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ABSTRACT
Background: Unbalanced levels of serum total cholesterol (TC) and its subgroups are called dyslipidemia. Several anthropomet-
ric indices have been developed to provide a more accurate assessment of body shape and the health risks associated with obesity. 
In this study, we used the random forest model (RF), decision tree (DT), and logistic regression (LR) to predict total cholesterol 
based on new anthropometric indices in a sex-stratified analysis.
Method: Our sample size was 9639 people in which anthropometric parameters were measured for the participants and data 
regarding the demographic and laboratory data were obtained. Aiding the machine learning, DT, LR, and RF were drawn to 
build a measurement prediction model.
Results: Anthropometric and other related variables were compared between both TC <200 and TC ≥200 groups. In both males 
and females, Lipid Accumulation Product (LAP) had the greatest effect on the risk of TC increase. According to results of the 
RF model, LAP and Visceral Adiposity Index (VAI) were significant variables for men. VAI also had a stronger correlation with 
HDL-C and triglyceride. We identified specific anthropometric thresholds based on DT analysis that could be used to classify 
individuals at high or low risk of elevated TC levels. The RF model determined that the most important variables for both genders 
were VAI and LAP.
Conclusion: We tend to present a picture of the Persian population's anthropometric factors and their association with TC 
level and possible risk factors. Various anthropometric indices indicated different predictive power for TC levels in the Persian 
population.
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1   |   Introduction

Impaired levels of total cholesterol (TC), triglycerides (TG), high-
density lipoprotein cholesterol (HDL-C), and low-density lipopro-
tein cholesterol (LDL-C), either separately or together, are referred 
to as dyslipidemia [1]. High blood cholesterol is a significant risk 
factor for coronary heart disease (CHD) [2–4]. Furthermore, 
serum total cholesterol concentration is included in all recent risk 
calculations and is thought to be a crucial component for the pre-
diction of atherosclerotic cardiovascular disease (ASCVD) [5, 6].

It might not always be possible to obtain laboratory testing, 
particularly in developing nations [7], or for health checks con-
ducted outside established healthcare institutions [8]. However, 
as low-income nations account for the bulk of cardiovascular 
disease cases worldwide, these nations must employ preventive 
measures [9, 10]. Finding relationships between anthropometric 
measures (AMs) and laboratory results is of tremendous interest 
to the medical community [11] since it would result in patient 
examination methods that are less intrusive [12]. The literature 
provides examples of this, including the relationship between 
AMs and atherogenic indicators [13], cardiovascular risk [14, 15], 
and assessment of diabetes [16, 17]. AMs can also correlate with 
other AMs in the body of the patient, which helps assess dosing 
for ICU patients as well as predict height and weight from other 
parameters [18].

Most people agree that an increase in Body Mass Index (BMI) 
corresponds with an increase in total cholesterol [19–21]. 
However, several researches have not found a connection be-
tween cholesterol and BMI [22–25]. In recent years, several 
anthropometric indices have been developed to provide a more 
accurate assessment of body shape and obesity-related health 
risks. The waist-to-hip ratio (WHR) and waist-to-height ratio 
(WHtR) are commonly used markers of abdominal obesity, 
strongly associated with metabolic disorders [26]. In the last 
few decades, new anthropometric indices were developed to 
provide a more accurate depiction of body shape [27–29]. The 
Body Roundness Index (BRI) can be related to visceral obesity 
tissue and is valuable in assessing well-being conditions [29]. 
The Visceral Obesity Index (VAI) is another useful marker that 
takes into account BMI, waist circumference (WC), and mea-
surements of TG and HDL-C. It provides a more accurate es-
timation of the cardio-metabolic risk associated with visceral 
obesity [28, 30]. The Lipid Accumulation Product (LAP) [31] is 
derived from WC and TG levels and is more effective than BMI 
in identifying individuals at risk for cardiovascular disease [32]. 
The Abdominal Volume Index (AVI) is a practical method for 
assessing overall abdominal volume [33] and is a reliable diag-
nostic tool for metabolic syndrome [34]. It is also associated with 
atherogenic dyslipidemia [35]. In addition, a formula called the 
Body Adiposity Index (BAI) calculates a person's adiposity with-
out requiring them to know their weight [36]. Numbers related 
to Body Surface Area (BSA) are commonly utilized in the med-
ical field, mostly to calculate chemotherapy dosages and calcu-
late the cardiac output index [37].

In this study, we used the Random Forest (RF), Decision Tree 
(DT), and Logistic Regression (LR) Model to build a prediction 
model for TC based on these new anthropometric indices in a 
gender-stratified analysis.

2   |   Methods

2.1   |   Study Population

In this cross-sectional study, participants were selected from the 
Mashhad Stroke and Heart Atherosclerotic Disorder (MASHAD) 
study (N = 9704), a cross-sectional from north-eastern Iran [38]. 
A total of 3714 participants with total cholesterol ≥200 (TC ≥200) 
as well as those who were healthy in the first phase of our study 
(N = 5925). Approximately 38.2% of individuals in Mashhad with 
TC ≥200 was estimated according to Ministry of Health data. 
The study involved participants from three districts of Mashhad, 
grouped into nine areas around Mashhad Healthcare Center sec-
tions. In 2010, baseline screening began with a 79% response rate 
through stratified cluster random sampling. Eligible candidates 
were then invited for a physical examination meeting, with inclu-
sion criteria consisting of males and females aged 35–65. A total 
of 9704 individuals within this age range were initially included 
but following the exclusion of ineligible candidates, 9639 partici-
pants were included in the main analysis (Figure 1). Participants 
were informed of the data usage and provided written consent. 
The research protocol was approved by the Ethical Committee of 
Mashhad University of Medical Sciences.

2.2   |   Baseline Examination

Blood samples were obtained from participants between 8 and 
10 a.m. following a 14-h overnight fast, through venepuncture of 
an antecubital vein. The collection of blood samples was done in 
vacuum tubes (20 mL) from contributors in an upright position, 
following a standardized protocol. Subsequently, all blood sam-
ples underwent centrifugation at temperatures ranging from 
20°C to 25°C within 30 to 45 min to separate the serum from 
whole blood into six 0.5-mL aliquots, which were then sent to 
the Bu Ali Research Institute in Mashhad. In cases where serum 
TG concentrations were below 400 mg/dL, the low-LDL-C was 
calculated based on the serum TC, and HDL-C concentrations 
measured in mg/dL using the Fried Ewald formula [39].

Anthropometric measurements were conducted by a registered 
nurse, encompassing factors such as weight, height, waist height, 
WHR, BRI, BAI, AVI, VAI, LAP, BMI, and BSA. Participants 
were required to wear light clothing and no shoes during these 
measurements. Following the guidelines from the World Health 
Organization, BMI was determined using Quetelet's index: BMI 
(kg/m2) = weight/height2 [3] and classified based on WHO crite-
ria into underweight (<18), normal (18–25), overweight (25–30), 
and obese (≥30) categories. The calculations for BMI, BAI, BRI, 
BSA, AVI, LAP, and VAI were performed using the provided for-
mulas in Table 1.

2.3   |   Statistical Analysis

The primary software utilized for the analysis was the R 
Statistical Software (v4.1.2) [40], with IBM SPSS Statistics 
(Version 27) also playing a key role in the analysis. Descriptive 
statistics were used to present continuous and normally distrib-
uted variables as mean ± SD, median (Q1, Q3) for continuous 
and non-normally distributed variables, and percentages for 
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categorical variables. A significance level of <0.05 was consid-
ered statistically significant.

For comparisons between groups, t-tests were employed for con-
tinuous and normally distributed variables, while the Mann–
Whitney U test was used for non-normally distributed variables, 
specifically to compare the mean and median levels between TC 
<200 and TC ≥200 in male and female subgroups. The associ-
ation between categorical variables and binary outcomes was 
assessed using the chi-square test.

The dataset was split into training and testing subsets (75% and 
25%, respectively) using the holdout method. To evaluate multicol-
linearity among independent variables, correlation coefficients, 
and variance inflation factor (VIF) computations were conducted.

The ability of anthropometric indices including BMI, LAP, BAI, 
AVI, Waist high, Waist hip, BSA, BRI, and VAI (were calculated 
using the formulas in Table  2) to indicate the presence of TC 
<200 and TC ≥200 was measured by the receiver-operating 
characteristic (ROC) analysis.

FIGURE 1    |    Flowchart of this study.

TABLE 1    |    Measurement of anthropometric indices.

Variables Formula References

BRI
365.2 − 365.5 ×

√
(

1−
(

Waist circumference [cm]

2�

)2
)

[(0.5×Height)]
2

[27]

VAI Men =

(

Waist circumference [cm]

[39.68+ (1.88×BMI)]

)

×

(

TG

1.03

)

×

(

1.31

HDL

)

Women =

(

Waist Circumference [cm]

[36.58+ (1.89×BMI)]

)

×

(

TG

0.81

)

×

(

1.52

HDL

)

[26]

LAP Men = (Waist circumference [cm] − 65) ×
(

TG concentration
[

mmol

L

])

Women = (Waist circumference [cm] − 58) ×
(

TG concentration
[

mmol

L

])

[30]

AVI
[

2 (Waist [cm])
2
+ 0.7 (Waist [cm]−Hip [cm])

2

1000

]

[31]

BSA Men = 0.000579479 ×Weight
[

kg
]0.38

×Height [cm]1.24

Women = 0.000975482 ×Weight
[

kg
]0.46

×Height [cm]1.08

[74]

BAI
[

Hip circumference [cm]

Height [m]1.5

]

− 18 [34]

BMI BMI =
Weight [kg]
Height [m]2

[75]

Abbreviations: AVI, abdominal volume index; BAI, Body Adiposity Index; BMI, Body Mass Index; BRI, body roundness index; BSA, body surface area; HDL, high-
density lipoproteins; LAP, lipid accumulation product; TG, triglyceride; VAI, Visceral Adiposity Index.
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As we used LR to compute the odds ratios (OR) with their 95% 
confidence interval, for comparing the model's superiority in the 
fit test, the deviance as a likelihood ratio statistic was applied.

2.4   |   Decision Tree

A machine learning technique known as DT was employed 
in this study to develop a predictive model for anthropometric 
measurements using the available data. Decision trees, as a type 
of nonparametric method, are named after the target variable 
they aim to predict. The main objective when creating a decision 
tree model is to predict outcomes based on input predictor vari-
ables. These tree-building algorithms establish splitting criteria 
at internal nodes to construct the tree structure  [41–43]. Each 
node's split is designed to minimize impurity within that node. 
In cases where a split does not improve impurity reduction, the 
node remains unchanged and becomes a leaf node. Successful 
splits that effectively reduce impurity are chosen based on 
the greatest impurity reduction, leading to the creation of two 
branches and new nodes. The Gini index is a common criterion 
used for splitting decisions.

Within the context of the Classification and Regression Trees 
(CART) method, the selection of splitting variables at internal 
nodes is guided by maximizing the Gini index to build a binary 
tree. The importance of predictor variables is indicated by subse-
quent splits, starting with all observations at the root node. The 
specific performance metrics, such as specificity, accuracy, and 
precision, of the decision tree algorithm were evaluated using 
ROC curves in the R software version 4.0.5. Additionally, the 
confusion matrix of the decision trees was examined to further 
assess their performance.

2.5   |   Random Forest

The dataset underwent a data mining process, and a neural net-
work was utilized to construct a predictive model for TC ≥200 
measurements. Within this context, an RF algorithm, which 
employs an ensemble of decision trees for predictive analysis, 

Gini(D) = 1 −

m
∑

i=1

P2
i

TABLE 2    |    Baseline characteristics of males and females.

Variables All, N = 9704

Males, N = 3847

p

Females, N = 5792

p
TC <200, 
N = 2534

TC ≥200, 
N = 1313 TC <200, N = 3391

TC ≥200, 
N = 2401

BRI 5.45 ± 1.91a 4.45 ± 1.39 4.79 ± 1.42 ≤0.001 5.84 ± 1.91 6.32 ± 2.01 ≤0.001

AVI 18.52 ± 4.60 17.56 ± 4.07 18.48 ± 4.11 ≤0.001 18.54 ± 4.74 19.52 ± 4.95 ≤0.001

BAI 33.31 ± 6.47 28.04 ± 4.09 28.75 ± 4.14 ≤0.001 36.30 ± 5.43 37.17 ± 5.56 ≤0.001

Age 48.08 ± 8.26 48.57 ± 8.48 49.51 ± 8.34 0.001 45.94 ± 7.78 49.79 ± 7.99 ≤0.001

Waist high 59.50 ± 8.26 55.10 ± 6.66 56.73 ± 6.45 ≤0.001 61.22 ± 8.15 63.26 ± 8.21 ≤0.001

BSA 1.78 ± 0.19 1.86 ± 0.18 1.88 ± 0.17 ≤0.001 1.72 ± 0.17 1.73 ± 0.16 0.045

Waist hip 0.92 (0.87, 0.97)b 0.92 (0.88, 
0.96)

0.94 (0.90, 
0.97)

≤0.001 0.91 (0.85, 0.96) 0.93 (0.87, 
0.98)

≤0.001

VAI 2.14 (1.37, 3.30) 1.74 (1.10, 
2.75)

2.16 (1.41, 
3.37)

≤0.001 2.07 (1.37, 3.09) 2.69 (1.83, 
4.10)

≤0.001

LAP 46.16 (27.64, 73.52) 34.76 (19.75, 
58.23)

52.66 (32.83, 
83.24)

≤0.001 41.77 (25.92, 64.49) 62.84 (40.85, 
96.93)

≤0.001

BMI

Underweight 
(<18)

93 (0.96)c 55 (2.17) 7 (0.53) ≤0.001 20 (0.59) 11 (0.46) ≤0.001

Normal 
(18–25)

2582 (26.61) 971 (38.32) 403 (30.69) 784 (23.12) 401 (16.70)

Overweight 
(25–30)

4091 (42.16) 1098 (43.33) 645 (49.12) 1329 (39.19) 999 (41.61)

Obese (>30) 2912 (30.01) 404 (15.94) 254 (19.35) 1246 (36.74) 989 (41.19)

Abbreviations: AVI, abdominal volume index; BAI, Body Adiposity Index; BMI, Body Mass Index; BRI, body roundness index; BSA, body surface area; LAP, lipid 
accumulation product; VAI, Visceral Adiposity Index.
aMean ± SD for continuous and normal variables and p value of two sample t test.
bMedian (Q1, Q3) for continuous and abnormal variables and p value of Mann Whitney U test.
cCount (percentage) for categorical variables and p value of chi square test.
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was employed. The goal of an RF is to reduce overfitting and im-
prove generalization performance by combining the predictions 
of multiple DTs.

To create a random forest, a set of DTs are trained on randomly 
sampled subsets of the data. During training, each tree is trained 
independently of the others and is allowed to make a prediction 
based on only a subset of the available features. This process is 
known as feature bagging, and it helps to reduce the correlation 
between the trees and improve the overall performance of the 
forest. When making a prediction, each decision tree in the for-
est independently produces a prediction, and the final prediction 
is made by taking the majority vote of all the trees. This method 
of combining predictions is known as bagging, and it helps to re-
duce the variance of the predictions and improve the accuracy of 
the model.

Random Forests have several advantages over other machine 
learning algorithms. They are highly accurate, even when 
dealing with noisy or missing data, and they can handle large 
datasets with many features. Additionally, they are resistant to 
overfitting, which makes them a popular choice for many appli-
cations. In summary, an RF is a powerful machine learning al-
gorithm that combines the predictions of multiple DTs to make 
accurate predictions. By using feature bagging and bagging to 
reduce the variance of the predictions and improve generaliza-
tion performance, RFs can handle large datasets and are resis-
tant to overfitting.

In this paper, we have divided the train and test data into a 
ratio of 75% and 25%, respectively. To implement the random 
forest, we used the R software, and the confusion matrix of 
the random forest was used to evaluate the accuracy, preci-
sion, and sensitivity other result the obtained results are re-
ported below.

3   |   Result

3.1   |   Characteristics of Population

Table 2 provides a summary of the participants' baseline clinical 
characteristics. It shows men and women whose clinical char-
acteristics them are divided into those with TC <200 and those 
with TC ≥200. It shows that among 9639 eligible participants, 
5925 with TC <200 and 3714 with TC ≥200 was observed. The 
distribution of sexual groups in the TC <200 subsample consists 
of 42.7% male and 57.2% female. Overall age was 48.08 ± 8.26, 
but the average age of subjects in subsamples with TC <200 for 
males was higher than for females (48.57 ± 8.48 vs. 45.94 ± 7.78). 
The table gives evidence for significant differences between 
men and women for most variables. The anthropometric and 
other variables were compared between both with TC <200 
and TC ≥200 groups using the t-test, for continuous and normal 
variables, Mann–Whitney U test for continuous and abnormal 
variables, and a chi-square test for categorical variables. All 
variables had significant differences between the two groups 
(p value < 0.001), except the BSA of females in the subgroup of 
TC <200 versus TC ≥200 (p value = 0.04). Also, in participants 
with TC ≥200, 49.12% of males and 41.61% of females were from 
overweight subjects. Note that the difference in the total num-
ber of subgroups and the frequencies of BMI in total is due to 
missing data.

Binary response variables (TC <200 and TC ≥200) association 
with anthropometric predictors has been done by three data 
mining techniques. Hence, our primary aim focused on pre-
dicting TC <200 and TC ≥200 by employing LR, DT, and RF 
models, with a specific emphasis on identifying the relevant 
anthropometric indicators associated with these outcomes. To 
achieve this goal, the dataset was partitioned into two distinct 
subsets for the DT and RF models: a training dataset and a test 

TABLE 3    |    Regression models with binary cholesterol as response variable.

Variables

Model A, N = 9639 Model B (Males), N = 3847
Model C (Females), 

N = 5792

OR (CI 95%) p OR (CI 95%) p OR (CI 95%) p

Sex 1.14 (1.01, 1.29) 0.029 — —

VAI 1.13 (1.11, 1.16) 0.000 1.13 (1.09, 1.17) ≤0.001 1.13 (1.09, 1.15) ≤0.001

BAI 1.02 (1.01, 1.04) 0.000 1.02 (1.01, 1.05) 0.010 1.02 (1.01, 1.03) 0.001

Age 1.04 (1.03, 1.04) 0.000 1.01 (1.01, 1.02) 0.050 1.05 (1.04, 1.06) ≤0.001

Waist hip 2.37 (1.32, 4.25) 0.004 4.17 (1.43, 12.16) 0.009 1.60 (0.78, 3.26) 0.193

BMI

Underweight (<18) 0.69 (0.41, 1.18) 0.173 0.41 (0.18, 0.92) 0.031 1.18 (0.54, 2.56) 0.677

Normal (18–25) Ref — Ref — Ref —

Overweight (25–30) 1.17 (1.04, 1.32) 0.009 1.08 (0.91, 1.30) 0.374 1.23 (1.05, 1.45) 0.010

Obese (>30) 1.01 (0.86, 1.19) 0.870 0.97 (0.73, 1.28) 0.848 1.03 (0.83, 1.27) 0.784

Accuracy 63% 66% 63%
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dataset in a 25%–75% ratio. The training dataset was employed 
for model development in both DT and RF approaches, while the 
test dataset (25%) was used for validation purposes.

3.2   |   Anthropometric Measurements Relation 
With TC (TC <200 and TC ≥200) Using LR Model

The results of logistic regression in Model A and Model B are re-
ported in Table 3. The models included the effect of having VAI, 
BAI, age, and BMI. Models show the odd ratio of parameters and 
their 95% CIs with TC ≥200 response variable among men and 
women. Other anthropometric indices were excluded because of 
multicollinearity. Also, logistic models were fitted for each sub-
group with an accuracy of 63% and 66% for females and males, 
respectively. The results in Model A showed that all variables 
were significant (p < 0.05) except BMI Overweight (25–30) and 
BMI Obese (>30). The results of regression in Model A showed 
that the Waist hip (OR = 4.17, 95% CI = [1.43, 12.16]) and for every 
unit increase in VAI and BAI were related to an increased odd of 
TC ≥200 by 13% and 2%, respectively (OR = 1.13 [1.09, 1.17] and 
OR = 1.02 [1.007, 1.05]). The odd ratio for BMI Underweight (<18) 
is <1 (OR = 0.41 [0.18, 0.92]), which means the lower value of BMI 
reduces the chance of TC ≥200. Other anthropometric indices 
were excluded because of multicollinearity. The obtained results 
in model B shows that by increasing one unit in VAI and Age the 
odd of TC ≥200 increased 12% and 5%, respectively (VAI OR = 1.12 
CI 95% [1.09, 1.15] and Age OR = 1.05 CI 95% [1.04, 1.06]). The OR 
of BMI in the case of Overweight (25–30) is 1.238. It reveals that 
increasing a unit of BMI in the range of (25–30) increased the odds 
of TC ≥200. The other cases of BMI were not significant.

3.3   |   Anthropometric Measurements Relation to 
TC Using DT Model

Table 4 presents the results of the DT training concerning bio-
chemical factors and clinical features categorized by gender. 
Through the DT algorithm, binary risk factors (TC <200 vs. TC 
≥200) were identified and categorized accordingly. In the DT 
model, the initial variable (root) is deemed to hold the highest 
significance in classifying the data, with subsequent factors 
showing progressively diminishing importance.

In males, LAP exhibited the most significant impact on the risk of 
developing elevated TC levels. Within the subgroup characterized 
by LAP ≥36.02, Age ≥47, LAP ≥81.59, VAI <3.46, and BMI <31, 
92% of the population displayed higher TC levels (indicating the 
highest risk of Cholesterol ≥200). Conversely, among individuals 
with LAP <36.02 and BMI <18.62, 91% were identified as having 
lower TC levels (suggesting the lowest risk of Cholesterol <200).

Similarly, for females, LAP emerged as the key factor influencing 
the risk of TC development. Among those in the subgroup with 
LAP ≥44, Age ≥49, LAP ≥86, VAI <3.35, and BMI <32.97, 98% 
were at the highest risk of elevated TC levels. In contrast, individ-
uals with LAP <44.17, Age <48, Waist hip ≥0.70, and AVI ≥14 
showed that 84% had lower TC levels (indicative of the lowest risk 
of Cholesterol <200). The specific criteria for TC risk assessment 
in males and females generated by the DT model can be found in 
Table 4. Male and female DT are shown in Figures 2 and 3.

TABLE 4    |    DT Rules for TC <200 and TC ≥200.

Number Rules
TC 

<200
TC 

≥200

Males

1 LAP ≥36.02 & Age ≥47 
& LAP ≥81.59 & VAI 
<3.46 & BMI <31.56

0.08 0.92

2 LAP ≥36.02 & Age ≥47 
& LAP ≥81.59 & VAI 
<3.46 & BMI ≥31.56

0.31 0.69

3 LAP ≥36.02 & Age ≥47 
& LAP ≥81.59 & VAI 
≥3.46 & LAP ≥228.51

0.16 0.84

4 LAP ≥36.02 & Age ≥47 
& LAP ≥81.59 & VAI 
≥3.46& LAP<228.51

0.52 0.48

5 LAP ≥36.02 & Age ≥47 
& LAP <81.59 & BAI 
<43.44 & BMI <21.12

0.30 0.70

6 LAP ≥36.02 & Age ≥47 
& LAP <81.59 & BAI 

<43.438 & BMI_ ≥21.12

0.60 0.40

7 LAP ≥36.02 & Age ≥47 & 
LAP <81.59 & BAI ≥43.44

0.27 0.73

8 LAP ≥36.02 & Age <47 & 
LAP ≥96.26 & VAI ≥9.64

0.20 0.80

9 LAP ≥36.02 & Age <47 & 
LAP ≥96.26 & VAI <9.64

0.47 0.53

10 LAP ≥36.02 & Age <47 & 
LAP <96.26 & Age <37

0.52 0.47

11 LAP ≥36.02 & Age <47 & 
LAP <96.26 & Age ≥37

0.64 0.36

12 LAP <36.02 & BMI 
≥18.62 & VAI ≥1.19

0.74 0.26

13 LAP <36.02 & BMI ≥18.62 & 
VAI <1.19 & Waist hip <0.85

0.73 0.27

14 LAP <36.02 & BMI ≥18.62 & 
VAI <1.19 & Waist hip ≥0.85

0.83 0.17

15 LAP <36.02 & BMI <18.62 0.91 0.09

Females

1 LAP ≥44.17 &Age ≥49 
& LAP ≥86.88 & VAI 
<3.35 & BMI <32.97

0.02 0.98

2 LAP ≥44.17 & Age ≥49 
& LAP ≥86.88 & VAI 
<3.345 & BMI ≥32.97

0.16 0.84

3 LAP ≥44.17 & Age ≥49 
& LAP ≥86.88 & VAI 
≥3.35 & LAP ≥118.02

0.20 0.80

(Continues)
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3.4   |   Random Forest Model for Males and Females

According to the results of the Random Forest model, as shown 
in Figure  1, the LAP and VAI were the important variables 
for males. It can be concluded that when the value of LAP is 
greater than almost 50, the likelihood of individuals developing 
higher TC increases, if this value exceeds 200, the likelihood of 

developing the disease remains constant. The VAI is the second 
in terms of importance in this model, when the VAI was <5, the 
likelihood of developing a high TC level was very low, between 
5 and 10 the likelihood increased and if the VAI was above 10 
the likelihood of developing is approximately constant (Table 5).

Again, for women, the LAP and VAI were the important vari-
ables in the model. In the case of LAP exceeding 200, the like-
lihood of developing a high TC level increase, when this value 
is above 200 this likelihood is almost constant. The VAI is the 
second in terms of importance for females, when the VAI was 
<20 the likelihood was increasing and if the VAI was above 20 
the likelihood of developing is constant.

4   |   Discussion

The Random Forest model determined that the most import-
ant variables for males were VAI and LAP. The likelihood of 
developing tuberculosis (TC) increases when the LAP value is 
greater than approximately 50, and it stays constant when the 
value is >200. There was a very low likelihood of developing TC 
when the VAI was <5, an increasing likelihood between 5 and 
10, and an approximately constant likelihood above 10 in this 
model. The VAI is the second-most important variable in this 
model. The most important variables in the model for women 
were LAP and VAI. The risk of developing TC increases when 
LAP is >200 and remains relatively constant beyond this value. 
The second most important factor for females is the VAI. If the 
VAI was <20, the likelihood of developing increased, and above 
20, it was constant.

Similar findings were reported in 2015 by a study that indicated 
the relation between lipid profile indices and anthropometric pa-
rameters. The study stated the results show the poor health status 
of ethnic Italian people and these data are needed for future clini-
cal use and screenings [44]. Another study on this matter resulted 
in the lipid profile indices (TC, TG, TG/HDL) being associated 
with similar factors such as BMI, WHR, and waist circumference 
[45]. The risk of cardiovascular diseases by these aerometric fac-
tors has been previously assessed in Iran and viewed as a better 
understanding of what the population is like [46].

When laboratory measurements are unavailable, anthropomet-
ric measures may replace total cholesterol in predicting major 
adverse cardiovascular events in individuals under 50 years 
old, according to the overall model performance. However, this 
might not be the case for individuals 50 years of age and older. 
Even when the anthropometric measures were used together, 
total cholesterol remained the best among participants aged 50 
and above. According to several studies [47–50], the predictive 
power of BMI for cardiovascular disease (CVD) does reduce 
with age. Another study recently accomplished in Iran indicates 
waist-to-hip-to-height ratio and waist-to-height ratio are more 
precise indices than BMI and WC for predicting distinct risk fac-
tors for cardiovascular diseases [51]. This statement is consistent 
with the idea that placing exclusive reliance on conventional 
risk factors may not be suitable for older individuals, where fur-
ther improvement in discriminatory capacity can be achieved 
through the utilization of laboratory findings, such as novel 
circulating biomarkers [52, 53]. While it is generally feasible to 

Number Rules
TC 

<200
TC 

≥200

4 LAP ≥44.17 & Age ≥49 
& LAP ≥86.88 & VAI 
≥3.35 & LAP <118.02

0.40 0.60

5 LAP ≥44.17 & Age ≥49 
& LAP <86.88 & BAI 
<30.38 & BMI ≥23.96

0.20 0.80

6 LAP ≥44.17 & Age ≥49 
& LAP <86.88 & BAI 
<30.38 & BMI <23.96

0.41 0.59

7 LAP ≥44.17 & Age ≥49 
& LAP <86.88 & BAI 
≥30.38 & AVI <17.54

0.34 0.66

8 LAP ≥44.17 & Age ≥49 
& LAP <86.88 & BAI 
≥30.38 & AVI ≥17.54

0.52 0.48

9 LAP ≥44.17 & Age <49 & 
LAP ≥124.46 & VAI <4.68

0.19 0.81

10 LAP ≥44.17 & Age <49 & 
LAP ≥124.46 & VAI ≥4.68

0.46 0.54

11 LAP ≥44.17& Age <49 & 
LAP <124.46 &Age ≥44

0.56 0.44

12 LAP ≥44.167 & Age <49 & 
LAP <124.46 & Age <44

0.60 0.40

13 LAP <44.17 & Age ≥48 
&AVI <13.50 & LAP ≥34.28

0.10 0.90

14 LAP <44.17 & Age ≥48 & 
AVI <13.50& LAP <34.28

0.50 0.50

15 LAP <44.17 & Age 
≥48 & AVI ≥13.50 & 

Waist hip <1.01

0.63 0.37

16 LAP <44.17 & Age ≥48 & 
AVI ≥13.50 & Waist hip ≥1.1

0.77 0.23

17 LAP <44.17 or Missing 
& Age <48 or Missing & 

Waist hip <0.70 or Missing

0.51 0.49

18 LAP <44.17 & Age 
<48 & Waist hip ≥0.70 

& AVI <14.19

0.78 0.22

19 LAP <44.17 & Age 
<48 & Waist hip ≥0.70 

& AVI ≥14.19

0.84 0.16

TABLE 4    |    (Continued)
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evaluate conventional CVD risk factors in high-income nations, 
this may not be the situation in resource-constrained environ-
ments. Many nonlaboratory risk equations have been proposed, 
but they depend on a lot of different factors and might be hard to 
use in everyday clinical practice [7].

Several epidemiologic studies involving different genders and 
ethnic groups have conclusively shown that dyslipidemia, 

which is defined as high levels of LDL cholesterol, low lev-
els of HDL cholesterol, and high levels of VLDL cholesterol 
and triglycerides, is positively associated with excess body fat, 
especially abdominal fat [54, 55]. Increasing BMI may identify 
prevalent dyslipidemia more accurately than other anthro-
pometric measurements in the nonobese Chinese population 
aged 40 years and older [56]. An earlier study found a simi-
lar trend when looking at obese children (aged 8–18), no 

FIGURE 2    |    Decision tree for TC <200 and TC ≥200 in males and females.
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association between BMI, WC, TC, and a weak correlation 
between BMI and triglycerides. A study conducted by Sarni 
et al. [57] found no correlation between WC and triglyceride 
or TC levels in preschoolers. According to the results of the 
multiple regression analysis, the association between WC, TG, 
and HDL-C was stronger than that between BMI and LDL-C, 
while BMI was more closely related to LDL-C [58]. The inabil-
ity to differentiate between fat and muscle mass or to reveal 
the age-related increase in body fat mass and decrease in mus-
cle mass are some of the limitations of using BMI as a metric 
for defining obesity, a risk factor for cardiovascular diseases 
[59, 60]. Hence, the VAI assumes significant importance as 
a gender-specific detection tool that incorporates metabolic/
lipidemic parameters (HDL-c, TG) and anthropometric mea-
surements (BMI, WC) to identify visceral adiposity dysfunc-
tion and serve as a marker for obesity and cardiometabolic 
risk [61, 62].

Our study findings emphasized the significance of LAP and 
VAI as key variables for males. VAI exhibited a robust correla-
tion with HDL-C and TG as well. The potential association 
between dyslipidemia and these biochemical parameters (TG 
and HDL-C) can be inferred due to their incorporation in the 
VAI formula [63].

The study carried out by Uzdil et al. [64] among patients with 
Metabolic Syndrome (MetS) revealed that the VAI and BRI in-
dices could serve as valuable tools for assessing plasma lipid 

profiles. When examining these indices of blood lipids, VAI ex-
hibited the strongest correlation in both genders [64]. Conversely, 
contrary to the results, the level of LDL-c in men showed an in-
crease of 5.56 mg/dL with every one-unit rise in BRI [64]. While 
research on BRI is limited, available evidence suggests its poten-
tial utility in predicting the risk of conditions such as diabetes, 
CVD, and left ventricular hypertrophy [65, 66]. Geraci et al. [66] 
identified a correlation between BRI and atherosclerotic dam-
age. Li et  al. [67], after adjusting for age and gender, reported 
associations between BRI and TG, HDL-c, LDL-c, and blood 
pressure in the adult population.

Amato et  al. [59] observed a robust correlation between VAI 
and CVD events in their AlkaMeSy study involving Caucasian 
adults. Among Asian individuals, Mohammadreza et  al. [68] 
found that an increase in VAI elevated the risk of CVD in both 
males and females. A study conducted in Argentina demon-
strated a positive correlation between VAI and CVD [69]. In a 
study by Ferraù et  al. [70], HDL-c and the Visceral Adiposity 
Index were found to be linked in craniofacial patients. However, 
there is a scarcity of prospective studies on VAI and its long-term 
cardiovascular risk implications to date.

Based on our study, for men and women, the LAP and VAI were 
the important variables. Compared with men, women have a 
stronger indicator of all-cause mortality in LAP [71]. The exact 
reason behind this is still unknown, but it is likely connected to 
the fact that lipid overaccumulation occurs differently in men 

FIGURE 3    |    Result of random forest.
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and women as they age [72]. Furthermore, metabolic risk and 
lipid distribution may interact differently in women than in 
men. Women show metabolic risk factors at lower weight cut-
offs than men [72]. Women are more likely than men to develop 
CVD if they have hypertriglyceridemia [73]. In agreement with 
our study, LAP is a more accurate predictor of mortality in males 
under the age of 50 than in men over the age of 50 [71]. This 
could be because men experience an increase in cardiovascular 
events at a younger age than women do, possibly because LAP 
increases more quickly for men than for women among younger 
adults [32].

In clinical practice, anthropometric indices (such as LAP and 
VAI) are a valuable part of risk assessment, especially in situa-
tions in which access to laboratory data is limited. These simple 
and noninvasive measures can provide additional understand-
ing of an individual's status.

For instance, the DT analysis identified specific thresholds for LAP 
and VAI that could be used to divide patients into high and low-
risk categories for elevated TC. Using these thresholds, along with 
other factors such as age and family history, could assist physicians 
in providing better prevention and management of diseases.

TABLE 5    |    Evaluation indices for DT and RF algorithms.

DT model for Male 

(a) Training (n = 2885) 

Actual Predicted Count 
TC<200 TC≥200 

TC<200 1827 74 

TC≥200 834 150 
 

(b) Testing (n =941) 

Actual Predicted Count 
TC<200 TC≥200 

TC<200 607 25 

TC≥200 284 45 
 

Sensitivity = 68% AUC =67 % Sensitivity =68 % AUC =63 % 

Accuracy =68 % Precision =68 % Accuracy =69 % Precision = 68% 

DT model for Female 
(a) Training (n =4343) 

Actual Predicted Count 
TC<200 TC≥200 

TC<200 2275 268 

TC≥200 1183 617 
 

(b) Testing (n =1448) 

Actual Predicted Count 
TC<200 TC≥200 

TC<200 744 103 

TC≥200 399 202 
 

Sensitivity = 65% AUC =71 % Sensitivity =65 % AUC =69 % 

Accuracy =66 % Precision = 65% Accuracy =65 % Precision =65 % 

RF model for Male 

(c) Training (n =1031) 

Actual Predicted Count 
TC<200 TC≥200 

TC<200 577 257 

TC≥200 85 112 
 

(d) Testing (n =2854) 

Actual Predicted Count 
TC<200 TC≥200 

TC<200 1910 0 

TC≥200 0 944 
 

Sensitivity =87 % AUC =70 % Sensitivity =100 % AUC =100 % 

Accuracy =67 % Precision =87 % Accuracy =100 % Precision =100% 

RF model for Female 
(c) Training (n =4429) 

Actual Predicted Count 
TC<200 TC≥200 

TC<200 2576 0 

TC≥200 0 1853 
 

(d) Testing (n =1390) 

Actual Predicted Count 
TC<200 TC≥200 

TC<200 657 266 

TC≥200 185 282 
 

Sensitivity =100 % AUC =100 % Sensitivity = 78 % AUC =70 % 

Accuracy =100 % Precision =100% Accuracy =67 % Precision =78 % 
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Lastly, the stronger relation found between LAP/VAI and TC 
levels, compared with BMI, suggests these indices could be more 
sensitive factors of visceral adiposity and metabolic dysfunction. 
This fact may be especially associated with older patients, in 
which the predictive power of BMI may not be as useful.

4.1   |   Limitations and Strengths

There are several limitations in the study that should be taken 
into account. First, due to the limitation of ethnicity in our 
country, we were not able to evaluate these findings in different 
ethnicities as most of Iran's population are Persians. The extent 
to which the results can be generalized to other populations is 
therefore limited. Second, specific thresholds and risk factors 
that have been found in this study need further validation for 
being used in clinical practice. Additional work on this matter 
is needed to assess the utility of incorporating our findings into 
cholesterol management guidelines. And lastly, since this is a 
cross-sectional study, we cannot establish relationships between 
the anthropometric measures and TC level. Longitudinal stud-
ies would be necessary for a better understanding of the tempo-
ral associations.

Some of the findings that strengthen our results should also 
be addressed. Our findings resulted in a broader range of an-
thropometric indices, including newer factors such as the Lipid 
LAP and VAI, which indicate the comprehensive assessment of 
various anthropometric indices in our study. We also utilized 
gender-stratified analysis, which is a useful finding for tailor-
ing the findings and thresholds for men and women. Our find-
ings could be able to aid physicians in their management and 
monitoring of diseases, which in limited accessed areas can be 
helpful.

5   |   Conclusion

An important discovery lies in the association between anthro-
pometric indices and total cholesterol (TC) levels, revealing sub-
stantial variations among different age and gender, specifically 
LAP and VAI. These insights present valuable information that 
can assist healthcare providers in assessing and screening risk 
factors for cardiovascular and metabolic diseases. Noteworthy 
for its simplicity, cost-effectiveness, and ease of implementation, 
these data can potentially serve as a practical tool for monitoring 
cardiovascular and metabolic health in both adult and elderly 
populations.
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