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Abstract

Following the central dogma of molecular biology, gene expression heterogeneity can aid in predicting and explaining the wide variety
of protein products, functions and, ultimately, heterogeneity in phenotypes. There is currently overlapping terminology used to describe
the types of diversity in gene expression profiles, and overlooking these nuances can misrepresent important biological information.
Here, we describe transcriptome diversity as a measure of the heterogeneity in (1) the expression of all genes within a sample or
a single gene across samples in a population (gene-level diversity) or (2) the isoform-specific expression of a given gene (isoform-
level diversity). We first overview modulators and quantification of transcriptome diversity at the gene level. Then, we discuss the
role alternative splicing plays in driving transcript isoform-level diversity and how it can be quantified. Additionally, we overview
computational resources for calculating gene-level and isoform-level diversity for high-throughput sequencing data. Finally, we discuss
future applications of transcriptome diversity. This review provides a comprehensive overview of how gene expression diversity arises,
and how measuring it determines a more complete picture of heterogeneity across proteins, cells, tissues, organisms and species.
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Introduction
Following the central dogma of molecular biology, gene expression
heterogeneity can aid in predicting and explaining the wide vari-
ety of protein products, functions and, ultimately, heterogeneity in
phenotypes. Over the past few decades, transcriptomic expression
profiles have been assayed in many ways, with the two most com-
mon approaches being microarray-based and sequencing-based
[1]. More recently, microarrays have been surpassed by next-
generation sequencing (NGS), also known as second-generation
or short-read sequencing [2, 3]. To assay gene expression with
NGS technology (also known as RNA sequencing, RNA-Seq), RNA
is first reverse-transcribed into complementary DNA (cDNA), frag-
mented and then constructed into an NGS library that is then
read by the sequencer and then computationally mapped to
the transcriptome for quantification [3]. The ability to barcode
cells in combination with low-input protocols has also enabled
single-cell/nuclei RNA-Seq (sc/snRNA-Seq) to measure the tran-
scriptomic profiles of individual cells [4, 5]. Most recently, third-
generation or long-read sequencing popularized by Pacific Bio-
sciences [6] (PacBio) and Oxford Nanopore Technologies [7, 8]
(ONT) has allowed the sequencing of contiguous reads of up to
2.3 million bases, considerably longer than the longest human
messenger RNA (mRNA) transcripts [9]. These long reads are

enabled by single-molecule real-time and ionic nanopore tech-
nology innovations by PacBio and ONT, respectively. In addition,
long-read RNA-Seq (lrRNA-Seq) is capable of directly sequencing
RNA and detecting its modifications, which was previously not
possible with short-read technologies that require reverse tran-
scription into cDNA [10]. Additionally, more technologies are being
developed for the rapidly growing field of long-read sequencing at
the single-cell level [11–13].

As both these and newer technologies continue to evolve with
the goal of measuring transcriptomic profiles more precisely,
the need to quantify and interpret those profiles continues to
grow [11–13]. Dating back to microarray experiments, differential
expression (DE) is the most common analysis of gene expression,
and it is frequently used in both bulk RNA-Seq and scRNA-
Seq. Generally, a basic mean DE analysis determines whether
individual genes are up- or down-regulated (i.e. more highly or
lowly expressed, respectively) between conditions, for example,
across tissues [14, 15] or disease states [16, 17]. There are two
main kinds of differential analysis, differential variability [18]
and differential mean, with the differential mean being the most
common [19]. Popular R packages for differential mean expression
include DESeq2 [20], EdgeR [21] and limma [22]. DE analysis is
typically done at the gene level, collapsing all counts from a
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sequencing library that map to a single gene unit even though
many genes undergo alternative splicing (AS) to produce several
different mRNA molecules or isoforms. Alternatively, DE can also
be examined at the isoform level by comparing reads mapped to
each specific transcript as independent entities with the afore-
mentioned [20–22] or other DE packages. Some caveats of DE
are that this analysis alone may miss biological complexity and
information [23], which DE genes are often not causal (i.e. are
disease-induced [24]), or that the function of causal genes changes
but mRNA expression levels remain unchanged [25], and that
interpretation must also account for biases associated with the
expression level or abundance of reads for a particular gene [25].
These caveats are also important considerations when perform-
ing DE analysis in scRNA-Seq as well [26].

An additional consideration for analyzing transcriptomic pro-
files is the need to quantify the complexity of biological sys-
tems because nothing in biology acts in isolation. To illustrate,
a perturbed gene will likely have perturbed interactions with
other genes and proteins in that biological system, which in turn
may also contribute to phenotypic differences. There are different
ways to assess these coordinated patterns of gene expression,
such as grouping genes together by pathway or function in path-
way analyses (e.g. KEGG [27] and GO [28]) to determine which
pathways are up- or down-regulated between conditions. While
this analytical approach considers genes in aggregate by function
and interactions, it does not include all of their known or predicted
interactions and genes can be part of multiple pathways, which
confounds the analysis. Representing gene expression profiles
as biological networks presents an alternative or complemen-
tary approach to differential gene expression analysis, and such
networks have been shown to be dysregulated in disease [29].
These network biology approaches allow researchers to incor-
porate additional information to combine multiple information
types and improve in silico-predicted interactions within a condi-
tion [30].

However, the above approaches fail to describe how expres-
sion patterns change between conditions. Transcriptome diversity
quantifies gene expression changes at (1) the gene level: the
total expression of all genes within a sample or a gene across
samples in a population, and (2) the isoform level: the isoform-
specific expression of a given gene (Figure 1). For example, such
approaches have identified unique disease-related genes across
16 human disease datasets compared to DE alone [23]. Here,
we review the causes and measurement of transcriptome diver-
sity across samples, genes and isoforms in protein-coding genes.
While diversity also occurs in non-coding transcripts, that expres-
sion does not lie within the scope of this review. Previous literature
has primarily focused either on diversity at the gene level [31]
or the isoform level [32]. Here, we review both kinds of diversity
found in transcriptomes and delineate some boundaries for how
to describe and quantify this diversity. Therefore, we first overview
modulators and quantifications of transcriptome diversity at the
gene level. Then, we discuss the role AS plays in driving transcript
isoform-level diversity and how it can be quantified. Additionally,
we overview computational resources for calculating gene-level
and isoform-level diversity for high-throughput sequencing data.
Finally, we discuss future applications of transcriptome diversity.

Gene-level diversity in gene expression profiles
Biological processes that lead to gene-level diversity
As gene expression analyses have become a critical tool for fur-
thering phenotypic, mechanistic and evolutionary interpretation,

it is vital to understand the forces guiding gene expression het-
erogeneity [33]. Like other biological processes, inherent biolog-
ical noise in gene expression has been observed ubiquitously
across species [34]. This stochasticity is driven by many processes
within the cell, including transcription/translation initiation and
mRNA/protein degradation [34]. In extreme cases, this stochastic
gene expression noise has been shown to reduce fitness in yeast
cells [35]. However, previous studies have noted that genetic and
environmental factors are the two main drivers of biological het-
erogeneity in gene expression [36]. However, additional intrinsic
factors like cell cycle [37], circadian rhythm [38] and aging [39, 40]
(which are also influenced by genetic and environmental factors)
also contribute to gene expression heterogeneity.

Promoters, enhancers and transcription factors are key genetic
features contributing to gene expression heterogeneity observed
across species, tissues and cell types [41, 42]. The heavily studied
RNA polymerase II core promoter directly regulates gene expres-
sion [43, 44], and natural variations in promoter regions are linked
directly to both gene expression and phenotype heterogeneity
[45]. By regulating transcription levels distally, enhancers also
influence gene expression heterogeneity within specific cell types,
tissues and even species [46, 47]. Similar to promoters, alter-
ation in an enhancer region can lead to phenotypic changes by
impacting gene expression [48]. Transcription factors are essen-
tial regulatory proteins that drive gene expression by interacting
with DNA sequences like promoters and enhancers to control
transcriptional processes [49, 50]. Studies like the Encyclopedia
of DNA Elements (ENCODE) project, which integrated over 450
experiments of 119 transcription factors, have demonstrated that
transcription factors have dynamic regulatory networks that lead
to measurable heterogeneity in homeostatic gene expression [51].

Additionally, epigenetic processes including DNA methyla-
tion, histone modifications and other environmental or stress
responses can also drive gene expression heterogeneity. DNA
methylation, notably mammalian m5C (methyl groups at the 5′

cytosine of a C-G dinucleotide) [52], regulates gene expression
in multiple ways [53], including through transcription factor
binding, the functionality of enhancers, insulator elements and
promoters, and by altering chromatin conformation [54]. Various
studies have noted correlations between gene expression and
DNA methylation, further supporting its role as a possible driver
for gene expression heterogeneity. Post-translational histone
modifications (e.g. acetylation, methylation, phosphorylation
or ubiquitination) are also known to be correlated with gene
expression [55–57] and can even be used to predict gene
expression [56]. Environmental and stress-related effects, like
hypoxia, can also impact the heterogeneity of gene expression.
Many organismal studies have observed the impact of stress
on producing a biological response and subsequent regulation
of various genes to alleviate environmental damages (e.g. in
oxidative stress) [58–60].

Methods for quantifying gene-level transcriptome diversity
Researchers have applied different approaches to empirically cal-
culate gene expression heterogeneity for both bulk and single-
cell/nuclei transcriptome profiles, including coefficient of vari-
ation (CV) [23], variance [61] and others [62]. While the gene
expression terms variation and diversity both describe changes
in gene expression across samples, variation/variability is more
frequently associated with measures of dispersion (e.g. CV, vari-
ance), and diversity is more commonly associated with these
probability-based measures, particularly Shannon or information
entropy (Figure 2A). In fact, the application of CV and variance to
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Figure 1: Types of transcriptome diversity from gene expression profiles. Gene-level transcriptome diversity (left) can be measured across samples in a
population or as the diversity of expression across genes within a condition. Isoform-level transcriptome diversity (right) can be measured as the
number of isoforms or the distribution of isoform expression.

gene expression profiling analysis is sometimes known as expres-
sion variance (EV) [62]. Originally described by Alemu et al., EV
showed tissue-specific variation across gene expression profiles
[63] and was later used to show expression variation associated
with aging and methylation [64].

SD describes the dispersion of the data in relation to its mean.
Building on SD, CV considers the SD of the gene expression
sample divided by its mean and thus is a standardized mea-
sure [23]. Therefore CV can be used to compare across condi-
tions or datasets to identify disease-associated genes that are
not identified by DE alone [23]. Additionally, other studies have
applied both technical CV and biological CV to describe RNA-Seq
gene expression variation associated with technical or biological
variables, respectively, as well as [21] normalized CV to examine
gene expression variation, for example, across neurological dis-
eases [61]. Recent studies have also used CV to understand how
gene expression variability among therapeutic targets determines
drug effectiveness and safety, thus improving therapeutic devel-
opment methodologies [65]. Another empirical measurement of
gene expression is variance. In the Mar et al. study, variance
measures the significance of the mean difference between groups
by using a t-test or analysis of variance [61], but the term has also
been used synonymously with gene expression variability [61, 64,
66, 67]. For example, Bachtiary et al. applied variance (here defined
as SD squared) to measure the variation of expression between
and within cervical cancer patient samples [68]. Gene EV has also
been studied in human populations, where functional connec-
tions between low-variance genes and fundamental cell processes
and high-variance genes with immune processes suggest that
variance is biologically meaningful and not merely reflective of
stochastic noise [69].

Though CV and variance are some of the most common meth-
ods for empirically calculating variation, there are a few other
ways of describing variation across gene expression. For exam-
ple, differential variability analysis can also be performed with
Bartlett’s, Levene’s, median absolute deviation or Fligner–Killeen
tests, yet the R package MDSeq based on reparameterization
of the real-valued negative binomial, which was shown to out-
perform these methods [19]. On the other hand, the range of

gene expression observed is one of the simplest measures of
variability. Though generally not used in its simplest form (i.e.
maximum value minus minimum value), a modified version of
range has been used. For example, dynamic range, the log10 ratio
between the maximum and minimum normalized gene expres-
sion counts, has been used to compare the expression of orthol-
ogous genes between humans and mice to determine genes con-
strained throughout early vertebrate evolution [70] as well as to
describe gene expression variation patterns across organs and tis-
sues [71]. Additionally, researchers have developed a metric based
on a ratio of the percentage of reads covering a proportion of the
genome to quantify gene expression variation [72]. When a large
percentage of reads covers a smaller number of total genes in the
genome, it indicates lower variability in that condition than when
the percentage of reads spans over a larger set of genes in another
condition. However, these metrics are biased toward longer genes
if gene size is not properly accounted for during analysis.

In 1948, Shannon defined entropy as the probability of
uncertainty of an outcome or the amount of choice in the
outcome based on how much information [73]. The basis of
Information Theory, Shannon entropy, is the log of the event
probability so that an event with full certainty or a probability
of one would have no surprise. Over the years, Shannon entropy
has been applied to numerous biological processes, including
gene expression [74]. When using Shannon entropy in this
context, gene expression measurements for a specific gene are
the information used to measure uncertainty, or as we describe it,
diversity (Figure 2) [75]. Previous studies have employed Shannon
entropy to study diversity in drug targets [76], tissue-specificity
[77], species-specificity [75] and even intraspecies genomic DNA
information [78]. When used to compare gene expression in RNA-
Seq data, differential Shannon entropy, compared to differential
CV and DE, identified genes overlapping with CV-identified
genes but also included unique disease-associated genes [23],
underlining that Shannon entropy can identify biological signals
that CV and DE do not. Shannon entropy has also been used in
combination with weighted gene co-expression network analyses
(WGCNA) by calculating entropy from the betweenness of
networks [79]. Additionally, studies using adaptations of Shannon
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Figure 2: Shannon entropy can be used to quantify transcriptome diversity. (A) A toy example showing the principle of Shannon entropy when
describing gene-level diversity. When there is a uniform distribution of gene expression values, the Shannon entropy is higher than when gene
expression is concentrated on a smaller number of genes. (B) A toy example of the principle of Shannon entropy when used to describe isoform-level
diversity. Even when there are varying numbers of isoforms, the entropy or diversity is at its maximum when the distribution is most uniform or flat.

Table 1. Software packages that detect gene-level transcriptome diversity

Name of package Year Bulk or single cell Gene-level transcriptome
diversity metrics

Citation count Language

memento [81] 2022 Single-cell Variation 0 Python
BioQC [82] 2017 Bulk Shannon entropy 26 R
MDSeq [19] 2017 Bulk Variation 15 R
EntropyExplorer [83] 2015 Bulk Differential Shannon entropy 9 R

Note. This table includes the name of the software package, the year published, gene expression data it can be used with and the transcriptome diversity
metric. Entries are sorted from most to least recent. Citation counts are from PubMed, March, 2023.

entropy, such as Tsallis entropy (also known as HCDT [Havrda,
Charvát, Daróczy, and Tsallis] entropy), have divided gene-level
diversity into two categories: alpha and beta diversity [80], where
alpha diversity represents the diversity of a single profile, and beta
diversity represents diversity between samples within a group.
This particular example of Tsallis entropy allows a researcher to
able to manipulate a parameter (q) that can adjust the weight
of highly expressed genes [80], therefore giving a higher degree
of control and leaving room for interpreting more biologically
relevant information at different levels of q. The introduction
of alpha and beta diversity nomenclature is an eloquent way
to describe the diversity shown in Figure 1, with alpha diversity
representing diversity across genes or transcripts within a sample
and beta diversity being the two-dimensional diversity across
all samples in a group or population, though this nomenclature
is not yet widely used. Example analytical packages that apply
entropy and variation in the context of gene expression diversity
are described in Table 1, although many of these analyses are
performed without specialized software.

Altogether, the aforementioned gene expression studies
demonstrate not only the importance of further understanding
the drivers of this gene expression diversity but also the impor-
tance of developing new and comprehensive ways to quantify
this diversity through various methodologies. Quantifying gene-
level transcriptome diversity is a salient part of ascertaining how

biological processes lead to phenotypic manifestations, including
in a disease context. Therefore, it is imperative to examine other
sources of diversity, such as heterogeneity in mRNA transcripts
due to AS.

Isoform-level diversity in gene expression
profiles
Biological processes that lead to isoform-level diversity
Before the start of the human genome project, the human genome
was expected to have approximately 100 000 genes [84] based
on the approximated number of protein products. However, after
completing the project, the human genome actually had between
20 000 and 25 000 genes, much less than projected [85]. While
humans may not have more genes than all other organisms, their
splicing patterns are more specific and complex [86]. Compared
to other eukaryotic organisms, humans have the highest relative
splicing abundance, and this abundance steadily decreases for
species with a larger evolutionary divergence from humans [86].
Because 94% of human genes undergo AS [87], most genes have
a variety of transcript isoforms that, in many cases, result in pro-
teins with unique functions, therefore increasing protein diversity.
There are between six and eight types of AS events depending
on the classification used, and their abundance varies by species,
with exon skipping being the most common in animals and intron
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retention more common in plants and fungi [88]. In addition to
RNA splicing, differences in transcript usage in organisms can also
be driven by alternative promoter usage (e.g. producing different
transcripts of the brain-derived neurotrophic factor gene [89]) or 3′

end usage [90]. In this section, we will focus on the heterogeneity
driven by RNA splicing.

RNA splicing occurs as part of the process to produce mature
mRNA from pre-RNA and was first described in 1977 [91]. RNA
splicing happens in virtually all multi-exonic genes through
either constitutive splicing (splicing out an intron that is always
excluded from a final transcript) or AS (variably splicing out
alternative exons and/or introns resulting in diverse mRNA
sequences). Exons that are always incorporated in the final or
mature transcript are described as constitutive exons, while
alternatively spliced exons are those that vary in usage from
transcript to transcript [92]. This AS process is performed by the
spliceosome, which contains approximately 170 proteins [93],
including many RNA-protein complexes called small nuclear
ribonucleoproteins, and recognizes splice sites to facilitate the
transesterification reactions that lead to intron removal (further
reviewed in [32, 94, 95]). There is currently a debate on how
much of this splicing is functional or controlled because not
all alternative transcripts are protein-coding, AS changes can
be driven stochastically [96], and AS transcripts can be sensitive
to nonsense-mediated decay. While not all AS transcripts are
functional, ribosomal profiling experiments indicate that over
75% of medium-to-highly expressed AS transcripts are bound to
ribosomes and translated into proteins [97], so it is still highly
likely that many of these are made into proteins, as further
underscoring AS is biologically relevant.

A key property of AS is its high specialization to a given bio-
logical condition. For example, AS is species-specific [86], and as
organisms gain more evolutionarily complexity, their AS patterns
become more similar to humans. AS is also sex-specific and can
lead to sex-specific traits. For example, in fruit flies (Drosophila),
the sex splicing gene doublesex controls sexual differentiation
[98] and is regulated by AS. In addition to more extensive sex-
specific splicing in fruit flies [99–101], sex-specific splicing has
also been shown in fish [102], birds [103], non-human primates
[104] and humans [105, 106]. Moreover, AS is critical in devel-
opmental changes, particularly as coordinated AS changes help
define tissue identity [32]. In fact, AS is tissue-specific [107],
driven at least in part by tissue-specific splicing factors [108].
These tissue-specific splicing factors govern complex splicing
regulatory networks [109] that can influence protein interaction
networks and thereby increase the functional diversity of proteins
[110]. Further, AS is also highly cell-type specific [111], and the
recent increase in single-cell studies has highlighted an increasing
number of cases of AS that are cell-type and even cell-subtype
specific [112]. This has been particularly well-documented in the
brain during neuronal differentiation [113] (e.g. the cerebral cortex
[111]) and in immune cells [114].

Changes in AS are also associated with many diseases [115,
116]. Currently, an estimated 15% of human disease-causing point
mutations result in an AS defect [117], and many diseases and
disorders are associated with disrupted splicing patterns, like
spinal muscular atrophy, cancer and autism spectrum disorder
[118, 119]. Because of all of these known changes in AS across
numerous biological conditions, some pathogenic and others
benign, it is critical for genomic researchers to quantify changes
in AS using RNA-Seq. Numerous methodological approaches
with software implementations for analyzing and quantifying
isoform-level heterogeneity (including specialized approaches for

single-cell or long-read data) are discussed in further detail in the
next section.

Methods for quantifying isoform-level diversity
Measuring alternatively spliced transcript expression diversity
requires first identifying and then quantifying transcripts from
RNA-Seq data. One way to quantify alternatively spliced tran-
scripts from gene expression data relies on identifying reads that
cover splice junctions, the genomic loci where two exons have
been spliced together [120]. This process varies depending on
the transcript quantification tool, as some tools only count if an
exon is included at all (i.e. if any reads map to that exon), while
others search for junctions to determine if an exon is spliced
in, because reads mapping to a free exon (i.e. not including a
junction) cannot resolve where in the transcript that exon has
been spliced. A major limitation is that there must be sufficient
read depth to detect all splice junctions from short-read data
[121]. In some cases, junctions are specific to unique transcripts,
so a read mapping to a unique junction could indicate that
that transcript is being expressed without having any continu-
ous reads capturing the entire transcript. One of these splice-
junction-based methods is Splice Expression Variation Analysis
[122], which compares the variability of the multivariate distribu-
tion of splice junction expression profiles between conditions. On
the other hand, because short reads with few junctions usually
do not match a unique transcript, probabilistic methods can be
used to estimate exon inclusion [123] (also known as percent
spliced in, PSI) [124], greatly reducing the precision of transcript
quantification.

There are different terminologies for the number of concepts
and analyses that fall under the umbrella of isoform-level
diversity. Differential transcript (or isoform) expression is a
data analysis method similar to differential gene expression
as it identifies up- or down-expression of specific transcripts
in one condition versus another. However, differential transcript
usage (DTU), sometimes referred to as differential isoform usage,
isoform switching or differential splicing [125], can determine
differential proportions of transcript expression within a gene
across conditions [126]. Soneson et al. describe three methods
for DTU: assembly-based, type of AS-based and differential exon
usage (DEU) [126]. Due to limitations with short reads not covering
entire transcripts that overlap, DEU can also be used in a similar
way to measure shifts in functional unit expression (i.e. bins)
across conditions, usually comparing PSI values [126]. Table 2
includes analysis packages comparing transcript expression
across conditions and used for DTU, DEU (PSI) or other analyses.

However, short-read sequencing technology often fails to
adequately resolve transcripts because the typical mRNA is over
1 kb, whereas most short-read RNA-Seq data are only 100–200
bases in length [3], i.e. only long enough to cover an exon or less.
The advent of long-read technologies has created an opportunity
to capture more detailed gene expression profiles, especially for
resolving transcript expression, but also for accurate sequencing
and subsequent mapping of repetitive, hard-to-map and/or dupli-
cated gene regions [155]. Additionally, as lrRNA-Seq approaches
can sequence full-length novel transcript isoforms, they are
continuing to identify novel transcripts, including those that
are lowly expressed [156]. While most of the short-read tools for
transcript quantification can be used on long-read data, there are
transcript quantification tools that are specialized for long-read
sequencing data, like FLAIR [157] and BAMBU [158], which include
steps for correcting misalignments that can result from less
accurate reads. Applying variance and entropy-based diversity
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Table 2. Software packages that detect isoform-level diversity and variability in exon and isoform usage

Package name Year Bulk or single cell Analysis type:
exon/transcript or other

Citation
count

Language

Insplico [127] 2023 Both Other—Splicing Order 0 Perl
acorde [128] 2022 Single-cell DTU and coDTU 2 R
SpliZ [129] 2022 Single-cell DEU (PSI) 4 Python
DTUrtle [130] 2021 Both DTU 3 R
NanoCount [131] 2021 Bulk DTU 11 R
SplicingFactory [132] 2021 Bulk Other—Diversity 0 R
scisorseqr [133] 2021 Single-cell DTU (modified) 39 R
satuRn [134] 2021 Both DTU 0 R
ASCOT [112] 2020 Single-cell DEU (PSI) 24 Python
BANDITS [135] 2020 Bulk DTU 10 R
Sierra [136] 2020 Single-cell DTU 28 R
RATs [137] 2019 Bulk DTU 10 R
SUPPA2 [138] 2018 Bulk DEU (PSI) 193 Python
LeafCutter [139] 2018 Bulk Other—Intron Excision 246 R/Python
Whippet [140] 2018 Bulk DTU 61 Julia
GSReg/SEVA [122] 2018 Bulk Other—Variability 6 R
IsoformSwitchAnalyzeR [141] 2017 Bulk DTU 104 R
Census/Monocle [142] 2017 Single-cell DEU (PSI) 610 R
BRIE [143] 2017 Single-cell DEU (PSI) 50 Python
DRIM-Seq [144] 2016 Bulk DTU 49 R
JunctionSeq [145] 2016 Bulk DEU (PSI) 81 R
MAJIQ [146] 2016 Bulk DEU (PSI) 188 Python/C++
SGSeq [147] 2016 Bulk DEU (PSI) 63 R
SingleSplice [148] 2016 Single-cell DTU 36 R/Perl
Limma (diffSplice) [22] 2015 Bulk DEU (PSI) 15 473 R
VAST-TOOLS [149] 2014 Bulk DTU 339 R/Perl
rMATS [150] 2014 Bulk DEU (PSI) 982 Python/C++
CuffDiff2 [151] 2013 Bulk DEU (PSI) 2341 C++
SplicingCompass [152] 2013 Bulk DTU 39 R
DEXSeq [153] 2012 Bulk DEU (PSI) 874 R
SpliceTrap [123] 2011 Bulk DEU (PSI) 59 C++/Perl
MISO [154] 2010 Bulk DEU (PSI) 876 Python/C

Note. This table includes the name of the software package, the year published, the type of data it can be used with and the analysis type. As terminology used
by authors to describe a particular method varies, the analysis type listed in the table is standardized according to the defined terminology in this review.
Entries are sorted from most to least recent. Citation counts are from PubMed, March, 2023.

quantification approaches in combination with these lrRNA-Seq
technologies, therefore, captures transcriptomic changes across
biological conditions and phenotypes.

Additionally, isoform-level diversity can be described by enu-
merating the total number of isoforms [159, 160], herein called
isoform number diversity. In contrast to counting the number
of transcripts, the distribution of isoform expression for a gene,
such as in DTU, can also be considered isoform-level diversity
or isoform usage. Similar to the gene expression level, variance
and Shannon entropy can be used to describe this isoform-level
diversity (Figure 2) [161]. One way to measure isoform-level diver-
sity is the Fano factor, or the squared variance over the mean
[162], which describes the distribution of alternatively spliced
transcripts while adjusting for the mean expression of that gene.
Another method is by Shannon entropy, where a gene with many
isoforms could be less diverse than a gene with few isoforms if
the latter has a more even distribution of expression and perhaps
equal usage of those gene products. Figure 2B provides an exam-
ple of isoform-level diversity quantified with Shannon entropy.

The first instance of using Shannon entropy to describe diver-
sity in three types of alternative transcription (AS, polyadeny-
lation and transcription initiation) using targeted microarray
expression data was by Ritchie et al. in 2008 [161]. Ritchie
et al.’s rationale was that Shannon entropy could capture aberrant
transcription seen in cancer and was therefore used to compare

patient cancerous tissue transcriptomic profiles with non-
cancerous tissue transcriptomic profiles. The authors found
that out of the three types of transcription studied, only AS
had increased diversity in cancer tissues. They concluded that
these changes in entropy are unlikely to reflect changes in gene
function because they found it unlikely that, in a cancer context,
shifts in isoform expression are functional or controlled. This
general approach to measuring entropy has also been used to
compare transcript diversity across conditions in the brain [155]
and epithelial cells [163].

Several software approaches have been developed for com-
paring isoform-level diversity with Shannon entropy, including
Cuffdiff (from Cufflinks) [164–166], Whippet [140] and Splicing-
Factory [132]. Cuffdiff uses Jensen-Shannon divergence, which,
like Shannon entropy, relies on probability to compare the distri-
bution of transcript expression across conditions [166]. Whippet
[140] applies Shannon entropy to define the entropy of individual
AS events instead of at the gene level, meaning that each alterna-
tively spliced exon is given a value based on PSI. SplicingFactory
[132] is unique because it also includes multiple other methods for
assaying diversity across isoforms of the same gene, like the Gini
Index (originally developed for describing wealth inequalities)
and the Simpson Index (originally developed to measure eco-
logical diversity). The aforementioned Tsallis entropy could also
potentially be used in an isoform context to describe biological
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heterogeneity since it has been shown to provide more informa-
tion than Shannon entropy or Simpson Index alone though it
has not yet been applied to study alternatively spliced isoform
distributions. While some approaches have proved more popular
than others, there is no standout or one best method to examine
variability and diversity across isoforms as of yet. This means that
researchers still need to think deeply about what analyses they do
want to perform based on their questions of interest.

To summarize, AS contributes to the gene expression diversity
observed by increasing the number of products that can be pro-
duced by a single gene. Quantifying the isoform-level diversity
of a given gene will identify not only which isoforms are highly
expressed but how isoform expression shifts between conditions.
With the increasing popularity of more accurate sequencing and
long-read transcriptomics, more attention should be spent on
DTU and looking for the functional relevance of these differen-
tially used or diverse transcripts.

Conclusion
The types of data most compatible with the analysis discussed
in this review are primarily high-throughput RNA-Seq, lrRNA-
Seq and scRNA-Seq. However, not all measured gene expression
profile heterogeneity is due to the condition being studied but
may be due to technical (i.e. sample processing and sequencing
preparation, such as sequencing depth) or biological (i.e. gene
differing RNA synthesis and degradation rates) artifacts. Sequenc-
ing depth is particularly important because sequencing depth
directly impacts the ability to confidently detect more lowly
expressed genes or isoforms. At the isoform level, if a researcher
is interested in all the isoforms of a lowly expressed gene, they
would want to sequence an experiment at a higher depth to
ensure they are capturing as many different isoforms as possible.
Likewise, sequencing length impacts confidence in full-length iso-
form detection, and full-length scRNA-Seq protocols allow for the
detection of splice variants. Therefore, data normalization is criti-
cal. For example, normalization approaches based on sequencing
depth (such as transcripts per million – TPM) are widely used
for comparing across groups in bulk expression data, because
without normalization there may be scenarios where a gene is
expressed in equal proportions, but the condition with more reads
overall may appear to have higher gene expression than the
other condition. While normalization is a critical step, there are
many nuances to comparing sequencing results across conditions
and samples because there are many factors that can influence
TPM values such as protocol, tissue type, RNA strandedness and
RNA compartmentalization [167]. For more information on these
limitations, we refer readers to the following references [167, 168].

Additional considerations are needed for sc/snRNA-Seq data
because of its well-documented data sparsity [169], though the
degree of sparsity varies by platform. Compared to bulk RNA-
Seq approaches, TPM is typically not used for most scRNA-
Seq libraries due to scRNA-Seq-specific variation (e.g. technical
dropouts), and methods such as counts per million (CPM),
high-count filtering CPM and others (e.g. scran [170]) are
alternatively used; for more information please refer to [171].
When measuring diversity, taking into account different cell-
type population proportions is key because larger cell clusters
may appear to have greater transcriptomic diversity based on
more sequencing reads. Also, when measuring variability across
sample populations, technical batch effects should always be
examined and potentially corrected or minimized, to focus on

biologically relevant signals for the study. When designing scRNA-
Seq data generation experiments, it is ideal to plan for the kinds
of analyses being performed beforehand and ensure the data
generated are powered for specific hypotheses. One example of
this is enriching for rare cell types to ensure there are enough
of those cells for analyses like DE. Further, due to data sparsity
in scRNA-Seq data, isoform-resolution gene expression requires
increased read depth to capture isoforms of interest. Moreover,
most scRNA-Seq protocols exhibit preparation-specific read bias
that should be accounted for when integrating across protocols
because this bias can make it difficult to unambiguously align
reads and distinguish between isoforms [172].

In conclusion, measuring transcriptome diversity when ana-
lyzing gene expression profiles is an integral analysis step to cap-
turing biological information in tandem with the DE of individual
genes, and this literature review underscores the primary axes
of heterogeneity that exist and can be measured in transcrip-
tomic data. Having terminology clarified to better navigate this
heterogeneity will enable researchers to simultaneously explore
transcriptome diversity at the gene and isoform level, and to
better interpret and articulate their findings. Gene expression is a
critical facet of complex living systems, and research can extract
additional information with current computational methods by
investigating transcriptome diversity. Critically, omitting gene-
level or isoform-level diversity from gene expression analysis
could miss biological information since phenotypic diversity is
partially driven by gene expression fluctuations and AS [88].
Combining both applications of diversity to better understand
high-dimensional gene expression data can provide insight into
the transcriptional differences between contexts and reveal gene
expression differences that traditional DE analyses cannot like
novel therapeutic targets [23]. Therefore, we recommend exam-
ining and comparing variability, diversity and DE at the gene and
isoform level, when possible, to capture more of this complexity.

Because of the massive amounts of transcriptomic data being
generated, there is an unprecedented opportunity for discovery.
Increased sequencing depth, longer reads and more cells/samples
will further facilitate transcriptomic diversity studies. Here, we
provided an overview of the drivers of gene expression vari-
ability and diversity and described how it has been quantified
across genes and at the isoform level. Additionally, we summarize
resources for calculating diversity and variability (Tables 1 and
2). Applying additional variation and diversity measurements in
transcriptomic analysis has the potential to capture additional
gene expression profile changes between conditions and, in the
future, could be adapted to additional gene expression profile
analyses, such as in spatial transcriptomics, network biology,
personalized medicine and drug repositioning. Incorporation of
these transcriptomic data with other data modalities (such as epi-
genetics, metabolomics or proteomics) may further increase the
ability to make functional inferences. Clinically, these multimodal
meta-analyses may have the potential to also elucidate new ther-
apeutic targets for hard-to-treat disorders, further underscoring
the importance of transcriptome diversity.

Key Points

• Gene expression heterogeneity can help explain the wide
variety of protein products, functions and, ultimately,
heterogeneity in phenotypes.
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• Fluctuations in gene expression occur as part of a
healthy-living system, but dysregulated gene expression
can also contribute to or indicate disease.

• Gene-level diversity is the heterogeneity of the total
expression of all genes or a gene across samples.

• Isoform-level diversity is the variability of the isoform-
specific expression of a given gene.

• Quantifying and understanding diversity in gene expres-
sion profiles is biologically important.
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