
The potential of blood neurofilament light 
as a marker of neurodegeneration for 
Alzheimer’s disease
Youjin Jung1,2 and Jessica S. Damoiseaux1,2

Over the past several years, there has been a surge in blood biomarker studies examining the value of plasma or ser
um neurofilament light (NfL) as a biomarker of neurodegeneration for Alzheimer’s disease. However, there have been 
limited efforts to combine existing findings to assess the utility of blood NfL as a biomarker of neurodegeneration for 
Alzheimer’s disease. In addition, we still need better insight into the specific aspects of neurodegeneration that are 
reflected by the elevated plasma or serum concentration of NfL.
In this review, we survey the literature on the cross-sectional and longitudinal relationships between blood-based 
NfL levels and other, neuroimaging-based, indices of neurodegeneration in individuals on the Alzheimer’s con
tinuum. Then, based on the biomarker classification established by the FDA-NIH Biomarker Working group, we de
termine the utility of blood-based NfL as a marker for monitoring the disease status (i.e. monitoring biomarker) 
and predicting the severity of neurodegeneration in older adults with and without cognitive decline (i.e. a prognostic 
or a risk/susceptibility biomarker). The current findings suggest that blood NfL exhibits great promise as a monitoring 
biomarker because an increased NfL level in plasma or serum appears to reflect the current severity of atrophy, hy
pometabolism and the decline of white matter integrity, particularly in the brain regions typically affected by 
Alzheimer’s disease. Longitudinal evidence indicates that blood NfL can be useful not only as a prognostic biomarker 
for predicting the progression of neurodegeneration in patients with Alzheimer’s disease but also as a susceptibility/ 
risk biomarker predicting the likelihood of abnormal alterations in brain structure and function in cognitively unim
paired individuals with a higher risk of developing Alzheimer’s disease (e.g. those with a higher amyloid-β).
There are still limitations to current research, as discussed in this review. Nevertheless, the extant literature strongly 
suggests that blood NfL can serve as a valuable prognostic and susceptibility biomarker for Alzheimer’s disease-re
lated neurodegeneration in clinical settings, as well as in research settings.

1 Department of Psychology, Wayne State University, Detroit, MI 48202, USA
2 Institute of Gerontology, Wayne State University, Detroit, MI 48202, USA

Correspondence to: Jessica S. Damoiseaux  
Department of Psychology, Institute of Gerontology  
Wayne State University, 87 East Ferry St.  
Detroit, MI 48202, USA  
E-mail: damoiseaux@wayne.edu

Keywords: dementia; atrophy; glucose metabolism; white matter microstructure

Received March 01, 2023. Revised July 22, 2023. Accepted July 28, 2023. Advance access publication August 4, 2023
© The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please e-mail: 
journals.permissions@oup.com

https://doi.org/10.1093/brain/awad267 BRAIN 2024: 147; 12–25 | 12

mailto:damoiseaux@wayne.edu


Introduction
In Alzheimer’s disease (AD) research, the development of techni
ques allowing a reliable measurement of blood-based neurofila
ment light chain (NfL) proteins has inspired many researchers to 
investigate the potential of blood NfL as a marker of neurodegen
eration for AD. However, relatively little effort has been made to 
synthesize the accumulated findings to evaluate the utility of 
blood NfL as a neurodegenerative marker for AD. In addition, in 
the extant literature, little attention is paid to what aspects 
of neurodegeneration the observed increase of blood NfL is 
indicative of. In this paper, we will review existing knowledge 
on the relationship between blood NfL and other indices of neuro
degeneration in AD research to determine the utility of NfL as a 
neurodegenerative marker for AD. Moreover, we will discuss the 
aspects of AD-related neurodegeneration and pathology likely 
reflected by the change in the blood level of NfL and suggest pos
sible (clinical) applications of blood NfL. This review consists of 
four sections. In the first section, we will provide some back
ground on NfL as a general marker of neuroaxonal damage and 
a neurodegenerative marker for AD. In the second section, we 
will summarize existing findings on the relationship between 
blood NfL and other measures of neurodegeneration derived 
from MRI and PET imaging, which have been the most commonly 
used methods for in vivo assessment of neurodegeneration in the 
human brain. Furthermore, we will discuss the potential of NfL as 
a monitoring and a susceptibility or prognostic biomarker for AD. 
The third section will discuss current challenges and future direc
tions of research on blood-based NfL as a neurodegenerative 
marker for AD. Finally, the last section concludes by providing po
tential practical applications of blood NfL in clinical and research 
settings.

Background: NfL as a potential 
biomarker for Alzheimer’s disease
Neurofilaments are major components of the axonal cytoskeleton 
and are particularly abundant in myelinated large-calibre axons.1

Neurofilaments, although scarce, also exist in soma and dendrites.2

They provide stability to the cytoskeletal structure of neurons and 
affect conduction speed by controlling the calibre of axons.1 There 
are five subunits of neurofilaments, neurofilament heavy chain, 
neurofilament medium chain, NfL, α-internexin and peripherin, 
which differ by the structure of the head and tail domains of the 
chains and functional roles.2 Neurofilaments, particularly NfL, 
have been used as a marker of neuroaxonal degeneration because 
they are released into the CSF and blood as a result of axonal injury 
or neuronal death (Fig. 1).2

The CSF or blood level of NfL is not specific to a disease. The CSF 
or blood NfL level increases in various neurological and neurode
generative diseases such as traumatic brain injury,6 multiple scler
osis,7,8 frontotemporal lobar degeneration9,10 and AD11,12 (see 
Kahlil et al.13 for a review). Not only that, but normal ageing also 
leads to an increase in CSF and blood NfL. NfL has been detected 
in CSF and blood in middle-aged to older adults without neurode
generative diseases, but they showed a lower level of NfL or a lower 
rate of increase in NfL over 2 years compared to people in similar 
age groups with neurodegenerative disorders.14,15 Moreover, 
within-age group variability of NfL level increases as age increases 
in middle-aged to older adults, possibly due to subclinical or incon
spicuous diseases or injuries.16 Thus, ageing may further increase 

the overlap between pathological and non-pathological groups in 
their CSF/blood NfL level.

Recently, many studies have tested the value of CSF or blood 
NfL as a measure of neurodegeneration or as a diagnostic marker 
for AD. Meta-analyses on the diagnostic performance of NfL 
consistently showed that patients with AD dementia displayed 
significantly higher levels of NfL compared to control partici
pants17–19 and studies show that the level of NfL differentiates be
tween AD and control groups with a reasonably high area under 
the receiver operating characteristic curve (e.g. 0.87 in Mattsson 
et al.12 and 0.798 in Barker et al.20). However, studies show mixed 
results on the difference in the level of NfL between control 
and mild cognitive impairment (MCI) groups or MCI and AD 
groups.21–24 Moreover, NfL showed moderate or poor performance 
in discriminating AD from other dementias or other neurological 
diseases sharing symptoms with AD.19,25 As these findings show, 
NfL may not be that useful as a diagnostic biomarker, particularly 
when it is used independently. However, previous findings sug
gest that NfL can be more useful as a biomarker for monitoring 
and predicting the severity of AD. A higher blood/CSF level of 
NfL has been associated with lower cognitive function and more 
advanced neurodegeneration, as well as more accelerated cogni
tive decline or neurodegeneration in AD.21,22,26,27

Indicating and predicting the severity of a disease are the roles 
of monitoring, prognostic and susceptibility/risk biomarkers de
fined by the FDA-NIH Biomarker Working Group in 2016 (Fig. 2).28

Figure 1 Influx of NfL into the CSF and the bloodstream following axonal 
damage. Following damage to axons, the fragments of neurofilament 
chains (green sticks) are released into the CSF and the bloodstream. 
The mechanisms of the influx of neurofilament light chain (NfL) into 
CSF and blood are not yet clearly known. See Gafson et al.3 and Yuan 
and Nixon4 for discussions on potential CSF drainage pathways respon
sible for the entry of NfL into CSF. A possible route for the influx of NfL 
fragments into the blood is the drainage of NfL-containing CSF to dural 
venous sinuses through arachnoid villi.5 The figure contains images 
adapted from an icon, ‘Motor neuron’ (https://reactome.org/content/ 
detail/R-ICO-014093) by reactome.org, used under CC BY 4.0, and an 
image, ‘Arteries’ (https://smart.servier.com/smart_image/artery-20/) by 
Servier Medical Art, used under CC BY 3.0.
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The working group defined the monitoring biomarker as ‘A bio
marker measured repeatedly for assessing the status of a disease 
or medical condition or for evidence of exposure to (or effect of) a 
medical product or an environmental agent’. Thus, the role of a 
monitoring biomarker is to indicate the current status or severity 
of a disease. Both prognostic and susceptibility/risk biomarkers in
dicate future risk for a disease-related event. However, the differ
ence is that a prognostic biomarker is used for patients, whereas 
a susceptibility/risk biomarker is used for those who do not current
ly have a disease. The working group defined the prognostic bio
marker as ‘A biomarker used to identify likelihood of a clinical 
event, disease recurrence or progression in patients who have the 
disease or medical condition of interest’. The susceptibility/risk 
biomarker was defined as ‘A biomarker that indicates the potential 
for developing a disease or medical condition in an individual who 
does not currently have clinically apparent disease or the medical 
condition’.

As mentioned, blood/CSF NfL has the potential to be useful as a 
monitoring biomarker for AD. Particularly, more recent studies 
have shown the potential utility of blood-based NfL,29–31 which is 
minimally invasive and more accessible compared to other 

markers requiring MRI, PET imaging or lumbar puncture. Despite 
such advantages of blood-based NfL, there are concerns that plas
ma/serum concentration of NfL may not properly reflect the sever
ity of neurodegeneration occurring in the CNS. However, a previous 
histopathological study demonstrated a significant correlation be
tween higher plasma concentration of NfL measured in vivo and la
ter lower density of NfL staining in post-mortem medial temporal 
lobe (MTL) tissue samples with a moderate magnitude of correl
ation (ρ = −0.47 after adjusting for age at post-mortem, interval be
tween plasma sampling and death and the burden of co-pathology, 
including vascular lesions, TDP-43 and Lewy body pathology) in 
older adults predominately with AD.32 Also, the blood concentra
tion of NfL has consistently shown a linear relationship with the 
CSF concentration of NfL in AD,23,33–35 as well as in other conditions, 
such as multiple sclerosis,36,37 traumatic brain injury38 and HIV.39

However, to determine whether blood NfL can serve as a useful 
monitoring or prognostic/susceptibility biomarker in AD, it is im
perative to have a comprehensive review of findings on the associ
ation between blood NfL and the severity of AD. Previous review or 
meta-analysis papers discussed the associations of CSF/blood NfL 
with cognitive function,40 other fluid markers40 and neuroimaging 

Figure 2 The definitions of a monitoring biomarker, a risk/susceptibility biomarker, and a prognostic biomarker proposed by the FDA-NIH Biomarker 
Working Group. The red box on the bottom presents the definition of a monitoring biomarker, and the red arrows show the role of monitoring biomar
kers, which is to indicate the status or severity of disease at the time of the collection of a biomarker. The light blue box presents the definition of a risk/ 
susceptibility biomarker, and the light blue arrows show the role of risk/susceptibility biomarkers. A risk/susceptibility biomarker measured in indi
viduals who do not have a disease (e.g. normal cognitive function, no disease-related neurodegeneration) indicates the risk of developing a 
disease-related event (e.g. cognitive decline, disease-related neurodegeneration) in the future. The dark blue box presents the definition of a prognostic 
biomarker, and the dark blue arrow shows the role of prognostic biomarkers. A prognostic biomarker measured in individuals already having a disease 
or medical condition (e.g. cognitive decline, neurodegeneration) predicts the future disease progression. This figure contains images adapted from 
‘Tube’ (https://smart.servier.com/smart_image/tube/) and ‘Alzheimer disease’ (https://smart.servier.com/smart_image/alzheimer-3/) by Servier 
Medical Art, used under CC BY 3.0.
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measures.41,42 Since structural/functional brain measures from 
MRI and PET imaging are commonly used as markers of neurode
generation in AD research with human subjects, an in-depth re
view of the association between blood NfL and structural/ 
functional brain imaging measures will provide a meaningful con
tribution to the current literature. Moreover, to determine whether 
blood NfL can be useful as prognostic or susceptibility biomarkers, 
we need to comprehensively review the findings on the relation
ship between blood NfL and subsequent changes in other indicators 
of neurodegeneration in individuals with or without cognitive 
decline.

In the later sections of this review, we will first summarize and dis
cuss research findings on the cross-sectional association between 
baseline blood NfL and structural and functional brain measures in in
dividuals on the AD continuum and cognitively unimpaired indivi
duals to determine the potential of blood NfL as a monitoring 
biomarker for AD. Next, we will review longitudinal findings revealing 
the relationship between blood NfL and the future progression of neu
rodegeneration to determine the potential of blood NfL as a prognostic 
and susceptibility marker for AD. We will focus on the studies exam
ining the association between serum or plasma NfL and other mea
sures of neurodegeneration, including cortical atrophy, glucose 
metabolism measured by 18F-fluorodeoxyglucose-PET (FDG-PET), dif
fusion tensor imaging (DTI) indices and functional MRI (fMRI) mea
sures. We will not include amyloid and tau measures here but focus 
on the neuroimaging markers of neurodegeneration.43

We conducted a literature search using PubMed, Web of Science 
and Scopus databases using the search terms ‘(neurofilament light 
OR NfL) AND (volume OR thickness OR atrophy OR cortical OR sub
cortical OR "T1-weighted" OR MRI OR fMRI OR "functional MRI" OR 
"glucose metabolism" OR FDG-PET)’. Studies were included if their 
samples included people on the spectrum of late-onset AD, MCI or 
subjective cognitive decline (SCD), cognitively unimpaired or auto
somal dominant familial Alzheimer’s disease; measured NfL level 
from either plasma or serum; examined the relationship between 
the NfL level and structural or functional brain MRI/PET measures, 
including cortical thickness/volume, grey matter density, diffusion 
measures, glucose metabolism (FDG-PET) and fMRI. We excluded 
conference proceedings, letters, abstracts, review articles and 
meta-analyses; and studies that only included participants diag
nosed with non-AD dementia.

The potential of blood neurofilament 
light chain as a monitoring biomarker for 
Alzheimer’s disease
Cross-sectional association between cortical atrophy 
and blood neurofilament light chain

The brain measures that have been associated most frequently 
with blood NfL are cortical structural measures, including 
cortical volume, cortical thickness and grey matter density. 
Supplementary Table 1 provides an overview of cross-sectional 
studies on the relationship between plasma/serum NfL and neuroi
maging measures of neurodegeneration, with the statistics repre
senting the strength of the effects and the variables statistically 
controlled for. Many studies focused on examining the association 
between blood NfL and cortical regions restricted to the MTL and 
other temporal regions,12,20,21,27,44–52 such as the hippocampus, 
parahippocampal gyrus, entorhinal cortex, inferior and middle 
temporal lobe, which are the focus of many existing AD studies. 

The most consistent finding across these studies is that higher 
baseline plasma NfL level was associated with more severe baseline 
atrophy of the MTL and other temporal regions determined by ei
ther volumetric measures or visual ratings in patients with AD de
mentia or in older adults with MCI or SCD.20,52 Two Alzheimer 
Disease Neuroimaging Initiative (ADNI) studies conducted by the 
same research group found a significant association between high
er plasma NfL level and lower hippocampal volume, as well as the 
cortical thickness of AD-vulnerable temporal regions in their ADNI 
subsamples regardless of the diagnosis.12,21 A study on autosomal 
dominant AD also found a significant association between lower 
hippocampal volume and higher serum NfL in all carriers (both 
symptomatic and presymptomatic) of familial AD mutations (i.e. 
mutations in the APP, PSEN1 or PSEN2 genes) but not in presympto
matic carriers.27 In addition to the previously described studies 
solely focused on temporal brain regions, whole brain studies also 
confirmed baseline associations between higher plasma or serum 
NfL and more atrophy of the hippocampus and temporal cortical re
gions in patients with MCI or AD dementia but not in cognitively 
unimpaired participants.53–55 These findings are in line with previ
ous results that the MTL shows earlier and more pronounced cor
tical atrophy in AD.56,57 Also, the findings suggest that the blood 
level of NfL indicates the severity of MTL atrophy from the early 
stages of AD. Whole brain studies also revealed correlations be
tween plasma NfL level and cortical atrophy in areas overlapping 
with the brain regions comprising the default mode network 
(DMN), such as posterior cingulate cortex, precuneus, medial front
al and superior frontal gyrus, in patients with MCI or AD.55,58 These 
findings suggest the level of NfL is likely indicative of neurodegen
eration happening not only in the MTL but also in the DMN regions, 
which show pronounced cortical atrophy, change in metabolism 
and amyloid deposition in AD.59

Interestingly, the association between blood NfL and cortical at
rophy seemed to differ by the disease stage and amyloid-β (Aβ) load. 
The associations between blood NfL and atrophy have been 
consistently found in patients with MCI and AD but not in cogni
tively unimpaired participants with or without significant Aβ bur
den.20,47–50 Moreover, the cross-sectional association between the 
level of blood NfL and cortical atrophy in regions vulnerable to AD 
was more pronounced in MCI patients with high Aβ burden than 
those with low Aβ burden.55 In another study, only cognitively un
impaired individuals having APOE ϵ4 alleles, a primary genetic risk 
factor for late-onset AD,60 showed an association between higher 
plasma NfL level and lower volumes of the posterior cingulate, 
frontal and temporal cortices, whereas cognitively unimpaired 
APOE ϵ4 non-carriers did not show a significant association.61 The 
pronounced association between blood NfL and the atrophy of cor
tical regions typically more vulnerable to AD pathologies in people 
with higher Aβ burden or APOE ϵ4 allele(s) suggests that the blood 
NfL level in people with a higher risk of AD or those at the 
preclinical stages of AD reflects the severity of patterns of 
neurodegeneration often seen in AD rather than the patterns of 
neurodegeneration shown in typical ageing.

Overall, findings showed regional specificity centring on the 
temporal and DMN regions in the association between blood NfL 
and cortical atrophy. Nevertheless, an association was also found 
in less AD-specific regions, such as the paracentral lobule61 and 
cerebellum.55 The association in less AD-specific regions may be 
the result of a wide array of pathological effects on cells across 
the cortex, considering that neither blood NfL nor cortical atrophy 
is an AD-specific measure of neuronal damage. It may be reason
able to interpret the association between NfL and cortical atrophy 
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as the outcome of the influence of third variables affecting both 
the blood NfL level and cortical atrophy rather than as a 
cause-and-effect relationship between blood NfL and atrophy. 
Since both NfL and cortical atrophy are non-specific markers, it is 
possible that potential third variables would include many 
non-AD-specific pathological factors, such as oxidative stress and 
inflammation. A previous study involving YKL-40, an inflammatory 
marker,62 suggests that the strength of inflammatory response in 
the ageing brain could explain the severity of atrophy happening 
in cortical areas that have not been indicated as ‘typical’ 
AD-specific regions, such as the paracentral lobule,63 cerebellum 
and inferior frontal gyrus.64

Cross-sectional association between cortical glucose 
metabolism and blood neurofilament light chain

Although cortical atrophy has been the focus of most investigations 
on the relationship between blood NfL and functional or structural 
brain imaging measures, several studies examined how plasma or 
serum NfL is associated with brain glucose metabolism measured 
by FDG-PET (see Supplementary Table 1 for the overview of the 
studies). Glucose hypometabolism has been associated with early 
synaptic dysfunction, mitochondrial dysfunction and cell loss,65– 

67 but the association with Aβ has been mixed.68–70 Four of six stud
ies that examined the cross-sectional association between blood 
NfL and cortical glucose metabolism either used the mean FDG up
take level measured in a priori regions in which FDG-PET uptake le
vel has been most affected by AD in previous studies, such as 
angular gyrus, temporal cortex and posterior cingulate cortex,21,48

or measured in almost the entire cortex.12,50 A study by Mattsson 
and colleagues21 found that higher baseline plasma NfL level pre
dicted lower baseline mean FDG uptake level in the bilateral angu
lar, temporal and posterior cingulate cortices in their sample from 
ADNI that included both cognitively impaired and unimpaired old
er adults. However, another ADNI study conducted several years 
earlier by the same research group found no baseline association 
between plasma NfL and the mean FDG uptake in broader regions 
of interest, including lateral and medial frontal, anterior cingulate, 
posterior cingulate, lateral parietal and lateral temporal regions in 
their sample that consisted of cognitively impaired and unimpaired 
older adults.12 These results may indicate that there is a regional 
specificity focused on the posterior cingulate, temporal and angular 
gyrus, which largely overlap with posterior DMN regions. However, 
more evidence is needed to substantiate this conclusion. Several 
studies examined how the blood level of NfL relates to FDG uptake 
level in individual voxels across the entire cortex or in several indi
vidual regions. An ADNI study by Mayeli and colleagues71 found 
that the MCI group showed cross-sectional associations between 
the plasma NfL level and FDG uptake level in parietal, temporal 
and some frontal regions. Another ADNI study by Benedet and col
leagues72 showed significant voxel-wise negative associations be
tween plasma NfL and the FDG uptake level in the hippocampus 
and insula only in the cognitively impaired group, which included 
MCI and AD patients, but not in the cognitively unimpaired group. 
Similar to the results regarding cortical atrophy, studies in which 
all or most of the participants were cognitively unimpaired did 
not find a significant association between plasma NfL and the level 
of FDG uptake.48,50,72 It is worth noting that the studies that re
ported a significant relationship between FDG uptake and blood 
NfL are not independent of one another in that they all used the 
ADNI database. Still, the results from the latter two studies, which 
did not use a priori regions of interest,71,72 are consistent with 

former two studies focusing on the a priori regions,12,21 as well as 
with previous literature showing reduced FDG uptake mostly in 
temporoparietal cortices in AD patients.68,73 Compared to the 
NfL–atrophy associations, which also showed significance in brain 
regions that are not highly vulnerable to AD, the associations be
tween NfL and FDG uptake appear to be more focused on the brain 
regions found to be vulnerable to AD-related hypometabolism. It 
seems that blood NfL is more strongly associated with hypometa
bolism localized in areas vulnerable to AD pathologies rather 
than with atrophy in the same regions. This slight difference in re
gional specificity may be because FDG-PET is a more specific marker 
of neurodegeneration, reflecting a specific aspect of neurodegen
eration, i.e. glucose hypometabolism. Thus, the above results sug
gest that the level of blood NfL in individuals on the AD 
continuum can be an indicator of the severity of hypometabolism 
happening in cortical areas whose glucose metabolism is common
ly affected by AD.

Cross-sectional association between white matter 
microstructural characteristics and blood 
neurofilament light chain

There are only a few studies on the relationship between blood NfL 
and white matter microstructural characteristics, all of which used 
DTI as indicators of white matter structural integrity 
(Supplementary Table 1). A study showed that higher blood NfL 
was cross-sectionally associated with lower fractional anisotropy 
(FA), a DTI metric representing the degree of anisotropy of water 
molecules and often used as an indicator of axonal integrity, in 
widespread white matter areas in MCI patients but not in cognitive
ly unimpaired older adults.24 A study with early-onset AD patients 
also showed similar results, showing the association between the 
serum NfL level and multiple DTI indices in nearly all white matter 
tracts in autosomal dominant AD mutation carriers regardless of 
cognitive decline but not in non-carriers.74 In two publications 
from the Mayo Clinic Study of Aging focusing on the FA of the corpus 
callosum, baseline plasma NfL was not associated with the baseline 
FA of the corpus callosum but did predict the rate of change in the 
same measure in their samples, which included MCI and cognitively 
unimpaired older adults.48,75 The correlation between blood NfL le
vel and DTI measures suggests that the level of blood NfL possibly 
reflects a wide array of white matter damage happening in AD, 
such as destabilization of the cytoskeleton due to tau phosphoryl
ation,76 axonal dystrophy77 and demyelination.78 White matter hy
perintensities (WMH) are also a manifestation of white matter 
damage, particularly due to abnormalities in cerebral small vessels. 
However, WMH seems less likely to be a major cause of NfL increase 
in AD, considering that the association between WMH burden and 
NfL level has been more inconsistent compared to the relationship 
of NfL with cortical volume or glucose metabolism.12,16,47,75,79,80

Schultz and colleagues74 found that the association between 
WMH and plasma NfL was explained by a DTI measure, while the as
sociations between multiple tract-specific DTI metrics and plasma 
NfL were not explained by global WMH burden. In addition, another 
study found that age largely explained the relationship between 
WMH and plasma NfL.80 These findings suggest that the association 
between NfL and WMH may be largely driven by either white matter 
damage of non-vascular origin or biological processes that worsen 
with ageing, such as a capacity for axon repair81 and inflamma
tion.82,83 It is hard to generalize the results due to the limited num
ber of studies, but the current findings on the association between 
blood-based NfL and DTI measures are in line with the findings of 
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previous DTI studies conducted with patients in the AD continuum 
showing a decrease in FA and an increase in mean diffusivity (MD) in 
widespread regions.84–86 MD is a DTI metric representing the overall 
diffusivity of water molecules and has often been associated with 
the degree of myelination87–89 and shown to be elevated in multiple 
neurological conditions, such as multiple sclerosis (see Inglese and 
Bester90 and Rovaris et al.91 for reviews), Alzheimer’s disease (see 
Sexton et al.84 for a meta-analysis) and brain areas with WMHs in 
healthy older adults.92–94 However, there is also evidence suggesting 
the vulnerability of specific localized white matter areas to AD, par
ticularly in the early stages. In individuals with MCI, compared to 
cognitively unimpaired controls, white matter tracts connected to 
the parietal or occipital lobe, such as the parahippocampal part of 
the cingulum and posterior thalamic radiation, exhibited lower 
FA, higher radial diffusivity (RD) or higher neurite orientation dis
persion index (ODI).95 Also, a study observed lower fibre density 
and thinner fibre bundle cross-section in the posterior cingulum 
and uncinate fasciculus in those with MCI compared to the control 
group.96 Further investigations using indices that are capable of 
measuring more specific characteristics of white matter micro
structure than DTI indices, such as neurite orientation dispersion 
and density imaging (NODDI) indices,97 which can quantify the 
characteristics of different tissue compartments or myelin water 
imaging, which can measure myelin content,98 are needed to eluci
date the aspects of white matter degeneration reflected by in
creased plasma/serum concentration of NfL in AD.

Cross-sectional association between functional 
brain measures and blood neurofilament light chain

We did not find any studies that investigated direct associations be
tween the level of either plasma or serum NfL with functional brain 
measures using fMRI in AD. However, there is a study by Pereira and 
colleagues99 that examined the association between the level of 
CSF NfL and resting state functional connectivity of the DMN. In 
that study, they found no significant association between CSF NfL 
and functional connectivity of the anterior and posterior DMN in 
the sample of cognitively unimpaired and cognitively impaired 
(i.e. MCI or dementia) participants. These null results may have 
been due to the high proportion of cognitively unimpaired partici
pants in the sample. Another fMRI-based study examined blood 
oxygen level-dependent (BOLD) variability, which has been asso
ciated with ageing and cognitive decline,100,101 and showed that 
lower BOLD variability was related to higher CSF NfL, as well as low
er CSF Aβ-42, in cognitively unimpaired adults.102 This result sug
gests there may be a link between BOLD variability and change in 
CSF or blood NfL due to amyloidosis. Further investigations are 
needed in samples at different stages of AD to elucidate how neur
onal damage, indexed by blood/CSF NfL, is associated with various 
aspects of AD-related changes in the activity or functional organ
ization of the brain.

Conclusion on the potential of blood neurofilament 
light chain as a monitoring biomarker for 
Alzheimer’s disease

In sum, the existing cross-sectional literature indicates that blood 
NfL shows great promise as a monitoring biomarker indicating the 
current severity of neurodegeneration in AD (Fig. 3A). In particular, 
it seems that blood NfL as a monitoring marker would be useful for 
cognitively unimpaired individuals who already display AD path
ology or are highly likely to develop AD (i.e. Aβ-positive or APOE 

ϵ4-positive individuals), as well as patients who already display cog
nitive decline. Specifically, increased blood NfL seems to reflect the 
severity of atrophy, hypometabolism and the decline of white mat
ter integrity, while more strongly representing neurodegenerative 
changes happening in distinct areas of the brain—MTL and DMN 
areas for cortical atrophy and temporoparietal areas for FDG-PET 
—in people on the Alzheimer’s continuum. Furthermore, although 
blood NfL is a non-specific marker of neuronal damage that also in
creases during typical ageing, the level of blood NfL in individuals 
who are likely to progress to Alzheimer’s dementia [i.e. those with
out dementia with a high Aβ burden or APOE ϵ4 allele(s)] appears to 
reflect the severity of neuronal damage in brain regions commonly 
affected by AD-related neurodegeneration.55,61

The potential of blood neurofilament 
light chain as a prognostic and 
susceptibility marker for Alzheimer’s 
disease
Progression of cortical atrophy predicted from 
baseline blood neurofilament light chain

The existing literature on the longitudinal relationship between 
blood NfL and cortical atrophy supports the role of blood NfL as a 
prognostic or susceptibility marker predicting the rate of cortical at
rophy (Supplementary Table 2). Similar to cross-sectional research, 
longitudinal studies also consistently found significant relationships 
between blood NfL and atrophy in brain regions vulnerable to AD 
pathology. More specifically, there is evidence that higher baseline 
blood NfL predicts a greater rate of atrophy in the hippocampal and 
temporal cortical regions,12,26,47,48,50,51,61,75 as well as DMN re
gions26,30,35,61 in late-onset AD patients and presymptomatic and 
symptomatic carriers of autosomal dominant AD. However, one not
able difference between longitudinal and cross-sectional findings is 
that longitudinal studies reported significant associations between 
blood NfL and brain atrophy in cognitively unimpaired participants 
more often, particularly in those with higher Aβ burden, as opposed 
to the cross-sectional findings showing weak or no significant asso
ciations in cognitively unimpaired participants. An ADNI study by 
Hu and colleagues,50 which only included cognitively unimpaired 
older adults as participants, showed that greater baseline plasma 
NfL predicted a steeper decline in the hippocampal volume over 
the follow-up period ranging from 1 to 10 years in cognitively unim
paired participants with higher Aβ burden, while the same associ
ation was not significant cross-sectionally. Moscoso and 
colleagues26 found an association between baseline plasma NfL 
and cortical atrophy over the median follow-up period of 5 years in 
multiple large areas across parietal, temporal and frontal cortices 
in cognitively unimpaired participants with high Aβ load but in con
fined small cortical areas across paracentral lobule and superior 
frontal gyrus in those with low Aβ load. These results suggest that 
an increase in blood NfL may precede AD-related change in cortical 
atrophy and may likely already be elevated in the preclinical stages 
of AD. The differential predictive power of NfL for the neurodegen
eration depending on the binary Aβ status (i.e. Aβ positive or negative) 
may seem contradictory to the weak association between fluid NfL 
and amyloid burden measured using CSF/blood-based immunoas
says,53,103,104 PET imaging24,35,48 or histological staining method.105

These weak associations suggest that Aβ may not have a strong direct 
effect on neuroaxonal damage reflected by the increase of CSF/blood 
NfL. Compared to Aβ as a continuous variable, which specifically 
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indicates the severity of amyloid pathology, the binary Aβ status pro
vides less specific information. The binary status seems to indicate 
whether AD-related pathological processes have already started. 
Thus, the greater predictive power of NfL for neurodegeneration in 
Aβ-positive individuals with mild or no cognitive decline compared 
to Aβ-negative individuals could be due to the more pronounced pro
gression of neurodegeneration over time in Aβ-positive individuals, 
as supported by previous findings.106–108 This is further supported 
by the study by Hu and colleagues,50 which demonstrated that base
line NfL, as well as the rate of change, was already higher in cognitive
ly unimpaired Aβ-positive individuals compared to Aβ-negative 
individuals (P = 0.0044 for the difference in the baseline NfL; P <  
0.0001 for the difference in the rate of increase in NfL). Although Aβ 
showed a weak correlation with CSF/plasma NfL, there are other 
markers that exhibited stronger associations with CSF/plasma NfL, 
such as YKL-40,104,109,110 which is a marker of inflammation,62 as 
well as t-tau (see Jin et al.40 for a meta-analysis on the association be
tween CSF/plasma NfL and other AD markers). There are also find
ings on pathological processes that seem to affect axonal damage, 
such as dysfunctional trafficking of organelles in axons due to lyso
somal dysfunction,77,111 increased oxidative stress,112,113 which can 
be caused by factors that are not directly related to Aβ,114 and tau 
phosphorylation and accumulation.115 These findings suggest that 
some of these pathological processes may have more proximal influ
ence on neuroaxonal damage than Aβ has.

Despite the consistent findings regarding the relationship be
tween baseline plasma or serum NfL and the longitudinal rate of 
atrophy, there were also several studies that did not support the 
relationship between blood NfL and longitudinal atrophy. 
Weston and colleagues27 did not find a significant association 

between baseline serum NfL and the rate of change in hippocam
pal volume in autosomal dominant AD mutation carriers, and 
Steinacker and colleagues103 found no significant association be
tween baseline serum NfL and regional cortical volume at follow- 
up in either the AD or MCI group. These negative results may be 
attributed to the relatively shorter mean follow-up intervals 
(Weston et al.27: the mean of 1.3 years; Steinacker et al.103: 1 year  
± 3 months) and small sample sizes (Weston et al.27: 33 participants 
with one follow-up MRI scan; Steinacker et al.103: 15 controls, 17 
MCI and 26 AD patients). Cavedo and colleagues116 performed a 
multiple regression analysis in which both plasma NfL and plasma 
tau were included as predictors and found that baseline p-tau pre
dicted change in basal forebrain cholinergic system (BFCS) volume 
over 12 months in older adults with subjective memory complaints 
while baseline plasma NfL did not in a linear model with NfL, t-tau 
and the interaction between NfL and t-tau as predictors and an ad
justment for age, sex, education, amyloid status and APOE status. 
This result may be attributable to the central role of tauopathy in 
the degeneration of BFCS in AD.117,118 The null finding may also 
be attributed to either the short follow-up interval or the mild 
symptoms. Another explanation could be that atrophy of the 
BFCS is more closely associated with the damage of unmyelinated 
axons, as the authors suggest in their discussion, whereas NfL is 
abundant in myelinated large-calibre axons.1 Lastly, such results 
could have been obtained because the degeneration of the BFCS 
occurs prior to the degeneration of the other cortical and subcor
tical areas.119,120 If this is the case, the level of NfL, which reflects 
the overall cortical and subcortical neurodegeneration, may be 
predicted by atrophy of the BFCS rather than predicting the change 
in BFCS atrophy.

Figure 3 The potential roles of blood-based NfL as different types of biomarkers and supporting research findings. (A) Plasma/serum neurofilament 
light chain (NfL) has been correlated with neurodegeneration at the time of the blood draw in patients showing cognitive impairment. This supports the 
potential utility of plasma/serum NfL as a monitoring biomarker indicating the severity of neurodegeneration in Alzheimer’s disease (AD). The dashed 
red line represents weak correlations between NfL and neurodegeneration in those without cognitive decline. (B) Plasma/serum NfL in cognitively un
impaired individuals has predicted the subsequent rate of neurodegeneration in brain areas susceptible to AD, supporting the potential utility of plas
ma/serum NfL as a risk/susceptibility biomarker for AD. (C) Plasma/serum NfL in individuals showing the symptoms of AD has predicted the 
subsequent rate of neurodegeneration, suggesting that plasma/serum NfL is a promising prognostic biomarker for neurodegeneration in patients 
with AD. Aβ = amyloid-β; MCI = mild cognitive impairment. The figure contains images adapted from ‘Alzheimer disease’ (https://smart.servier. 
com/smart_image/alzheimer-3/) by Servier Medical Art, used under CC BY 3.0.
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Progression of glucose hypometabolism predicted 
from baseline blood neurofilament light chain

Longitudinal FDG-PET studies also show strong evidence supporting 
the role of blood NfL as a prognostic or susceptibility marker predict
ing the rate of decline in glucose metabolism. Consistent with the lon
gitudinal findings on atrophy above, not only those who exhibit 
cognitive symptoms,12,21,26,48,71,72 but individuals who are still at pre
clinical stages of AD and cognitively unimpaired individuals also de
monstrated a longitudinal relationship between baseline blood NfL 
and change in glucose metabolism.26 In a study by Mielke and collea
gues,48 the participants with either MCI or no cognitive decline 
showed that higher baseline plasma NfL predicted a higher rate of de
cline in the mean FDG uptake over 15 to 30 months from the baseline 
in the brain regions whose glucose metabolism is highly impacted by 
AD pathologies, while the cross-sectional relationship examined in 
the same sample was not significant. Also, the association seemed 
to be more pronounced in those with high Aβ load compared to those 
with low Aβ load. Two studies using the ADNI dataset revealed an as
sociation between higher baseline plasma NfL and a higher rate of de
cline in FDG uptake in the parietal and temporal cortices over 2 years 
in cognitively unimpaired individuals with high Aβ load but not in cog
nitively unimpaired individuals with low Aβ load,26 as well as in cog
nitively impaired individuals with high Aβ load but not in cognitively 
impaired individuals with low Aβ load.72 As these studies show, longi
tudinal studies exhibit that baseline NfL predicts change in glucose 
metabolism in focal areas that are vulnerable to AD-related metabolic 
change, including parietal and temporal regions, consistent with 
cross-sectional associations.26,71,72

Conclusion on the potential of neurofilament light 
chain as a prognostic or risk/susceptibility 
biomarker for Alzheimer’s disease

In sum, existing studies provide evidence that the level of blood NfL 
consistently predicts a future rate of changes in atrophy and glucose 
metabolism, mainly in brain areas commonly affected by AD path
ology, similar to the regional specificity shown in cross-sectional in
vestigations. Among cognitively unimpaired individuals, the 
relationship between baseline blood NfL and subsequent rate of 
neurodegeneration has been more pronounced in those with a high
er likelihood of developing AD (i.e. those with high Aβ load) than 
those without significant amyloid deposition. Furthermore, in cog
nitively unimpaired individuals, significant prediction of the pro
gression of neurodegeneration by baseline level of blood NfL has 
been more consistently observed than the prediction of the current 
state of neurodegeneration by blood NfL, providing strong support 
for the usefulness of blood NfL as a susceptibility/risk biomarker 
for AD. Therefore, the evidence strongly indicates that blood NfL 
would be a useful prognostic marker for predicting the progression 
of neurodegeneration in patients, as well as a useful susceptibility/ 
risk marker for assessing the likelihood that a cognitively unim
paired individual with a higher risk for AD will show abnormal 
changes in brain structure and function (Fig. 3B and C).

How does neurofilament light chain 
predict neurodegeneration as an early 
marker of Alzheimer’s disease?
A recurring finding was that baseline blood NfL does not correlate 
with baseline neuroimaging markers of neurodegeneration in early 

AD but does predict the subsequent rate of change in these neuroi
maging markers. This finding suggests that the elevation of blood 
NfL likely precedes changes in the neuroimaging markers. This em
pirical evidence highlights the potential of blood NfL as an early 
neurodegenerative marker of AD. Nevertheless, a careful interpret
ation of the lead-lag relationship between baseline NfL and subse
quent changes in the neuroimaging markers is warranted because 
those findings do not guarantee that the damage of axons, mea
sured by blood NfL, actually precedes the pathological processes 
underlying the neuroimaging markers in the progression of AD. 
Therefore, it would be worthwhile to speculate on why such a 
lead-lag relationship between NfL and neuroimaging indices has 
been observed in light of current knowledge of the order of neuro
degenerative processes in AD and characteristics of different neu
roimaging modalities measuring neurodegeneration.

Plasma/serum concentration of NfL, which presumably reflects 
axonal integrity, has demonstrated predictive capabilities for the 
baseline and the rate of change in cortical atrophy. These findings 
raise the question of whether they indicate that white matter integ
rity is affected earlier in the AD process than grey matter volume. 
There is a finding that the change in white matter integrity but not 
in the change in grey matter volume, are observed in the late pre
clinical (i.e. SCD) and prodromal (i.e. early amnestic MCI) stages of 
AD,121,122 suggesting white matter damage may precede cortical 
damage. Moreover, molecular or cellular level evidence suggests 
that axonal damage (i.e. white matter damage) may happen earlier 
than damage to the cell body (i.e. grey matter).77,123 However, it is 
also possible that the lead-lag relationship between baseline NfL 
and subsequent change in cortical volume/thickness commonly ob
served in previous studies was due to the technical limitations of 
cortical structural MRI, such that cortical structural MRI measures 
may not be sensitive enough to detect early subtle damage of the 
cortex because of its large minimum spatial unit, voxel, which con
sists of several hundred thousand neurons. There is research sup
porting this idea, which suggests that white matter damage 
happens as a result of cortical damage.124,125 Investigating the 
microstructural changes (e.g. NODDI measures) in the cortex in 
AD may help elucidate the temporal order between cortical damage 
and axonal damage.

The level of FDG uptake measured by FDG-PET, an index 
of glucose metabolic rate, is thought to be affected by multiple 
pathological processes, such as mitochondrial and synaptic dys
function, which start to occur at the very early stages of AD.65,67

Therefore, the pathological processes reflected by FDG-PET are like
ly to happen earlier than axonal damage. However, this view is 
contradictory to the empirical findings that baseline NfL predicts 
subsequent change in glucose metabolism but not baseline glucose 
metabolism in the early stages of AD. This apparent contradiction 
may be due to the limited sensitivity of PET imaging. FDG-PET mea
sures, particularly standardized uptake value, may not be sensitive 
enough to capture subtle changes in early pathological events caus
ing the decline in glucose metabolic rate in AD, such as mitochon
drial and synaptic dysfunction.

Both DTI measures and the NfL level reflect the degree of axonal 
damage. However, DTI measures are likely less sensitive to axonal 
damage than NfL because DTI measures are less specific to neuron
al damage. DTI indices measured in one voxel represent averaged 
water diffusion signals from different brain tissue compartments 
(e.g. intra-axonal, intra-glial and extracellular compartments).126

Thus, some of the change in water diffusion due to axonal degener
ation might be cancelled out at the same time by the water diffu
sion in different directions stemming from other factors in the 
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same voxel. Therefore, it is likely that the change in DTI measures is 
observed after the level of blood NfL starts to rise. As will be further 
discussed below, more advanced diffusion imaging analysis ap
proaches, such as NODDI, may help clarify the relationship be
tween NfL and white matter tissue damage.

Limitations of current research and 
future directions
The extant literature has unveiled many aspects of blood NfL and 
yielded evidence supporting the potential of NfL as a neurodegen
erative biomarker for AD. However, there are important limitations 
to the current research that should be considered.

First, most studies examining the association between blood NfL 
and neuroimaging measures of neurodegeneration used either cor
tical volume/thickness or FDG uptake level as their neuroimaging 
measures of interest. There is a relative lack of studies examining 
the relationship between NfL and other brain imaging modalities. 
Therefore, we still have a limited understanding of the extent to 
which the level of blood or CSF NfL reflects different aspects of neur
onal damage, such as the damage to the myelin, cytoskeletal struc
ture and dendrites. We need more research on how blood or CSF NfL 
is related to various brain imaging modalities to have a more de
tailed knowledge of the aspects of neurodegeneration that blood 
or CSF NfL reflects. Considering that NfL is mainly located in the ax
ons, it is likely that the increased level of blood or CSF NfL is most in
timately related to the damage of axons and myelin sheath. Only 
recently have researchers begun to investigate the relationship be
tween NfL and diffusion-weighted imaging, an imaging technique 
mainly used to measure the integrity of white matter tracts. 
However, DTI measures, such as FA and MD, do not provide precise 
information on microstructural properties. Thus, more studies on 
the relationship between blood NfL and measures indicating more 
specific characteristics of white matter, such as NODDI, which can 
quantify the density and distribution of neurites,97 or myelin water 
imaging, which can measure myelin content,98 should be conducted 
on individuals in the AD continuum. Furthermore, investigating 
how blood or CSF NfL is related to more diverse measures from func
tional neuroimaging may also provide valuable information on how 
neurodegeneration causes cognitive decline in AD. We still do not 
have a clear understanding of how neuronal damage leads to cogni
tive change. Since functional brain measures are closely associated 
with cognitive function, investigating how blood or CSF NfL is re
lated to functional brain measures would enable a more accurate 
prediction of cognitive decline in AD.

Second, it is still not clear which AD pathologies have the most 
substantial influence on the increase of blood/CSF NfL. Blood and 
CSF NfL have shown weak associations with Aβ,24,35 which has of
ten been considered the primary upstream pathology of AD,127,128

Moreover, blood/CSF NfL has inconsistently been associated with 
p-tau but more consistently with t-tau with larger effect 
sizes.12,23,40,50,53 As discussed earlier, this weak or inconsistent rela
tionship with Aβ, as well as p-tau, may be attributed to the exist
ence of other pathological processes having a substantial 
influence on axonal damage, which needs further investigation. 
Another possible cause of the weak relationship between NfL and 
Aβ, as well as p-tau, maybe the different trajectories of these mar
kers in the progression of AD. A data-driven modelling study de
monstrated that blood NfL gradually increases without showing a 
strong peak of change rate as AD progresses,129 while the trajectory 
of Aβ is known to reach its peak during the early stages of AD.130,131

There is also a finding that the trajectories of plasma NfL and 
p-tau181 increase are different from each other.132 Indeed, the as
sociation between plasma NfL and Aβ measurements from the 
CSF, as well as PET imaging, differed by disease stage, showing sig
nificant association in the preclinical or prodromal stages of AD and 
no significant association in later stages.21,24,61 The association be
tween tau and plasma NfL also varied across different disease 
stages, with CSF p-tau showing a more robust relationship with 
plasma NfL in preclinical or prodromal stages,21,133 while tau PET 
exhibited a significant relationship with plasma NfL in cognitively 
impaired individuals but not in cognitively unimpaired indivi
duals.61 In an effort to examine which of the known AD pathologies 
have the most direct influence on the blood/CSF NfL level, it is es
sential to conduct longitudinal studies tracking the changes in 
blood/CSF NfL and other markers of AD pathology, such as Aβ, 
tau, synaptic function, neuroinflammation and mitochondrial 
function over a long period starting at presymptomatic stages.

Lastly, it should be noted that blood NfL is a peripheral marker of 
neuronal damage. It is still not clear how the change in the permeabil
ity of the blood–brain barrier (BBB) due to diseases or ageing affects the 
blood concentration of NfL, given the inconsistent results on the im
pact of BBB permeability on serum NfL levels from a few number of 
studies.134,135 Also, we lack knowledge on the degree to which the 
NfL released from the peripheral nervous system136,137 contributes 
to the plasma/serum level of NfL. Studies showed that peripheral neu
ropathies,138,139 as well as cardiovascular disease,140 diabetes140,141

and kidney functions140–142 are associated with blood NfL concentra
tion. In vivo measurement of α-internexin, a neurofilament subunit 
mainly expressed in the CNS, and peripherin, a subunit predominant
ly expressed in the peripheral nervous system, may aid in a more ac
curate assessment of the neuronal damage in the CNS based on 
plasma or serum neurofilament. However, only a few attempts have 
been made to measure the fluid level of α-internexin or peripher
in.143,144 Further research is needed to assess the reliability and sensi
tivity of α-internexin or peripherin as fluid markers. Additionally, the 
extent to which plasma proteases degrade the NfL in the blood re
mains unclear. Further research is warranted to enhance the under
standing of the degradation of NfL in the blood, as well as the 
pathways of the drainage of NfL into the bloodstream. While there 
are still several unanswered questions, as outlined above, they do 
not seem to undermine the utility of blood NfL as a biomarker. 
Studies have consistently demonstrated significant linear relation
ships between plasma/serum NfL and CSF NfL in different neurologic
al conditions.12,23,33,35,36,39 Also, plasma/serum NfL has shown 
comparable performance to CSF NfL in predicting the likelihood of de
veloping AD.145 However, the field should seek to answer these unre
solved questions to learn more about potential factors influencing the 
NfL concentration in the blood.

Finally, we need to be cautious when interpreting the results of 
the studies introduced in this review for several reasons. First, the 
diagnostic criteria for AD dementia and MCI used in many studies 
were based solely on clinical symptoms, not considering the A 
(Aβ), T (pathologic tau), or N (neurodegeneration) biomarkers sug
gested by the NIA-AA research framework.43 Thus, we cannot rule 
out the possibility that the cognitive impairment of some partici
pants was not due to AD but another disease. Thus, researchers 
should seek to include biomarker levels, as well as clinical symp
toms, in their diagnostic criteria for AD. Second, many studies in 
the scope of this review were conducted using ADNI data with con
siderably overlapping samples (see ‘Sample source’ columns in 
Supplementary Tables 1 and 2). In addition, the ADNI dataset is 
biased toward highly educated white participants. Thus, it needs 
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to be verified whether the results of the ADNI studies are replicated 
in other large cohorts and in more diverse samples. Finally, not all 
studies accounted for potential confounders in their statistical 
model. While most studies adjusted for age and sex, there were sev
eral studies that performed a simple correlation analysis relating 
NfL and another variable without adjusting for possible confound
ing variables. While sex has been independent of NfL in many pre
vious studies, it is important to consider the influence of age due 
to its strong association with NfL concentration.16,50,146 When con
trolling for age, there are several things to be considered. First, age 
and NfL concentration are in a non-linear relationship. 
Specifically, CSF/blood NfL tends to increase more rapidly as age in
creases across adulthood.16,146,147 Log-transforming NfL may help 
address this complexity because log-transformed NfL exhibit 
a relatively linear relationship with age.16,146,147 However, research
ers would need to carefully interpret the results when 
using log-transformed NfL values. Second, controlling for age 
would significantly diminish the shared variability between NfL 
and a neuroimaging measure because both NfL and neuroimaging 
measures are heavily influenced by age, which might result in NfL 
being an insignificant or marginal predictor of neuroimaging 
measures. Thus, when studying the relationship between NfL 
and neuroimaging measures while adjusting for age, researchers 
should assess the amount of shared variance between age and a 
neuroimaging measure, as well as NfL, which will provide a 
clearer understanding of the findings. Also, studies performed 
using the data collected from multiple sites should consider 
adjusting for the site differences because variations in study 
protocols, such as MRI scanners and imaging sequences, across dif
ferent sites could impact the statistical association between NfL and 
another variable of interest. Only two of the studies within our scope 
accounted for scanner field strength (1.5 T or 3 T) in their mod
els,26,61 and unaccounted effects of site differences in the other 
studies might indeed explain some of the diverging results observed 
in the literature. Therefore, future studies should seek to include ap
propriate confounding variables in their statistical model.

Conclusions
The literature shows that the level of blood NfL indicates the sever
ity of multiple aspects of neurodegeneration in the continuum of 
AD, from preclinical stages to dementia, demonstrating that blood 
NfL has a high potential to be used as an early monitoring biomark
er for assessing the severity of neurodegeneration. Thus, blood NfL 
will be useful, for example, for screening for neurodegeneration or 
tracking the status of neurodegeneration in individuals with an in
creased risk for AD. Furthermore, blood NfL may be useful as an in
dicator assessing the effect of treatment on neurodegeneration in 
clinical trials. Studies also showed that blood NfL predicts the fu
ture progression of structural and functional neurodegeneration 
in AD patients and cognitively unimpaired individuals at risk for 
AD. This suggests that blood NfL would be useful as a prognostic 
marker predicting the progression of neurodegeneration for pa
tients showing AD symptoms, as well as a risk/susceptibility mark
er assessing how likely a cognitively unimpaired individual will 
develop pathological neurodegeneration. Hence, blood NfL may 
aid clinicians in predicting the symptom progression in patients 
and determining the initiation of treatment for AD. Establishing a 
consensus on the criteria for an abnormal level of blood NfL may fa
cilitate the use of blood NfL in clinical settings. Lastly, blood NfL 
may also be used as a proxy measure of neuronal damage in 

research investigating the mechanisms of how pathological pro
cesses, including neuronal damage, lead to cognitive decline in 
AD. Future studies should investigate the association between 
blood/CSF NfL and various brain measures and perform long-term 
investigations tracking dynamic changes of blood/CSF NfL in paral
lel with different AD markers. Compared to markers requiring a 
spinal tap, MRI or PET imaging, blood NfL is a more cost-efficient, 
more accessible and less invasive biomarker. These advantages 
would facilitate more frequent measurement of blood NfL in 
more diverse populations, including the populations that have 
been under-represented in previous studies. Therefore, using blood 
NfL as a biomarker of neuronal damage will advance our under
standing of the pathological mechanisms of AD and improve our 
prediction of disease progression.
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