ic cells. These studies raised the question, therefore, of whether the RAGE 
pathway contributed to the development of obesity. In the section to fol-
low, studies testing the ligand/RAGE axis in animal models will be reviewed.

4. Studies in animal models 
established roles for the RAGE axis 
in obesity
Numerous studies have used Ager (the gene encoding RAGE)-modified 
mice to probe roles for RAGE in high-fat diet-induced obesity. Studies 
have employed both global and adipocyte-specific deletion of Ager; these 
studies will be detailed in the sections to follow.

4.1 Global deletion of Ager
The first studies implicating roles for RAGE in diet-induced obesity were 
reported in male mice devoid of Apoe (Apolipoprotein E) either expressing 
or globally devoid of Ager and fed a diet in which 20% of total calories was 
provided by cocoa butter and 1.5% of total calories was provided from 
cholesterol.30 In that study, despite comparable food intake, Apoe null 
mice devoid of Ager displayed less body weight gain on the atherogenic 
diet. Epididymal adipose tissue weight was significantly lower along with 
smaller adipocytes and reduced adipose tissue inflammation in the Apoe 
null mice devoid of Ager vs. the controls and adipose tissue inflammation 
was also reduced, in parallel with reduced adipocyte size.30 The expression 
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of mRNA encoding Uncoupling Protein 1 (Ucp1) in the interscapular 
brown adipose tissue (iBAT) did not differ between the Ager-expressing 
or Ager-deleted Apoe null mice and energy expenditure was not deter-
mined in that study.30

The above diet was also fed to male wild-type C57BL/6 mice and mice 
devoid of Ager. Compared with wild-type mice, those mice devoid of Ager 
demonstrated less body weight gain, lower epididymal fat weight, smaller 
adipocyte size, and significantly higher circulating adiponectin concentra-
tions.31 Energy expenditure and adipose tissue expression of UCP1 were 
not reported in that work. This work showed that RAGE-dependent me-
chanisms in the adipose tissue were accounted for, at least in part, by 
RAGE-dependent regulation of TLR2 and that mice devoid of Ager and 
fed the cocoa butter/cholesterol diet displayed less adipose inflammation 
and improved insulin sensitivity compared with the Ager-expressing control 
mice.31

In a distinct study, C57BL/6N Chr mice were fed a diet in which 60% of 
calories was supplied from fat. Male Ager null mice gained more weight and 
displayed higher concentrations of insulin and cholesterol compared with 
the wild-type mice fed this diet.32 It was noted in that study that the mice 
were pair-fed but the specific details were not provided.

In contrast, others tested the role of RAGE in obesity in male C57BL/ 
6 mice by feeding the animals a high-fat diet in which 60% of calories 
was supplied from fat.33 Compared with wild-type littermate mice, mice 
devoid of Ager were protected from diet-induced obesity and displayed re-
duced adiposity and smaller adipocyte size. Hyperinsulinemic euglycemic 
clamps revealed that the high-fat diet-fed Ager null mice exhibited greater 
insulin sensitivity and superior hepatic insulin action compared with the 
wild-type mice fed the high-fat diet.33 Despite no differences in caloric in-
take, energy expenditure was significantly higher in the Ager null vs. wild- 
type mice. Furthermore, gene expression of Ucp1 was significantly higher 
in the iBAT of high-fat diet-fed Ager null vs. wild-type mice, and multiple in-
dices of adipose inflammation were reduced in the mice devoid of Ager.33

Pharmacological antagonism of the ligand/RAGE axis using soluble RAGE 
(sRAGE) demonstrated that compared with vehicle, sRAGE administration 
reduced weight gain in wild-type mice fed a high-fat diet.33

Collectively, in the studies presented above, the differences observed 
demonstrating protection vs. exacerbation of weight gain in high-fat feed-
ing in Ager null mice may have multiple explanations, such as genetic back-
ground, manner of feeding, and temperature and conditions in the 
vivarium. It is also possible that the pathogen-free vs. pathogen-positive sta-
tus of the vivarium may contribute to the overall findings. Irrespective of 
these issues, these various studies illustrated that a comprehensive meta-
bolic phenotyping programme is essential to fully characterize the role 
of RAGE in diet-induced obesity.

Hence, homozygous deletion of Ager might cause confounding and com-
plex effects because of the numerous cell types expressing Ager, and given 
the reports that Ager null mice fed the high-fat diet displayed protection 
from diet-induced obesity, reduced adiposity, higher expression of Ucp1 
in brown adipose tissue and higher energy expenditure than wild-type 
mice fed the diet, a logical next study was to probe the impact of high-fat 
feeding in mice bearing an adipocyte-specific deletion of Ager.

4.2 Adipocyte RAGE regulates 
thermogenesis but not adipocyte 
differentiation
Adipocyte-specific deletion of Ager in mice was a specific test of the role of 
RAGE in these cells in the high-fat diet feeding environment, as in Ager 
floxed mice bred into the Adipoq (Adiponectin) Cre recombinase back-
ground, expression of Ager in immune and vascular cells, as key examples, 
would be intact.34 As a first step, primary adipocytes differentiated from 
the stromal vascular fraction of iBAT, inguinal white adipose tissue 
(iWAT) (subcutaneous), and epididymal white adipose tissue (eWAT) 
were shown to express, but not require, RAGE during the differentiation 
process; of note, even in homeostatic conditions, clues to key roles for 
RAGE in thermogenesis and mitochondrial activity emerged. For example, 

in iBAT-derived primary adipocytes bearing Ager deletion, basal respiratory 
rates and ATP production were higher than those observed in wild-type 
adipocytes. Furthermore, mRNA expression of multiple genes that regu-
late thermogenesis, lipolysis, and mitochondrial biogenesis was significantly 
higher in the adipose tissue depots of Ager null vs. control wild-type mice, 
especially in iBAT and iWAT.34

4.3 Deletion of adipocyte Ager protects from 
diet-induced obesity and cold intolerance 
in mice
As RAGE expression in adipocytes suggested roles for the receptor in the 
regulation of thermogenesis, these concepts were tested in vivo. Despite no 
differences in food intake or physical activity, mice bearing an adipocyte- 
specific deletion of Ager displayed less weight gain when fed a high-fat 
diet and demonstrated reduced insulin and glucose intolerance compared 
with Ager-expressing mice. Critically, adipocyte-specific deletion of Ager re-
sulted in higher energy expenditure compared with Ager-expressing con-
trol mice fed the high-fat diet.34

Further evidence for regulatory roles for RAGE in adipocyte thermo-
genesis were uncovered in studies in which mice with adipocyte-specific 
deletion of Ager displayed superior core body temperature control when 
challenged with exposure to 4°C environment. Consistent with 
RAGE-dependent downregulation of genes linked to thermogenesis, in 
the iWAT of the mice lacking adipocyte Ager, mRNA expression of 
Ucp1, Dio2, Ppargc1a, and Cidea was significantly higher compared with 
that noted in the adipocyte Ager-expressing mice.34

Additional support for RAGE-dependent regulation of thermogenesis 
pathways was found in wild-type mice subjected to surgical transplantation 
of iBAT or iWAT from chow-fed mice bearing an adipocyte-specific dele-
tion of Ager vs. the Ager-expressing controls. In both cases, the deletion of 
Ager in the iBAT or iWAT protected wild-type recipient mice from high-fat 
diet-induced obesity, and resulted in increased energy expenditure and en-
hanced expression of UCP1 in the iBAT or iWAT of the recipient mice.34

4.4 RAGE and ß3-adrenergic stimulation, 
protein kinase A, and lipolysis
An established mechanism underlying the regulation of thermogenic genes is 
through ß-adrenergic stimulation of lipolysis and the generation of fatty acid 
products; one consequence of which is the regulation of UCP1 expression 
and activity.35–37 In adipocytes, RAGE ligands, via RAGE, suppressed 
ß-adrenergic-mediated lipolysis (production of glycerol and non-esterified 
fatty acids), oxygen consumption rates, and the expression of Ucp1.34

Specifically, treatment of wild-type Ager-expressing adipocytes from iBAT 
or iWAT with norepinephrine and the RAGE ligand CML-AGE resulted 
in significant suppression of Ucp1 and Ppargc1a mRNA expression vs. treat-
ment with norepinephrine alone.34 In both cultured adipocytes (C3H10T1/ 
2 cells) and primary adipocytes, RAGE ligands reduced protein kinase A 
(PKA) activity and phosphorylation of hormone-sensitive lipase (Ser563) 
and p38 mitogen-activated protein kinase,34 all of which play key roles in 
lipolysis.

4.5 Small molecule antagonism of RAGE/ 
DIAPH1 interaction and adipocyte 
properties
In addition to genetic approaches targeting the RAGE/DIAPH1 axis in adi-
pocytes, experiments were also performed with small molecule antago-
nists of RAGE/DIAPH1 interaction.19,20 In C3H10T1/2 cells treated with 
the ß3-adrenergic agonist, CL316,243, incubation with an early stage 
RAGE/DIAPH1 antagonist19 resulted in significantly higher glycerol release 
vs. cells treated with CL316,243 alone.34 Of note, the RAGE/DIAPH1 an-
tagonist exerted no independent effects on the numbers of lipid droplets 
assessed by BODIPY staining and did not affect the relative mitochondria 
content.34 These findings suggest that small molecule antagonism of RAGE/ 
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DIAPH1 might affect adipocyte physiology; however, the implications for 
the in vivo setting are not fully elucidated. Studies testing these concepts 
are currently underway.

As the small molecule antagonists target the binding of the RAGE cyto-
plasmic domain with DIAPH1, a key question arises: what is known about 
DIAPH1 in obesity and in adipose tissues? Indeed, studies are now report-
ing links of DIAPH1 to metabolic perturbations; these reports will be dis-
cussed in the section to follow.

5. DIAPH1 and emerging roles in 
adipocyte biology and obesity
The extracellular matrix (ECM) plays critical roles in adipocyte metabolism 
and adipocyte crosstalk with immune cells.38–40 As AGEs and the RAGE 
pathway have been implicated in the modification of the ECM and the 
downstream consequences,41–43 and as AGE/RAGE/DIAPH1 and the 
ECM signal, in part through the Rho GTPases,44–46 it was of interest to 
study this pathway in the context of ECM-adipocyte biology. Visceral adi-
pocytes from human subjects with obesity and with or without diabetes 
were studied in two-dimensional (2D) and three-dimensional (3D) systems 
in culture. Using adipocyte glucose uptake to monitor adipocyte metabol-
ism, it was found that glycated ECM reduced adipocyte insulin-stimulated 
glucose uptake, which was particularly pronounced in diabetic vs. non- 
diabetic ECM.47 To test the role of AGE receptors in these processes, anti-
bodies to CD36 or RAGE were used, and to test the role of DIAPH1, the 
inhibitor SMIFH2 was employed.48 Although antibodies to CD36 or RAGE 
had no effect on AGE-ECM-mediated inhibition of adipocyte glucose up-
take, the DIAPH1 inhibitor reduced the AGE-ECM-mediated inhibition 
of adipocyte glucose uptake.47 Although the ability of the CD36- or 
RAGE-directed antibodies to inhibit other AGE effects was not illustrated 
in that work, this report highlighted for the first time roles for DIAPH1 as a 
mediator of AGE-ECM metabolic crosstalk in adipocytes.

Others studied human adipose tissue from subjects with obesity or 
morbid obesity; two different adipose tissue depots were probed, subcuta-
neous adipose tissue (SAT) and omental adipose tissue (OAT).49 The AGE/ 
RAGE/DIAPH1 axis was addressed by monitoring the mRNA expression 
of AGER and DIAPH1; the AGE pathway was tested by measurement of 
GLO1 mRNA. GLO1 encodes Glyoxalase-1; GLO1 is a chief 
AGE-detoxifying enzyme in the tissues and, therefore, it regulates, in 
part, AGE content.50,51 Although BMI and body weight differed between 
the two groups of subjects with obesity vs. morbid obesity, there were 
no significant differences noted in Homeostatic Model for Assessment of 
Insulin Resistance (HOMA-IR), a marker of insulin resistance. It was re-
ported that in SAT, but not OAT, expression of AGER strongly and posi-
tively correlated with DIAPH1 and GLO1 mRNA.49 With respect to 
markers of inflammation, in SAT, expression of AGER significantly corre-
lated with CD68; expression of DIAPH1 correlated with TNF; and increased 
GLO1 expression in SAT correlated positively with CD68 and TNF. In con-
trast, surprisingly, no such associations of AGER/DIAPH1/GLO1 with inflam-
mation were noted in OAT.49

In that work, the mRNA expression of AGER/DIAPH1/GLO1 and the cor-
relations with genes related to the regulation of metabolism were also 
probed; in SAT, expression of AGER and GLO1 significantly and positively 
correlated with PPARG and expression of DIAPH1 showed significant and 
positive correlations with PPARG, PPARGC1A, and CIDEA.49 In contrast, in 
OAT, there were no significant associations between AGER or DIAPH1 
and metabolic genes; however, expression of GLO1 correlated significantly 
and positively with PPARGC1A and CIDEA.49

Finally, potential associations between AGER/DIAPH1/GLO1 and 
HOMA-IR were tested in that study. Strikingly, it was shown that in 
SAT, only AGER expression, but not an expression of PPARG, DIAPH1, 
UCP1, GLO1, or CD68, was significantly and positively correlated with 
HOMA-IR. In OAT, no associations between any of these AGE/RAGE/ 
DIAPH1 markers with adipogenic or inflammatory factors or HOMA-IR 
were observed.49 Whereas the RAGE axis might have been expected to 

be more associated with OAT and inflammation, this axis’s chief associa-
tions in obesity and morbid obesity with inflammatory and metabolic fac-
tors were found in SAT. These surprising findings lay the foundation for 
studies probing the homeostatic and pathobiological effects of AGE/ 
RAGE/DIAPH1 in human browning/beiging and overall adaptations to 
thermogenic stresses.

Collectively, these findings further implicate the AGE/RAGE/DIAPH1 
pathway in human obesity and its complications. In the sections to follow, 
this review considers the biology of the AGE–RAGE–DIAPH1 pathway in 
the distinct adipose tissue depots, such as epicardial adipose tissue (EAT).

6. AGE, RAGE, and DIAPH1: 
implications for adipocyte biology in 
the epicardial depot: new insights to 
links to this pathway in 
cardiovascular disease—studies in 
rats and humans
6.1 EAT, metabolic functions, 
and cardiovascular disease
In addition to the adipose tissue depots typically considered to be relevant 
in obesity, metabolic dysfunctions, and cardiovascular disease, it is import-
ant to also consider the EAT depot and its links to the AGE–RAGE– 
DIAPH1 axis. EAT is visceral fat that is situated between the myocardium 
and the inner pericardium and, as such, it surrounds the coronary vessels.52

On account of these proximities, the epicardial fat depot shares the same 
microcirculation with the proximal myocardium. Numerous investigations 
have shed light on multiple key functions of EAT, such as (1) EAT supplies 
the heart with free fatty acids to meet energy demands; (2) EAT may dis-
play brown adipose tissue-like characteristics, thereby aiding in protection 
against cold; (3) EAT provides a mechanical cushion for the heart, protect-
ing it from arterial pulse wave and cardiac contractions; and (4) EAT may 
modulate inflammatory signals, which may yield cardioprotective proper-
ties.52 However, it is also established that disruption in these pathways 
in EAT may contribute to the development of coronary artery/cardiovas-
cular disease. In this context, a number of studies have shown direct cor-
relations between coronary artery disease and dysfunctional EAT.53 It was 
in this context that researchers sought to probe potential links between 
the AGE–RAGE–DIAPH1 pathway and the EAT depot in health and dis-
ease. In the section to follow, this review details evidence emerging from 
human studies suggesting roles for this pathway in EAT.

6.2 EAT and the AGE/RAGE/DIAPH1 
pathway
To explore RAGE expression in adipose tissue depots, EAT and SAT were 
retrieved from humans undergoing cardiac surgery. Comparing patients 
with vs. without coronary artery disease, the mRNA expression of AGER 
and RAGE protein amounts were lower in the SAT, but not in EAT. 
Markers of oxidative stress, the mRNA expression of p22-phox (a compo-
nent of NADPH oxidase), and AGER were higher in EAT vs. SAT. However, 
expression of markers of oxidative stress did not differ in patients with vs. 
without coronary artery disease.54 Hence, although expression data such 
as that discussed here do not provide mechanistic insights into disease 
pathways, they nevertheless illustrate that human EAT expressed RAGE.

In a distinct study, samples from 33 patients undergoing open-heart sur-
gery were obtained for tissue analyses and microarrays were used to de-
tect expression of the genes encoding RAGE, GLUT4, adiponectin, 
GLO1, HMGB1, TLR4, and MyD88 and the thickness of EAT was mea-
sured using echocardiography. It was reported that increasing expression 
of RAGE was linked to the increased thickness of EAT, as well as reduced 
expression of GLUT4, adiponectin, and GLO1, in parallel with increased 
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expression of HMGB1, TLR4, and MyD88. Based on anthropomorphic 
measurements, the lipid accumulation product was found to significantly 
correlate with RAGE expression and the thickness of EAT.55

In other studies, EAT and SAT were retrieved from humans undergoing 
elective cardiac surgery in which five of the patients had type 2 diabetes and 
coronary artery disease and three of the patients had coronary artery dis-
ease without type 2 diabetes. RNA sequencing analysis was performed on 
both EAT and SAT. Interestingly, the authors reported that there were no 
significant differences in the gene expression between diabetic vs. non- 
diabetic SAT samples; in contrast, 592 differentially expressed genes 
were identified when comparing diabetic vs. non-diabetic EAT. In the dia-
betic patient-derived EAT, enrichment for inflammatory genes with re-
spect to the innate immune response was identified and the associated 
KEGG pathways included the TNF family, NF-kB family, and the AGE– 
RAGE pathways. Furthermore, endothelium-related genes, such as those 
encoding for Pentraxin3 and endothelial lipase G, were enriched in the dia-
betic EAT.56 The authors concluded that these findings might highlight a 
potential atherogenic pathway in EAT in diabetes.

Finally, an additional study examined if the presence of diabetes influ-
enced the biology of epicardial fat and paracardial fat in 66 patients (33 
of whom had diabetes) with multivessel coronary artery disease. The 
authors reported that the volume of epicardial fat was higher in patients 
with diabetes vs. without diabetes and that the EAT of diabetic patients dis-
played higher expression of RAGE. In addition to RAGE expression, it was 
shown that in epicardial fat and paracardial fat of diabetic patients, higher 
expression of adrenomedullin and lower expression of the FGF21 were 
observed.57 The authors concluded that diabetes resulted in higher expres-
sion of potentially inflammatory factors as well as reduced expression of 
cardioprotective FGF21.

In summary, these studies place RAGE in EAT and provide associations 
between the degree of RAGE expression and the presence or not of meta-
bolic dysfunctions and cardiovascular disease. Irrespective of these consid-
erations, these important studies may provide further support for the 
well-described link between RAGE and the pathogenesis of atherosclerosis 
and cardiovascular complications.27,58–60 As extensive evidence in animals 
and in humans identifies roles for the RAGE pathway in these disorders, 
the studies cited herein suggest that one component of RAGE’s roles in 
cardiovascular disease may be through dysfunction in EAT in diabetes 
and non-diabetes as well.

As the procurement of serial adipose tissue biopsies in human subjects is 
largely impractical, distinct means to track the RAGE/DIAPH1 axis in vivo 
need to be considered and discovered. For this reason, efforts in the field 
have sought to interrogate the potential roles for tracking the concentra-
tions of the soluble forms of RAGE and its ligands in cardiometabolic dis-
orders. The sections to follow detail the sources of sRAGE isoforms and 
the implications for tracking sRAGE isoforms in obesity and weight loss.

7. Soluble RAGEs: proposed 
biomarkers of the RAGE axis in vivo in 
human subjects
7.1 sRAGE forms and detection in vivo
There are two main forms of sRAGE detected in vivo.61 The first is the full- 
length form of soluble or sRAGE generated from cell surface cleavage of 
the receptor through the actions of matrix metalloproteinases or A 
Disintegrin And Metalloprotease (ADAM)-10. Total sRAGE is composed 
of the V, C1, and C2-type domains of the receptor.62,63 A second form 
of sRAGE is called endogenous secretory or esRAGE; esRAGE represents 
about 20% of the overall total sRAGE and is derived from a pre-mRNA al-
ternative splicing mechanism.64 It is hypothesized that the circulating 
sRAGEs may function as decoys by binding RAGE ligands and preventing 
their interaction with and activation of the cell surface receptor. 
Consistent with this notion, the earliest studies testing the administration 
of sRAGE in mice to quell RAGE-dependent cellular stress showed that 

recombinant sRAGE suppressed diabetic atherosclerosis and facilitated 
wound healing, as examples.65–67

In human subjects, specific enzyme-linked immunosorbent assays detect 
total sRAGE and esRAGE; the cell surface-cleaved sRAGE or ‘cRAGE’ is 
calculated by subtracting esRAGE from total sRAGE.61 As will be discussed 
below, numerous and recent studies are reporting the concentrations of all 
the known forms of sRAGEs, including total sRAGE, cRAGE, and esRAGE, 
and not just a single form. However, a key question that needed to be ad-
dressed in order to support the use of measurements of the sRAGEs as 
biomarkers of metabolic health or stress was if concentrations of 
sRAGEs were mutable. In the sections to follow, the mutability of 
sRAGEs in response to various dietary/metabolic measures was 
demonstrated.

7.2 Soluble RAGEs and the response to acute 
dietary interventions in human subjects
The effects of a high-fat meal without prior aerobic exercise and then on a 
different occasion, a high-fat meal preceded by aerobic exercise, on 
sRAGEs and on the expression of RAGE and other inflammatory/metabol-
ic markers (TLR4, MYD88, and ADAM10) in peripheral blood mono-
nuclear cells (PBMCs) was tested 4 h after meal consumption in n = 12 
participants. The consumption of the high-fat meal significantly reduced 
the plasma concentrations of sRAGE, esRAGE, and cRAGE by 9.7, 6.9, 
and 10.5%, respectively, and there was no additional effect of aerobic ex-
ercise. Of note, the consumption of the high-fat meal (without any effect of 
exercise) resulted in higher expression of RAGE protein expression on 
PBMCs by 10.3%; however, there was no effect of the meal with/without 
exercise on the expression of TLR4, MYD88, or ADAM10 protein expres-
sion, nor on ADAM10 activity in the PBMCs.68

In a distinct study, the effect of the mixed meal challenge (20 g protein, 
59 g carbohydrate, and 26 g fat) was tested in control subjects vs. patients 
with maintenance haemodialysis (n = 8/group). The concentrations of the 
plasma sRAGEs were tested at baseline and at 240 min post-meal and the 
last dialysis treatment was 24 h prior to the meal.69 Baseline concentra-
tions of plasma AGEs were significantly higher in the maintenance haemo-
dialysis vs. control subjects; there were no basal differences or post-meal 
differences identified in the concentrations of total sRAGE, esRAGE, or 
cRAGE.69 Overall, there was a group effect in that the concentrations of 
sRAGE and esRAGE were significantly higher in the maintenance haemo-
dialysis vs. control subjects, with a trend towards higher concentrations 
of cRAGE as well (P = 0.09).69 Key points in the interpretation of the find-
ings include considerations such as there may be an independent and over-
riding effect of renal failure on sRAGEs that may be greater than that to be 
expected with a single mixed meal; the study may be underpowered; and in 
the maintenance haemodialysis subjects, use of medications would have 
distinguished those patients from the subjects in the control group.69

Others tested the effects of three different breakfasts (Mediterranean 
vs. Western with or without grilling in the latter case) in 20 healthy volun-
teers, without obesity or overweight, and aged 18–30 years.70 The meals 
were consumed in 15 min and blood was collected at serial time points 
post-completion of the meal for up to 120 min. Only total sRAGE was 
measured and numerous AGE products were detected. Numerous obser-
vations were made; fasting concentrations of sRAGE in individual partici-
pants were highly consistent over a three-week period and carboxyethyl 
lysine AGE and free lysine concentrations were found to be higher in gen-
eral among male vs. female participants.70 In addition, irrespective of the 
specific breakfast or the dietary AGE content consumed, plasma CML con-
centrations increased and plasma total sRAGE concentrations decreased in 
the post-prandial state. Hence, although differences in esRAGE and cRAGE 
concentrations were not detected in that study, the work did demonstrate 
an inverse relationship between an AGE product (CML) and sRAGE after 
breakfast meals.70

In addition to the innate factors noted above that affect concentrations 
of AGEs and sRAGEs, numerous reports indicated that the concentrations 
of sRAGEs decline with age71 and that AGEs increase with aging,72 thereby 
supporting the concept of inverse relationships between the AGE ligands 
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and sRAGEs concentrations. These considerations indicate that in studies 
testing AGEs and sRAGEs, subjects’ chronological age must also be consid-
ered in the overall statistical models. In addition, it is notable that recent 
studies have advocated testing AGEs/sRAGE ratios,71,73–92 as it was found 
in some cases that the ratio of AGEs/sRAGEs may be a more reliable pre-
dictor of pathologies than either measure alone (Table 1). In the context of 
these considerations, others have probed the value of sRAGEs as markers 
of metabolism and obesity in human subjects; examples of such studies will 
be presented in the sections to follow.

7.3 Obesity, cardiometabolic disease, 
and sRAGEs
Although multiple studies have tested sRAGEs as biomarkers in obesity, 
very few have considered how one of the single nucleotide polymorphisms 

of AGER, G82S, might relate to anthropomorphic measures and AGE/ 
RAGE. One such study showed that patients with obesity demonstrated 
lower concentrations of sRAGE vs. non-obese subjects and that subjects 
with obesity who bore S82S had the highest C-reactive protein (CRP) 
and AGEs vs. G allele carriers.93 In subjects without obesity, there were 
no significant AGER G82S-related differences in AGEs or CRP, therefore 
indicating a potential proclivity for the S alleles to be more inflammatory 
in obesity vs. lean state.93 In adult females, it was shown that concentra-
tions of esRAGE and adiponectin were significantly lower in women 
with obesity vs. lean state and that plasma esRAGE concentrations were 
associated with markers of oxidative stress and platelet activation.94

Other studies performed in healthy women revealed that plasma concen-
trations of sRAGE were lower in women with obesity vs. normal weight 
and, as deduced from magnetic resonance imaging studies, sRAGE concen-
trations inversely correlated with EAT depot.95 In healthy, young adults 
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Table 1 Examples of studies in varied conditions reporting AGEs/sRAGEs ratio in humans

Condition Subjects Major findings Ref.

Type 2 diabetes 362 T2D, 125 controls (1) AGEs/sRAGE & AGEs/cRAGE positively associated with chronological age (P = 0.003) (2) 

15 years follow-up (4982 person-years) Increase in AGEs/cRAGE associated with higher 
risk of all-cause mortality in T2D subjects; the HR per each SD segment is 1.30, 95% CI 

1.15–1.47; P < 0.001

71

Aging, renal disease 64 subjects, 70% male, 63% with 
diabetes and eGFR = 27 ± 10 mL/ 

min/1.73 m2 Measured at baseline & 

at 12 months

AGEs/sRAGE over 12 months was significantly higher (1.77 ± 0.92 vs. 2.24 ± 1.34, P = 0.004); 
AGEs/sRAGE inversely correlated with eGFR-however basal values and their variations did 

not show a significant change with eGFR changes

74

ESRD 88 ESRD patients, 20 healthy controls AGEs/sRAGE, AGEs/cRAGE and AGEs/esRAGE all significantly higher in ESRD patients vs. 

controls (P < 0.05)

75

NSTEMI 46 male with NSTEMI; 28 age/ 
sex-matched controls

AGEs/sRAGE ratio higher in NSTEMI patients vs. healthy controls (1.72 ± 0.14 vs. 0.54 ± 
0.06; P < 0.05)

76

ISR 48 patients without ISR; 12 patients 

with ISR

AGEs/sRAGE was significantly higher at baseline and at 6 months follow-up in patients with 

ISR vs. without ISR

90

Cholesterol disorder 45 normal cholesterol; 55 high 

cholesterol

AGEs/sRAGE showed positive correlation with total cholesterol (r = 0.73, P < 0.001; LDL-c) 

(r = 0.74, P = 0.001); and triglycerides (r = 0.77, P = 0.001)

91

Health examinations 110 subjects undergoing health 
examination (14 were healthy)

AGEs/sRAGE was negatively and significantly correlated with flow-mediated dilation by four 
different models

92

Aging cohort 958 men, 802 women No association between AGEs/sRAGE and mortality 77

Physical activity 967 men, 812 women Higher AGEs/sRAGE associated with lower physical Activity function only in women even 
after correction For lifestyle and age-related factors OR = 0.86, 95% CI = 0.75–0.98

78

Embryology 21 with poor-morphology embryos 

and 23 with good morphology 
embryos

AGEs/sRAGE significantly higher in follicular fluid of poor- vs. good morphology embryos 2.6 

± 0.38 vs. 1.2 ± 0.29; P = 0.0048

79

Obesity 41 obese/overweight and 36 lean 

children

AGEs/sRAGE significantly higher in obese/overweight vs. lean control children (r = 0.421, P = 
0.000)

80

NAFLD 58 with NAFLD 58 controls AGEs/sRAGE significantly higher in NAFLD cases vs. controls (P < 0.001) 81

Essential hypertension 104 patients AGEs/sRAGE independently associated with albuminuria (OR = 1.131, 95% CI = 1.001– 

1.278; P = 0.048)

82

Lung disease 62 IPF, 22 cHP 22 fNSIP and 12 healthy 

controls

AGEs/sRAGE higher in IPF vs. fNSIP and control; P < 0.01 AGEs/sRAGE higher in IPF vs. cHP; 

P < 0.05 AGEs/sRAGE higher in cHP vs. fNSIP; P < 0.01 AGEs/sRAGE in fNSIP similar to 

control

84

Cigarette smoking Review article Serum AGEs increase with cigarette smoking vs. without serum sRAGEs decrease with 

cigarette smoking suggests that AGEs/sRAGE is increased in cigarette smoking vs. without

86

Cystic fibrosis and 
diabetes

5 CF, 5 CFRD, 7 diabetes, 10 healthy 
controls

AGEs/sRAGE serum: higher in diabetes vs. control, P < 0.05 AGEs/sRAGE sputum: no 
significant differences

87

eGFR, estimated glomerular filtration rate; ESRD, end-stage renal disease; NSTEMI, non-ST segment elevation myocardial infarction; ISR, in stent restenosis; NAFLD, non-alcoholic fatty liver 
disease; IPF, idiopathic pulmonary fibrosis; cHP, chronic hypersensitivity pneumonitis; fNSIP, fibrotic nonspecific interstitial pneumonia; CF, cystic fibrosis; CFRD, cystic fibrosis-related diabetes.
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with normal body weight, overweight, and obesity (n = 69), body weight, 
BMI, and waist circumference were negatively correlated with serum 
sRAGE and high molecular weight adiponectin positively correlated 
with sRAGE.96 With respect to the prediabetes state, in 42 affected pa-
tients, significant negative correlations between plasma concentrations of 
sRAGE were identified with body weight, BMI, waist and hip circumfer-
ences, waist-to-hip ratios, and concentrations of LDL cholesterol; how-
ever, there were no associations with fasting plasma glucose, 
haemoglobin A1C or 2 h post-glucose challenge glucose concentrations.97

AGEs are independently related to cardiovascular disease and AGE ac-
cumulation favours the accumulation of cholesterol and oxysterol in 
macrophage foam cells.80,98,99 Hence, it was logical to test the association 
between concentrations of plasma AGEs and sRAGE with the carotid pla-
que content of cholesterol and oxysterols in humans undergoing carotid 
endarterectomy.100 In this cohort, 23 patients were symptomatic and 40 
patients were asymptomatic. Lipids and sterols, including oxysterols, chol-
esterol, desmosterol, lathosterol, sitosterol, and campesterol were ex-
tracted from the plaques and quantified. In the plaques retrieved from 
symptomatic patients, an increased content of cholesterol and oxysterols 
was found compared with that noted in asymptomatic individuals. Plasma 
total AGEs and pentosidine (a specific AGE) concentrations were signifi-
cantly and positively correlated to sterols accumulated in the plaques, in-
cluding cholesterol, desmosterol, campesterol, sitosterol, and oxysterols. 
Concentrations of sRAGE were inversely correlated with total AGEs 
and pentosidine concentrations in plasma, and with the major forms of 
oxysterols, cholesterol, and markers of cholesterol synthesis and absorp-
tion in the plaques. Through multiple regression analyses, a significant in-
verse correlation was identified between the concentration of plasma 
sRAGE and 24-hydroxycholesterol and desmosterol, and a positive signifi-
cant correlation was found between the concentrations of pentosidine and 
24-hydroxycholesterol, 27-hydroxycholesterol, and campesterol.100 The 
authors concluded that the plasma concentrations of AGEs and sRAGE 
may predict the accumulation of sterols in atherosclerotic lesions in 
both asymptomatic and symptomatic individuals. In that study, however, 
the authors did not report the AGEs/sRAGE ratios, only the individual 
values.

In children and adolescents, the concentrations of sRAGE and esRAGE 
were significantly lower in children with obesity vs. control children and 
these sRAGEs concentrations were independently correlated with carotid 
intima-media thickness measures.101 Other studies addressed vascular 
damage as well in adolescents, aged 15–19 years, in which 33 had obesity 
and 33 were normal weight; in that study, the group of adolescents with 
obesity demonstrated higher cardiometabolic risk as shown by lower 
sRAGE and higher concentrations of triglycerides and markers of endothe-
lial dysfunction.102 In that study, sRAGE concentrations negatively corre-
lated with flow-mediated dilation and positively correlated with arterial 
stiffness index.102 In other studies in 522 male and 561 female adolescents, 
after correction for age and sex, the concentrations of sRAGE were in-
versely associated with obesity, and sRAGE was significantly and inversely 
correlated with an increasing number of components of the metabolic 
syndrome.103

Collectively, these examples of studies testing concentrations of 
sRAGEs in obesity, in adults and in children and adolescents, appear to sug-
gest that lower concentrations of sRAGEs are associated with obesity and, 
at least in some studies, with cardiometabolic damage. Although few to any 
of these studies examined RAGE ligands or, perhaps more appropriately, 
AGEs/sRAGEs ratios, these considerations indicated that future work 
might address these points. In any case, these early studies raise the ques-
tion—what happens to concentrations of sRAGEs after weight loss? In the 
section to follow, examples of studies addressing this point are presented 
in both surgical and non-surgical weight loss settings.

7.4 Bariatric surgery, weight loss, 
and sRAGEs
In surgical weight loss, 57 patients with type 2 diabetes and BMI (30–35 kg/m2) 
underwent gastric bypass, gastric sleeve, or lap-band per patient preference. It 

was reported that higher baseline concentrations of sRAGE were associated 
with superior weight loss outcomes at 6 months post-surgery.104 The same 
group of patients was followed up at three years post-surgery and higher 
baseline concentrations of sRAGE were associated with greater change in 
HbA1c and greater percent weight loss after surgery.105 However, when 
this group of patients was followed up at five years post-surgery, the concen-
trations of sRAGE at baseline were no longer associated with long-term 
weight loss and metabolic outcomes.106 In that series of studies, beyond 
the baseline, repeated measurements of sRAGE concentrations were not re-
ported; hence, it remains possible that specific differences in sRAGE concen-
trations at three or five years post-bariatric surgery might have demonstrated 
associations with body weight, weight loss, and metabolic recovery.

In a distinct study of 85 patients with morbid obesity (mean BMI, 45.4 kg/m2), 
the concentrations of sRAGE along with a host of other factors were 
tested at two years post-surgery. It was reported that mean concentra-
tions of plasma sRAGE increased significantly at the two-year point.107

The changes in the concentrations of sRAGE (from pre-surgery to two 
years post-surgery) were associated with changes in 1 and 2 h post- 
prandial glucose concentrations; the change in fasting insulin concentration; 
the change in the 2 h post-prandial concentrations of insulin; the change in 
HOMA-IR; and the change in triglyceride concentrations. In a multivariate 
model, changes in 1 and 2 h post-prandial glucose concentrations; the 
change in the 2 h post-prandial concentrations of insulin; and the change 
in HOMA-IR predicted the change in concentrations of sRAGE.107

These interesting findings highlighted the potential value of both baseline 
and changes in concentrations of sRAGEs from pre-surgery to the post- 
surgery state and raise the question of the potential predictive value of 
measurement of sRAGE concentrations in medical/behaviour-induced 
weight loss as well.

7.5 Medical/behaviour-induced weight loss 
and sRAGEs
In 22 patients with severe obesity (mean BMI 44.5 kg/m2), a dietary inter-
vention was instituted with a very low-calorie formula diet for 12 weeks 
(800 kcal/day) followed by a 12-week weight maintenance programme. 
Overall, the patients experienced a mean weight loss of about 21.7 kg along 
with improvement in insulin resistance measures.108 The baseline concen-
trations of serum sRAGE were inversely related to BMI and to HOMA-IR 
such that the lower the baseline concentrations of sRAGE, the greater the 
reduction in BMI.108 Importantly, there was an inverse correlation between 
the change in BMI and changes in serum sRAGE concentrations after 
weight loss induction interventions.108

In a study of 42 patients with obesity, patients were randomized to con-
trol feeding or alternate-day fasting. For 24 weeks, although the control 
group did not change their diet, the patients on alternate-day fasting had 
consumed 25% or 125% of their caloric requirements on alternating 
days.109 The control group did not display any change in weight but the 
group on alternate-day fasting lost approximately 6.8 kg and it was re-
ported that sRAGE and esRAGE concentrations increased with weight 
loss.109

In eight adult patients with chronic kidney disease, a 12-week-supervised 
weight loss (lifestyle) was instituted consisting of low-fat dietary counselling 
with a prescribed amount of aerobic exercise (60 min/day and five days/ 
week).110 In those patients, weight loss resulted in a reduction in plasma 
concentrations of sRAGE and the decrease in sRAGE was associated 
with lower 2 h blood glucose concentrations in a glucose tolerance test 
and with increased insulin sensitivity.110 These studies illustrate that weight 
loss, here associated with a reduction in plasma sRAGE, was obtained in 
the setting of chronic kidney disease, itself a condition that modulates 
the concentrations of the sRAGEs. In that study and in many of the weight 
loss studies, it is notable that RAGE ligands or AGEs/sRAGE ratios were 
not routinely measured.

Finally, a recent study addressed potential relationships between weight 
loss, body composition, and changes in energy expenditure and adaptive 
thermogenesis with baseline and changes in concentrations of sRAGEs (to-
tal sRAGE, esRAGE, and cRAGE) in 41 adults (70% female) undergoing a 
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three-month weight loss programme focused on precision nutrition 
approached designed to reduce post-prandial glycemic response vs. a 
standard low-fat diet.111 At three months, a mean body weight change 
of −1.7% was noted. In the statistical models, the baseline concentrations 
of sRAGEs did not predict change in fat mass at 3 months, but baseline 
sRAGEs (sRAGE, esRAGE, and cRAGE) were significantly associated 
with the change in resting energy expenditure (REE) at three months vs. 
baseline REE after correction for age and sex.111 With respect to adaptive 
thermogenesis, multiple algorithms were used to calculate this measure,112

baseline concentrations of esRAGE were associated with adaptive thermo-
genesis in some but not all of the models employed. Overall, the associa-
tions of sRAGEs concentrations with changes in REE were independent 
of HbA1c, a measure of a reversible glycation process, but AGEs were 
not measured in the study.111 These intriguing findings suggest the poten-
tial links between the RAGE pathway and energy expenditure; in the mur-
ine studies of either global or adipocyte deletion of Ager, these mice were 
protected from high-fat diet-induced obesity, at least in part through the 
release of a RAGE-dependent brake on energy expenditure.33,34

In summary, it is important to query how the results of these studies in 
obesity, weight loss, and adaptive thermogenesis might be affected by the 
dynamics of potential changes in AGEs over the course of these diseases 
and interventions. Certainly, together with the summary of studies in 
Table 1, these considerations strongly support the testing of AGEs/ 
sRAGE ratios in obesity and weight loss interventions.

8. Perspectives & future directions
In summary, these considerations identify roles for the RAGE/DIAPH1 axis 
in obesity and key metabolic complications such as insulin resistance and 
type 2 diabetes and highlight that the measurement of the circulating con-
centrations of the sRAGEs (and/or AGEs/sRAGE ratios) in human subjects 
might provide a new biomarker profile to track obesity and the success, or 
not, of weight loss measures (Figure 1). Collectively, however, these con-
cepts render it logical to query, if a principal function of RAGE is the sup-
pression of adaptive thermogenesis and energy expenditure, why should 
such a molecule survive evolutionary forces to support the development 
of obesity and its complications, particularly insulin resistance and type 2 
diabetes? Clues that the RAGE biology is relatively unique are embedded 
in the finding that the promiscuous ligands of RAGE, such as AGEs, 
S100/calgranulins, and HMGB1, interact with receptors beyond AGEs, 
such as the TLRs. It is fascinating to consider that although the appearance 
of TLRs traces to both vertebrates and invertebrates,113 AGER appeared 
considerably later in evolution.

8.1 AGER and evolution
The gene AGER, by comparison with the TLRs, first appeared in 
Laurasiatheria,114 a superorder of placental mammals and part of the larger 
group of mammals classified as Eutheria. The oldest Eutherian species is be-
lieved to be Juramaia sinensis, which appeared over 160 million years 
ago.115 Eutherians, characterized by their ability to express UCP1 in 
BAT, are imbued with the capacity for thermogenesis.116 Such considera-
tions provide insight into possible forces that contributed to the appear-
ance of AGER. AGER, by virtue of its ability to conserve energy within 
adipocytes, may have evolved to forestall the organismal consequences 
of insufficient/intermittent nutrition or wide swings in ambient tempera-
ture. Perhaps, in such settings, the production and accumulation of 
AGEs and the extracellular release and appearance of S100/calgranulins 
and HMGB1 were relatively uncommon.

In more recent times, however, advanced aging, well beyond the repro-
ductive years and other factors, such as nutritional excess and reduced 
physical activity, trigger the overproduction and accumulation of these 
families of RAGE ligands. Indeed, as a group, these ligands have been 
termed Damage Associated Molecular Patterns, or DAMPs, as an acknowl-
edgement of their derivation from milieus characterized by cellular stress 
and damage.117 Together with the recent evidence that highly and ultra- 
processed foods contain copious exogenous sources of AGEs,118–120 it 

is plausible that AGER functions devolved from protective roles to those 
co-opted by these endogenous and exogenous biochemical species and 
stresses to mediate obesity and its consequences. In this context, a ques-
tion arises, is insulin resistance in obesity mediated through RAGE directly 
or, do RAGE-dependent roles in obesity and adipocyte perturbation lead 
to insulin resistance through indirect routes?121

8.2 RAGE and insulin resistance
To date, the experimental evidence does not yet definitively distinguish 
direct causal and/or consequence roles for RAGE in insulin resistance. 
In mice bearing global- or adipocyte-specific deletion of Ager, the reduc-
tion in obesity and adiposity was accompanied by an improvement in in-
sulin sensitivity.31,33,34 In parallel, in those studies, adipose tissue 
inflammation was also reduced. Yet, clues to primary roles for the 
RAGE pathway in insulin sensitivity emerge from the closer observation 
of the data from the hyperinsulinemic, euglycemic clamp studies reported 
by Song and colleagues.33 Surprisingly, in the clamp studies, even in mice 
fed a low-fat, chow diet, glucose infusion rates, and glucose turnover 
were significantly higher in Ager null vs. wild-type mice and during the 
clamp, hepatic glucose production was significantly lower in the Ager 
null vs. the wild-type mice.33 These intriguing findings suggest that even 
on a low-fat diet, RAGE plays role in metabolism and insulin sensitivity. 
However, these studies were performed in mice globally devoid of Ager 
and, therefore, do not provide any insight into the cell(s)-specific mechan-
isms underlying these findings. Studies are underway to address this pre-
cise question.

What about evidence linking RAGE to insulin sensitivity measures in hu-
man subjects? In fact, evidence is mounting to support this connection. 
First, a recent study by Popp and colleagues employed a three months pre-
cision nutrition intervention aimed to reduce post-prandial glycemic re-
sponse to diet vs. a standard low-fat diet in subjects with obesity and 
overweight. In addition to determining that there were significant associa-
tions by a linear regression model between the differences in REE from 
three months vs. baseline with the baseline concentrations of sRAGE, 
esRAGE, and cRAGE, it was also reported that there were significant asso-
ciations between the differences in fasting insulin concentrations from 
three months vs. baseline with the baseline concentrations of sRAGE, 
esRAGE, and cRAGE. No significant differences were reported in the dif-
ferences in HOMA-IR over three months vs. baseline in that study.111

However, others reported that the rises in sRAGE post-bariatric surgery 
were significantly associated with changes in HOMA-IR post-surgery.107

Clues to links of the RAGE pathway to insulin resistance also emerged 
from work reporting on adipose tissue expression of AGER and correla-
tions with insulin resistance. Ruiz and colleagues reported that in SAT 
but not in OAT, AGER expression was significantly and positively correlated 
with HOMA-IR.49 This surprising result implies that subcutaneous, but not 
OAT expression of AGER, was associated with a key index of insulin resist-
ance. Does this finding suggest that potential roles for RAGE in insulin sen-
sitivity reflect impact in adipose tissue depots traditionally more associated 
with energy expenditure vs. inflammation? Future studies might employ 
adipose tissue depot-specific (e.g. brown, white, beige) Cre recombinase 
strategies in Ager floxed mice, for example, to address this critical question. 
With the possibility that such adipose depot-specific reagents may be de-
veloped in the future, such an experimental paradigm might also permit the 
discovery of the RAGE-dependent depots that underlie obesity and adi-
posity in high-fat feeding, as well.

8.3 Tracking sRAGEs—biomarkers 
of cardiometabolic disease?
As discussed above, the prospects for pharmacological antagonism of 
RAGE as a therapeutic strategy may lie with the potential to interrupt 
the interaction of the RAGE cytoplasmic domain with DIAPH1. 
Although the reported chemical probe, RAGE229, exerted beneficial ef-
fects in multiple mouse models of inflammation, ischemia/reperfusion in-
jury (heart), wound healing, and diabetic kidney disease,20 it has yet to 
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be tested in the context of energy expenditure, adiposity, and weight loss. 
Positive results from such studies might suggest that among the potential 
benefits of RAGE/DIAPH1 antagonism would also be improvements in 
body mass, adiposity, and metabolic complications. Studies are underway 
to address these possibilities. Of note, such an approach inherently re-
quires the means to track the effectiveness of these therapeutic interven-
tions in vivo.

As noted above, numerous studies have illustrated that tracking baseline 
vs. post-weight loss concentrations of the sRAGEs may hold promise for 
predicting weight loss and metabolic outcomes after either surgical or be-
havioural weight loss. Of note, however, evidence is emerging to suggest 
that the ratio of AGEs/sRAGEs may be more predictive; this is entirely lo-
gical. By tracking the mutability of both a key RAGE ligand and the sRAGEs, 
it is possible that better predictive results may emerge, as it is very likely 

Figure 1 The ligand/RAGE/DIAPH1 axis in obesity and insulin resistance: mediator and proposed biomarker. Studies are accruing to suggest that ligand/ 
RAGE interaction in adipose tissue in obesity exerts multiple pathological effects, such as increased accumulation of AGEs, and reduced adipocyte PKA activity, 
lipolysis, expression of Uncoupling Protein 1 (UCP1), REE, and mitochondrial respiration. Upon the development of obesity, immune cell perturbation, at least 
in part via RAGE/DIAPH1, contributes to inflammation and foam cell formation; processes associated with insulin resistance. In human subjects, circulating 
sRAGEs [cRAGE (cleaved RAGE), esRAGE (endogenous secretory RAGE), and/or total sRAGE] correlate with obesity, weight loss, changes in REE, and con-
centrations of insulin. Recent research has highlighted therapeutic opportunities in mice for novel small molecule antagonists of RAGE/DIAPH1 interaction to 
interrupt RAGE/DIAPH1 signalling. Antagonists of RAGE and/or DIAPH1 have been shown to modulate properties of adipocytes, immune cells, and the ECM. 
Studies are underway to test if small molecule antagonism of RAGE/DIAPH1 may enhance weight loss and diminish metabolic complications in the states of 
obesity and overweight in animal models.
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that modulation of AGEs might well affect the concentrations of the 
sRAGEs. In the weight loss studies discussed above, only sRAGEs (and, 
sometimes only one form of sRAGE) were detected. Key next steps re-
quire the measurement of both baseline and post-weight loss intervention 
AGEs and sRAGEs and the reporting of the AGEs/sRAGE ratio as well.

The recent and striking findings reported by Sabbatinelli and colleagues, 
in which they showed that circulating AGEs and sRAGEs (and the ratios of 
AGEs to specific forms of sRAGEs) were associated with all-cause mortal-
ity and the development of major cardiovascular complications in patients 
with type 2 diabetes,71 provide strong support for key roles for the RAGE 
pathway in diabetes and cardiovascular disease. In the context of cardiome-
tabolic disease triggered by obesity and its consequences, it is proposed 
that eventual clinical trials testing the efficacy of RAGE/DIAPH1 antagonists 
may benefit from tracking this key index of the ligand–RAGE axis in vivo.
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