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Formalin-fixed paraffin-embedded (FFPE) samples are valuable but underutilized in single-cell omics
research due to their lowRNAquality. In this study, leveraging a recent advance in single-cell genomic
technology, we introduce snPATHO-seq, a versatile method to derive high-quality single-nucleus
transcriptomic data from FFPE samples. We benchmarked the performance of the snPATHO-seq
workflow against existing 10x 3’ and Flex assays designed for frozen or fresh samples and highlighted
the consistency in snRNA-seq data produced by all workflows. The snPATHO-seq workflow also
demonstrated high robustness when tested across a wide range of healthy and diseased FFPE tissue
samples. When combined with FFPE spatial transcriptomic technologies such as FFPE Visium, the
snPATHO-seq provides a multi-modal sampling approach for FFPE samples, allowing more
comprehensive transcriptomic characterization.

Clinical tissue samples are routinely preserved as formalin-fixed paraffin-
embedded (FFPE) samples. Most pathology laboratories in the US process
between 10,000 and 100,000 FFPE blocks annually, representing a sig-
nificant resource for clinical research1. Advances in molecular technologies
such as genomic, transcriptomic, and proteomic techniques have expanded
the use of FFPE samples for molecular characterization2–5. However, these
applications are often conducted at the bulk level and cannot fully resolve
the molecular heterogeneity in cancers and other biological settings. Con-
sidering the abundance of clinical FFPE samples, technologies enabling
single-cell profiling of FFPE samples hold immense potential to advance
human health research.

Previously, our team successfully conducted single-nucleus genomic
profiling using clinical human FFPE tissue samples, demonstrating the
feasibility of isolating intact nuclei from FFPE samples for molecular
characterization6. However, extending this technology to transcriptomics
poses a significant challenge due to RNA fragmentation in FFPE samples
caused by formalin fixation, high heat, and paraffin embedding2. Many

conventional single-cell RNA sequencing (scRNA-seq) technologies, such
as 10x 3’ and SMART-seq, rely on the generation of cDNA libraries through
poly(dT) probe capture and reverse transcription of intact mRNA
molecules7,8. This dependency on RNA integrity makes these protocols
suboptimal for FFPE samples.

An emerging strategy for gene expression profiling in FFPE samples is
RNA-binding probes. This strategy has been widely adopted in spatial
transcriptomic technologies, such asMERFISH, 10x FFPEVisium, and 10x
Xenium9–11. Probes used in these assays target short sections (e.g., 50 bp in
10xFFPEVisiumassay) of theRNAmolecules,making this gene expression
detection strategy more resilient against RNA fragmentation. However,
these spatial transcriptomic technologies cannot provide transcriptomic-
levelmolecular characterization (e.g.,MERFISHand10xXenium)or single-
cell resolution (e.g., 10x Visium) due to technical limitations. Therefore,
scRNA-seq remains apowerful tool forunbiasedmolecular characterization
of tissue samples, which can enhance the interpretation of spatial tran-
scriptomics data when integrated.
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In 2022, 10x Genomics released a new chemistry, the 10x Flex assay,
adopting a similar probe design from the 10x FFPEVisium assay to scRNA-
seq12. The default workflow is designed for fresh or frozen samples, where
the samples arefirstfixed andprepared into a single-cell/nucleus suspension
before hybridizingwith the Flex probes.Upon capturing the cells/nuclei, the
probes, instead of the RNA transcripts, are barcoded and processed into a
sequencing library for gene expression profiling. Since only small sections of
the RNA molecules are targeted, the 10x Flex chemistry is suitable for
formalin-fixed samples where RNA integrity is impaired.

In light of this technical advancement, we have developed a nuclei
isolation protocol tailored for FFPE samples. Our protocol includes serial
steps of rehydration, enzyme-based tissue dissociation, and nuclei isolation
prior to gene expression analysis using the 10x Flex assay. The combined
nuclei isolation and gene expression analysis is termed snPATHO-seq. We
tested the snPATHO-seq workflow on three human breast cancer tissue
samples anddemonstrated its concordancewith the conventional 10x3’ and
10x Flex chemistries that had only been released for fresh or frozen samples
at the time. During manuscript preparation, 10x Genomics released a
demonstrated protocol to enable scRNA-seq profiling of FFPE samples
using the sameFlex chemistry13.Amajordifference between the snPATHO-
seq and the scFFPE workflows is the lack of cell membrane lysis and nuclei
isolation processes in the scFFPE workflow. We directly compared the
scFFPE to the snPATHO-seq and observed the isolation of both intact
nuclei and cells from the FFPE tissue samples using the scFFPE protocol.
More recently, 10xGenomicshas amended the scFFPEprotocol tohighlight
its nature in isolating nuclei instead of cells from FFPE samples despite the
lack of a nuclei isolation procedure14. While the scFFPE protocol can detect
single-cell transcriptomic signatures representative of the biology in many
FFPE tissue samples tested, we demonstrated higher robustness of the
snPATHO-seq on the tissue samples tested, establishing it as amoremature
protocol for FFPE single-nucleus study. We release the snPATHO-seq
protocol and the data used for the evaluation to interested researchers
aiming to foster growth in the scientific community focusedonFFPEsingle-
cell research.

Results and discussion
10x Flex chemistry offers robust cell-type signature detection
with reduced transcriptomic coverage
Given that the 10x Flex chemistry is a relatively new assay with limited
performance evaluations, we first compared it to the well-established 10x 3’
assay using two replicates of PBMC samples from the same donor (Fig. 1a,
Supplementary Data 1). When standardized to the same sequencing depth
(~30,000 reads per cell), both the Flex and 3’ assays detected comparable
numbers of unique molecular identifiers (UMIs) and genes (Fig. 1b, c).
Principal component analysis (PCA) revealed a clear separation of the col-
lected data by cell lineage (i.e., T cells (CD3D), B cells (MS4A1), and myeloid
cells (CD14)) in the PBMC samples (Supplementary Fig. 1a). In addition, we
detected a separation of the Flex and 3’ data along PC2 (Supplementary
Fig. 1b, c). Further investigation highlighted several MHC class II genes
among the top drivers of PC2 (Supplementary Fig. 1d). While these genes are
critical functionalmarkers for immune cells, they were excluded from the Flex
probe panel due to high inherent allelic diversity15. Thus, caution is advised
when selecting the Flex assay for scRNA-seq gene expression readouts.

Nonetheless, we were able to identify comparable cell populations in
Flex and 3’ data following Seurat CCA integration (Fig. 1d). The Uniform
Manifold Approximation and Projection (UMAP) analysis showed no
obvious deviation between the data collected using the two methods
(Fig. 1e). We validated the detected cell type signatures through three dif-
ferent methods: expression of canonical cell type markers (Fig. 1g),
expression of the top 200 differentially expressed genes (Supplementary
Fig. 2a), and annotation of a public dataset16 using cell type signatures from
the current study (Supplementary Fig. 2b, c). We obtained good con-
cordance between the Flex and 3’ data across all three analysis methods
tested, suggesting the Flex assay can detect comparable cell type signatures
as the 3’ assay.

Interestingly, while there was no assay-specific cell type distribution,
innate lymphoid cells (ILCs) were more abundant in the Flex data than in
the 3’ data across both technical replicates (Fig. 1f). ILCs are challenging to
detect with conventional scRNA-seq methods due to the low RNA
content17,18. Considering that the Flex probes target small fragments of the
RNAmolecules with a reduced requirement for RNA quality compared to
the conventional 3’ assay, the increased ILC proportion likely reflects the
advantage of the Flex assay in detecting cell populations with low or
degraded RNA content.

The snPATHO-seq workflow combines nuclei isolation with 10x
Flex chemistry to enable snRNA-seq profiling on FFPE samples
The observations above gave us confidence in the performance of the
10x Flex assay as a substitute for the 10x 3’ assay with decreased tran-
scriptomic coverage. At the time of the first release, the Flex assay was
only compatible with fresh or frozen samples. However, considering the
similar design of the Flex probes to the 10x FFPE Visium probes, we
reasoned that the Flex assay could be adapted for FFPE samples. We
then designed a novel snRNA-seq workflow, snPATHO-seq, tailored
for human clinical FFPE tissue samples based on the Flex assay (Fig. 2a).
Our workflow features the extraction of intact nuclei from archival
FFPE samples, which are then used for transcriptomic profiling using
the 10x Flex assay. We were able to generate snRNA-seq data from 15
FFPE samples tested using the snPATHO-seq workflow (Supplemen-
tary Data 1). In addition, the snPATHO-seq protocol has been adopted
in recent studies19,20, and amore in-depth workflow illustration has been
released online21,22.

We tested the performance of the snPATHO-seq on three human
breast cancer samples, includingoneprimaryHER2-amplifiedbreast cancer
sample (4066) and two liver metastases (4399: TNBC and 4411: Luminal)
(Supplementary Data 1). Phase-contrast microscopy confirmed the isola-
tion of intact nuclei from the FFPE samples tested (Supplementary Fig. 3a).
Given thatnootherFFPEsnRNA-seqworkflowwas available at the time,we
compared the performance of the snPATHO-seq to the conventional 10x 3’
(frozen-3’) andFlex (frozen-Flex) assays using frozen tissues preserved from
the same tumor lesions. We did observe a decrease in the number of UMIs
and genes detected per nucleus in the snPATHO-seq data compared to the
frozen-Flex and frozen-3’ data, potentially due to the lower RNA quality of
the FFPE samples (Fig. 2b, c). Nonetheless, the snPATHO-seq and the
frozen-Flex data showed a good overlap in the lower dimensional UMAP
space without data integration (Fig. 2d, e). Using the Seurat CCA method,
we derived common cell type nomenclatures across all methods for each
sample. For samples 4066 and 4411, the identified cell populationsmatched
the morphological features of the tissue samples. Notably, we identified
myoepithelial cells known to be associated with normal mammary glands
and ductal carcinoma in situ (DCIS) in 4066 and liver resident cell types
(e.g., hepatocytes, cholangiocytes and liver sinusoidal endothelial cells
(LSECs)) in 4411 (Fig. 2f, Supplementary Figs. 4a and 5a, c). The identified
cell type proportions were generally comparable between the snRNA-seq
workflows tested for samples 4066 and 4411, while the concordance was
better between the snPATHO-seq and the frozen-Flex data (Fig. 2h, Sup-
plementary Fig. 4c). However, in sample 4399, the liver resident cell
populations were underrepresented in the frozen-Flex and frozen-3’ data
(Supplementary Figs. 4f, g and 5b). While we could validate the presence of
cancer-adjacent liver tissue in the FFPE sample, the frozen sample was
exhausted after nuclei extraction and could not be used for morphology
examination. Considering that the same cell populations could be identified
by the frozen-Flex and frozen-3’ workflows in sample 4411, the deviation
observed in 4399 is likely due to sampling bias between the FFPE and the
frozen samples.

In terms of the gene expression signatures, differential gene expression
analysis revealed comparable expression patterns of top differentially
expressed genes across the snRNA-seq workflows tested (Fig. 2i, Supple-
mentary Fig. 4d, h). Cancer cell copy number inference analysis successfully
predicted the amplification of theERBB2 gene in data from4066,which is in
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line with the clinical diagnosis of this tumor (Supplementary Fig. 6). In
addition, the copy number profiles inferred using the snPATHO-seq, fro-
zen-Flex, and frozen-3’ data were generally comparable across the three
breast cancer samples tested (Supplementary Fig. 6). Moreover, when
mapped to thematching FFPEVisiumdata, we detected comparable spatial

cellular distribution patterns using cell type signatures detected by different
snRNA-seq workflows from samples 4066 and 4411 (Supplementary
Fig. 7a, c, d, e). Unsurprisingly, due to the absence of cell type signatures
from liver resident cell populations, we observed substantial bias in spatial
cellular enrichment pattern prediction using snRNA-seq data generated by
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the frozen-Flex and the frozen-3’ workflows from sample 4399 (Supple-
mentary Fig. 7b, f). Together, these results demonstrated that the
snPATHO-seq workflow enables accurate cell type identification using
archival FFPE tissue samples and permits data integration with matching
FFPE Visium data, allowing multi-modal sampling of the same FFPE
sample.

snPATHO-seq captures similar transcriptomic signatures in
breast cancer cells as the existing snRNA-seq methods
In addition to the integration-based comparisons above, we also took a non-
biased approach to compare transcriptomic signatures extracted from data
generated using different snRNA-seq workflows23. This workflow operates
on a per-dataset basis and allows us to extract 44 Non-negative matrix
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factorization (NMF) programs from each dataset (per sample, per snRNA-
seq workflow). The derived NMF programs from all datasets were merged
and filtered based on similarities, resulting in 57 robust NMF programs
(Supplementary Data 2). Despite being derived from different samples and
snRNA-seq workflows, the robust NMF programs shared many similar
genes and could be further grouped into 15 clusters with biological sig-
nificance (Fig. 3a, b, Supplementary Table 1, Supplementary Data 3). For
example, C6 contained genes related to cell cycle progression (Supple-
mentaryData 3). This signaturewas enriched in cancer cellsmarkedbyhigh
MKI67 gene expression and shared a similar enrichment pattern as a
published cell cycle progression gene signature23 (Fig. 3c i–iii). In addition,
we identified a calcium signaling-related cluster from sample 4066 repre-
sented by genes including ITPR2, CADPS2, CAPN13, NFATC4, and
ADRGV1, all pivotal to calcium regulation and signaling24–28 (Supplemen-
tary Data 3). Moreover, mapping this signature to Visium data from 4066
revealeda spatial distributionpattern specific toDCIS, a condition often tied
to calcification29 (Fig. 3d).

Notably,whilewe identifiedmany robustNMFprogramsderived from
the same samples using different snRNA-seq workflows, the robust NMF
programs derived from the snPATHO-seq and the Flex workflow generally
showed more similarities to each other than to the robust NMF programs
from3’ (Fig. 3a). For example,while the robustNMFprograms related toC3
all contained genes ITPR2 and CAPN13, the robust NMF program derived
from the 3’ workflow also contained several non-coding RNA genes (e.g.,
AC091646.1, AC012501.2, and AC078923.1) that were not included in the
Flex probe panel (Supplementary Fig. 8a). We observed a similar result
when comparing the gene composition of robust NMF programs related to
C5. The robust NMF program derived from the 3’ workflow contained
several non-coding RNA genes yet shared similar genes related to extra-
cellular matrix organization, such as TNC and P3H2 (Supplementary
Fig. 8b). These results again highlighted the variations in transcriptomic
coverage as themajor difference between the Flex and the 3’ assay inherited
by the snPATHO-seq workflow. Nonetheless, all snRNA-seq workflows
appeared to detect similar transcriptomic signatures, highlighting that the
snPATHO-seqworkflow canproduce datawith comparable transcriptomic
features as conventional 10x 3’ and Flex assays.

ThesnPATHO-seqworkflowoffersmore robustgeneexpression
detection than the scFFPE workflow
In addition to the snPATHO-seq workflow, several other FFPE single-cell/
nucleus RNA sequencing methods emerged during the preparation of this
manuscript: snFFPE-seq30, scFFPE13, and snRandom-seq31. The snFFPE-seq
study optimized procedures related to FFPE sample processing, including
deparaffinization, tissue rehydration, and decross-linking, aiming to max-
imize the efficiency of RNA profiling using conventional single-cell gene
expression readout assays such as SMART-SeqV232, SCRB-Seq33 and 10x 3’
assays on FFPE samples. However, the data generated using FFPE samples
had about 2–2.7x lower RNA complexity than those generated using
matching frozen tissue samples. This is likely because these gene expression
readout assays rely on polyA-based capture and are less effective for FFPE
samples with fragmented RNAs. As the authors highlighted, other gene
expression readout assays using random primers and polyadenylation of
small RNA fragments, such as Smart-seq-total34, might circumvent this
drawback30.

This idea was reflected in themore recent snRandom-seq study, where
the authors employed customized chemistry to amplify RNA fragments in
FFPE samples using random primers31. The amplified cDNAs were then
polyadenylated andcapturedusing amicrofluidicdevice for gene expression
profiling31. The authors compared the performance of the snRandom-seq to
snFFPE-seq and snPATHO-seq in terms of UMIs and genes detected per
nucleus and demonstrated the superior performance of the snRandom-seq
method31. As mentioned above, the 10x Flex chemistry only offers partial
transcriptomic coverage, which applies to the snPATHO-seq workflow.
Therefore, the differences in transcriptomic coverage could, to a certain
extent, explain the differences between the snRandom-seq and the
snPATHO-seq. In addition, these comparisons of common quality control
metricsweremadeusingdatasets generated fromdifferent samples.A future
study conducting a more direct comparison between the snRandom-seq
and the snPATHO-seq using the same tissue samples can no doubt provide
more insight into their variation in performance. Importantly, in a more
recent study by the same research team, the authors automated the
snRandom-seqworkflowby integrating single-nucleus isolationanddroplet
barcoding platforms, significantly enhancing its throughput35. In a direct
comparison with the manual snRandom-seq workflow, the automated
workflow demonstrated a high degree of concordance with the manual
workflow, highlighting the robustness of the automated approach35. This
advancement marked a substantial improvement in both the throughput
and standardization of snRandom-seq.Moreover, the commercialization of
snRandom-seq byM20Genomics increased its accessibility,making itmore
user-friendly and adaptable for broader adoption36.While further testing by
external users will provide deeper insights into its performance, the
snRandom-seq method shows great promise for advancing our under-
standing of FFPE single-nucleus research.

A fourth single-cell FFPE workflow, scFFPE, was released by 10x
Genomics after the development of the snPATHO-seq workflow13. The
scFFPE workflow shares many similarities with the snPATHO-seq work-
flow. Both workflows begin with tissue dewaxing and rehydration, followed
by collagenase-based tissue dissociation and gene expression detected using
the 10x Flex assay. However, instead of continuingwith cellmembrane lysis
and nuclei extraction, as shown in the snPATHO-seqworkflow, the scFFPE
workflow used the dissociated cells directly for gene expression profiling14.
Therefore, according to the developer, the scFFPEworkflowwas considered
a single-cell RNA sequencing workflow instead of a single-nucleus RNA
sequencing workflow13, which constitutes the major difference between the
snPATHO-seq and the scFFPEworkflows.We favor nuclei isolation rather
than cell isolation because nuclei can bemore stably extracted from samples
that are hard to dissociate into whole cells37–39. As highlighted in previous
literature, snRNA-seq can often provide a more comprehensive cell type
representation than scRNA-seq in certain types of tissues such as the brain,
liver, and kidney37–39.

To compare the performance of the scFFPE and snPATHO-seq
workflows, we generated scFFPE data using the same breast cancer tissue
samples (i.e., 4066, 4399, and4411)mentionedabove.The scFFPEworkflow
yielded incompletely dissociated tissue samples with mixtures of cells,
nuclei, and tissue debris (Supplementary Fig. 3b).While we continued gene
expression analysis using the prepared samples, the scFFPE workflow
produced data with fewer UMIs and genes detected per cell and fewer cells
detected in each sample than the snPATHO-seq method (Fig. 4a–c). It is

Fig. 2 | The snPATHO-seq workflow enables nuclei isolation and single-nucleus
gene expression detection from human FFPE tissue samples. a Illustration of the
snPATHO-seq workflow. Created in BioRender. Wang, T. (2024) BioRender.com/
u53s150. b, cBoxplots of the number ofUMIs (b) and genes (c) detected per nucleus.
The boxes show theUMIs (b) andGenes (c)median and interquartile range.Outliers
were shown as dots. d UMAP embedding of unintegrated snRNA-seq data anno-
tated by sample IDs. e UMAP embedding of unintegrated snRNA-seq data split by
processingmethods. fUMAP embedding of Seurat CCA integrated snRNA-seq data
from patient 4411 annotated by cell type. g UMAP embedding of Seruat CCA
integrated 4411 snRNA-seq data split by processingmethods. hBarplot showing the

fraction of cell types detected by different snRNA-seq methods in sample 4411.
i Heatmap of the scaled expression of selected cell type markers detected by dif-
ferential gene expression analyses in 4411 data. The top 200 significantly differen-
tially expressed genes identified in each cell population (if available) were selected by
fold change and used for plotting. A gene was considered significantly differentially
expressed if the BH-adjusted P value was lower than 0.05. Genes were arranged by
hierarchical clustering based on the expression in the FFPE-snPATHO-seq data on
the x-axis. Cell types identified by different snRNA-seq workflows were manually
arranged on the y-axis. N = 1 sample per protocol.
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worthnoting that a discrepancy in performancebetween the snPATHO-seq
and the scFFPE workflow was also observed in a separate experiment
conducted by 10x Genomics. In the colon Crohn’s disease sample
(Colon_1328A), while the scFFPE workflow was able to detect some mac-
rophage and smooth muscle cells, it failed to capture the rest of the cell
populations, including fibroblasts, endothelial cells, T cells, and B cells
(Fig. 4d–f). Considering the overall similarities between the snPATHO-seq
and the scFFPE workflows, the differences in performance likely stem from

the differences in single-cell/nucleus suspension preparation. In a recent
technical update from 10x Genomics, the developers clarified the nature of
scFFPE workflow in generating mostly nuclei instead of cells after tissue
dissociation14. However, our evaluation highlighted the presence of both
cells and nuclei in the dissociated tissue following scFFPE protocol.
Therefore, the collagenase-based tissue dissociation alonewas insufficient to
prepare pure cells or nuclei suspensions from FFPE samples, at least in the
breast cancer samples tested. A further nuclei extraction procedure is
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Fig. 3 | snPATHO-seq detected comparable transcriptomic signatures from
FFPE samples as the conventional Flex chemistry using matching snap-frozen
samples. a Heatmap showing similarities between robust NMF programs derived
from snPATHO-seq, 10x 3’, and 10x Flex data generated using 4066, 4399, and 4411.
Robust NMF programs with similar gene compositions were clustered and high-
lighted in brackets. b Table of robust NMF program clusters annotated based on the

shared gene compositions. cUMAP embedding of Seurat CCA integrated data from
patients 4066 (i–iii), 4399 (iv–vi), and 4411 (vii–ix) overlaid with the expression of
MKI67 (i, iv, vii), themodule scores of robustNMFprogram cluster C6 (ii, v, viii) and
the module scores of a published cell cycle gene program23 (iii, vi, ix). d Spatial
enrichment pattern of the module score of robust NMF program cluster C3 in the
Visium data from patient 4066 and the H&E image of this sample. Scale bar = 1 mm.
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Fig. 4 | Comparison of the snPATHO-seq workflow to scFFPE workflow.
a, b Boxplots of the number of UMIs (a) and genes (b) detected per nuclei using
different workflows. The boxes show themedian and interquartile range of theUMIs
(a) and Genes (b). Outliers were shown as dots. c Barplots of the number of nuclei/
cells detected in each dataset colored by major cell lineages. dUMAP embedding of
Seurat CCA integrated snPATHO-seq and scFFPE data from sample Colon_1328A

colored by cell type annotations. e UMAP embedding split by processing methods.
f Heatmap of top differentially expressed genes detected between cell types by
snPATHO-seq and scFFPE workflows. The top 200 significantly differentially
expressed genes identified in each cell population (if available) were selected by fold
change and used for plotting. A gene was considered significantly differentially
expressed if the BH-adjusted P value was lower than 0.05.N = 1 sample per protocol.
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necessary to standardize the dissociated samples into more uniformed
single-nucleus suspensions as a more suitable input for the 10x Flex
chemistry. In addition, as the nuclei extraction reagent can dissolve the
cytoplasmic membrane, it likely functions as a clearing reagent, removing
some tissue debris. The presence of tissue debris can lead to bias in cell
counting and loading for droplet-based scRNA-seq analysis, which likely
accounted for the failure of the gene expression data in the breast cancer
samples tested40.

Nonetheless, in many other FFPE tissue samples tested by 10x
Genomics and the Fred Hutchinson Innovation Laboratory, the scFFPE
could generate data with good concordance with the snPATHO-seq
workflow (Fig. 4a–c, Supplementary Fig. 9). This highlighted that the
scFFPE protocol was indeed effective against certain FFPE samples. Upon
further investigation, we noticed that the breast cancer tissue samples tested
were around 5–8 years old and slightly older than the other samples (0–5
years old) (Supplementary Data 1). It is known that the quality of RNA
diminishes after storage of the FFPEblocks41.However, if and towhat extent
the age of the block affects the success of single-cell gene expression analysis
remains to be further tested.

In this study,wedeveloped a robust snRNA-seqworkflow, snPATHO-
seq, tailored to gene expression profiling of FFPE tissue samples. We
benchmarked snPATHO-seq against 10x 3’, Flex, and scFFPE workflows,
demonstrating its robustness across a wide range of healthy and diseased
tissue samples. Leveraging amulti-modal sampling strategy, snPATHO-seq
can be applied to the same samples and integrated with the 10x FFPE
Visium workflow, offering a more comprehensive transcriptomic char-
acterization of FFPE samples. Notably, snPATHO-seq utilizes off-the-shelf
reagents, resulting in low adaptation costs. We anticipate that the
snPATHO-seqworkflowwill promote single-cell studies, especially in areas
with limited sample availability. For instance, breast cancer metastases can
happen years after the treatment of the primary disease and are less fre-
quently biopsied. Incorporating the snPATHO-seq workflow into such
projects could expand the size of the clinical cohort, thereby increasing the
statistical power of these studies. However, transcriptomic coverage is a
limitation of the snPATHO-seq workflow and is challenging to overcome.
To this end, novel sample preservation methods such as FixNCut42, which
enables 10x 3’ gene expression characterization, can be considered to
improve the preservation of fresh tissue samples for multi-purposed
genomic characterization.Webelieve that combining these variousgenomic
technologies, each with unique advantages, can alleviate the constraints of
sample availability in biological research. This integration can strengthen
the connection between clinical and laboratory-based research, thereby
enhancing the translational significance of these studies.

Methods
Patient material, ethics, and consent for publication
All ethical regulations relevant to human research participants were fol-
lowed. For breast cancer samples, primary breast cancer sample 4066 was
collected with written informed consent under the SVH 17/173 protocol
with approval from St Vincent’s Hospital Ethics Committee. Metastatic
breast cancer samples 4399 and 4411 were collected as autopsy samples
under protocol X19-0496. Consent included the use of all de-identified
patient data for publication. Collected tumor samples weremacroscopically
dissected. For FFPE tissue preservation, samples were fixed in 10% neutral
buffered formalin for 24 h at room temperature before being processed for
paraffin embedding. For snap-frozen sample preservation, samples were
diced into small chunks before snap-freezing in liquid nitrogen and stored
at −80 °C.

For samples processed in the Cancer Research Centre of Lyon, the
collection was provided by the 3D Onco platform (S. Ballesta) and
Infirmerie Protestante de Lyon and was consented under the following
ethical protocols (endometrium: 2022-05, colon: 2021-33, ovary: I-3422-
01_MTA_IP_CLB) approved by the ethical review board of Centre Léon
Bérard. The study was compliant with GDPR requirements and the CNIL
(French National Commission for Computing and Liberties) law.

The other samples were obtained from commercial vendors, as
documented (Supplementary Data 1).

Single-cell RNA profiling for frozen PBMC samples
Two frozen PBMC aliquots from the same healthy donor were thawed and
divided equally for processing using the standard 10X 3’ and Flex assays,
following the respective recommended protocols. For the 3’ assay, the
Chromium NextGEM Single-cell 3’ Reagent kit (v3.1, 10x Genomics) was
utilized as per the Chromium Single Cell 3’ Reagent Kits User Guide (v3.1
Chemistry) (CG000204 - Rev D), targeting approximately 5000 cells.
Meanwhile, for the Flex assay, PBMC cells underwent a brief fixation as
directed by the Fixation of Cells & Nuclei for Chromium Fixed RNA Pro-
filing guide (CG000478 - Rev A, 10x Genomics). Subsequently, the cells
were profiled using the Chromium Fixed RNAKit, Human Transcriptome
(1000474, 10x Genomics), targeting a similar cell count as the 3’ assay.

Single-nucleus RNA profiling for snap-frozen tissue samples
For snap-frozen samples, nuclei were isolated as previously described43 with
modifications. Frozen samples were first thawed and finely minced. The
fragments were subsequently homogenized using 1x Nuclei Ez lysis buffer
(NUC-101, Sigma-Aldrich) enriched with 1 U/μL RNAse inhibitor (Ribo-
Lock RNAse Inhibitor, EO0382, Thermo Fisher Scientific) and chilled for
5min on ice. The separated nuclei were filtered through a 70 μm mesh
(pluriStrainer 70 μm, 43-50070-51, pluriSelect) and rinsed twice with 1x
PBS augmented with 1% BSA (MACS® BSA Stock Solution, 130-091-376,
Miltenyi) and once with a 0.5x PBS+ 0.02% BSA mix. They were subse-
quently resuspended in the 0.5x PBS+ 0.02% BSA solution and re-filtered
using a 40 μm mesh (pluriStrainer Mini 40 μm, 43-10040-50, pluriSelect).
The final nucleus count was determined using the LUNA-FX7 cell counter
(AO/PI viability kit, F23011, Logos).

For the 3’ experiments, gene expression libraries were constructed
using the Chromium NextGEM Single-cell 3’ Reagent kit (v3.1, 10x
Genomics), adhering to the Chromium Single Cell 3’ Reagent Kits User
Guide (v3.1 Chemistry) (CG000204 - Rev D), with a target of 10,000 nuclei
per reaction.

For the Flex experiments, nuclei were first fixed as per the Fixation of
Cells & Nuclei for Chromium Fixed RNA Profiling guide (CG000478 - Rev
A, 10x Genomics). Gene expression libraries were then constructed using
the Chromium Fixed RNA Kit, Human Transcriptome (1000474, 10x
Genomics), based on the Chromium Fixed RNA Profiling user guide
(CG000477 - RevB), targeting 10,000 nuclei for each reaction.

Single-nucleus RNA profiling for FFPE tissue samples (snPA-
THO-seq)
Two tissue sections, each between 25 and 30 µm thick, were first washed
thricewith1mLofXylene for10min to removeparaffin. Subsequently, they
were rehydrated via a sequence of 1mL ethanol baths, each lasting 1min:
two rounds in 100% ethanol, then in 70%, 50%, and finally 30% ethanol.
Specifically for breast tissues, the initial xylenewashwas conducted at 55 °C.
The sections were then briefly rinsed with 1mL of RPMI1640 (Gibco).

Tissue disruption began physically using a pestle in 100 μL of a
digestion mix composed of 1mg/mL Liberase TM (5401119001, Roche),
1mg/mL Collagenase D (11088858001, Roche), and 1U/μL of RNAse
inhibitor (RiboLockRNAse Inhibitor, EO0382, ThermoFisher Scientific) in
RPMI1640. This mix was then filled up to a 1mL volume and subjected to
digestion at 37 °C for 45–60min.

For nuclear extraction, the pre-digested tissue was treated with 1x
Nuclei Ez lysis buffer (NUC-101, Sigma-Aldrich) that included 2% BSA.
Disintegration further proceeded via pipetting using a P1000 pipette. The
separated nuclei were filtered through a 70 μmmesh, double-rinsed with 1x
PBS supplemented with 1% BSA, and once with a 0.5x PBS+ 0.02% BSA
blend. They were then resuspended in this blend and re-filtered via a 40 μm
mesh (pluriStrainerMini 40 μm, 43-10040-50, pluriSelect). The concluding
nuclear count was ascertained using the LUNA-FX7 cell counter (AO/PI
viability kit, F23011, Logos).
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Gene expression libraries were prepared using the Chromium Fixed
RNAKit, Human Transcriptome (1000474 or 1000475, 10x Genomics), in
accordance with the user guide (Chromium Fixed RNA Profiling,
CG000477 - RevB). We implemented additional optimizations in the pre-
amplification and Indexing cycles tailored for nuclei derived from FFPE
samples. Over 200,000 nuclei underwent a 20-h hybridization with the
BC01 probe set. This was followed by three washes using the Post-Hyb
Buffer as recommended in the guide, with an additional wash step. Post-
hybridization, nuclei were resuspended in the Post-Hyb Resuspension
Buffer, counted, and loaded onto Chip Q/Chromium X for capture,
adhering to the guide’s procedures. A 9-cycle pre-amplification was con-
ducted. Indexing PCR cycles followed the guide’s recommendations for
PBMC and nuclei but with two added cycles. For sample 4399, the capture
targeted 5000 nuclei, while for other samples, the target was set at 10,000
nuclei.

Single-cell RNA profiling for FFPE tissue samples (scFFPE)
scFFPEworkflowwas conductedon the FFPEsamples by the 10xGenomics
and Fred Hutch Innovation Lab as outlined in Supplementary Data 1 fol-
lowing the demonstrated protocol (CG000632, RevB).

Spatial transcriptomics on breast cancer samples
A5-μm-thick section was prepared from the FFPE blocks and processed
using the Visium Spatial Gene Expression for FFPE Kit v2 (10x
Genomics) according to the manufacturer’s instructions. Briefly, sec-
tions were H&E stained and imaged, followed by probe hybridization
and ligation.

Illumina sequencing
The indexed libraries were sequenced using the Illumina NextSeq550 or
NovaSeq 6000 systems. For sc-/sn-RNAseq libraries, the read format was
configured as 28, 10, 10, and 90 for Read 1, i7, i5, and Read 2 sequences,
respectively. For Visium spatial transcriptomics libraries, the read format
was configured as 28, 10, 10, and 50 for Read 1, i7, i5, and Read 2 sequences,
respectively. Libraries were sequenced to a depth of more than 10,000 read
pairs per cell/nuclei for sc-/sn-RNAseq experiments or more than 25,000
read pairs per spot for Visium experiments.

FASTQ files processing
For data generated by the 10X Genomics, raw reads were de-multiplexed
and aligned using Cellranger (v2023.0415.0). GRCh38 (build 2020-A, 10X
Genomics) and Chromium Human Transcriptome Probe Set v1.0.1 were
used as references.

For other single-cell/nucleus data, sequencing reads were de-
multiplexed and aligned using Cellranger v7.0.1. GRCh38 (build 2020-A,
10XGenomics)was usedas the reference for readmapping. For Flex-related
workflows, ChromiumHumanTranscriptomeProbe Set v1.0 referencewas
used for probe read mapping.

For Visium data, reads were processed using Spaceranger v2.0.0 with
GRCh38 (build 2020-A, 10X Genomics) and Visium Human Tran-
scriptome Probe Set v2.0 as references.

For direct comparison of different single-cell/nucleus workflows, the
PBMC data was downsampled to ~30,000 reads per cell, and the breast
cancer snRNA-seq datasets were downsampled to ~25,000 reads per
nucleus. For 3’ data, FASTQ files were downsampled using Seqtk (v1.3)44.
For Flex assay data, FASTQ files were downsampled during Cellranger
analysis by specifying the targeted numbers of reads per cell/nuclei in the
configuration file supplied to the “cellranger multi” function.

Ambient background filtering for snRNA-seq datasets
Additional ambient read filtering was conducted using Cellbender v0.2.045.
In total, 40,000 droplets were used to estimate the levels of background. The
cell numbers estimated using the EmptyDrops method46 implemented in
the Cellranger were supplied as the expected number of cells for Cellbender
processing.

Low-quality data filtering for single-cell/nucleus RNA sequen-
cing datasets
The count matrices from snRNA-seq datasets were then processed using
Seurat (v4.3.0.9002)16 in R (v4.1.1) unless otherwise specified. Low-quality
cells/nuclei were defined as cells/nuclei with less than 200 UMIs, over 8000
UMIs, or over 10%mitochondrial gene products. Gene expression data was
normalized using the “NormalizeData” function in the Seurat package.
Doublets were identified using the DoubletFinder package (v2.0.3)47 and
excluded from the downstream analysis.

Dimensionality reduction, clustering, and cell type annotation of
sc/snRNA-seq data
For samples processed using more than one sc/sn-RNA workflow, the fil-
tered counts were integrated at a per-sample level using the canonical
correlation analysis (CCA) method as implemented in the Seurat package.
The top 2000 highly variable genes in each dataset were used for the prin-
cipal component analysis (PCA) and the top 2000 highly variable genes
across datasets to be integrated were used to identify integration anchors.

For other datasets, PCA analysis was conducted using the top 2000
highly variable features.

For all datasets, Uniform Manifold Approximation and Projection
(UMAP) processing was conducted using the top 30 principal components
from the CCA or PCA analysis. Gene expression data was clustered using
the top 30 principal components with the Louvainmethod as implemented
in the Seurat package. Clusters were manually annotated based on the
expression of canonical cell type markers. Re-integration or sub-clustering
was also performed to separate cell lineages unable to be resolved by initial
clustering.

Differential gene expression analysis
Differential gene expression analysis was conducted between the annotated
cell types on a per-sample basis with the “FindAllMarkers” function in the
Seurat package. The Student’s t-test was used, and all other parameters were
kept as default. All data generated using different snRNA-seq workflows
from the same sample was merged for this analysis.

To select top cell type markers for visualization, only genes with
positive fold changes and BH-adjusted P values smaller than 0.05 were
considered. The genes were then ranked by fold change in each cell type to
select the top 200 genes (if applicable). The expression of the top genes was
then scaled within each dataset (per sample, per snRNA-seq workflow) and
visualized using the ComplexHeatmap package (v2.10.0)48. For breast
cancer data, selected canonical cell type markers were plotted on the heta-
maps. For all other datasets, the top 5 cell typemarkers by fold change were
annotated on the heatmap.

Automatic cell type annotation using singleCellNet
The published PBMC 3’ dataset from Hao et al., 2021 was annotated using
singleCellNet (v0.1.0)49 and PBMC cell type signatures from this study. A
classifier was trained using the top 50 genes from each cell type for 3’ or Flex
PBMC data, respectively. All other parameters were kept the same. The cell
type annotation results were then visualized using the ggplot2 package
(v3.4.2) included in tidyverse (v2.0.0) in R.

Copy number variation inference
The copy number alteration of cancer cells was inferred using inferCNV
(v1.10.1)50 on a per-sample basis. All stromal and immune cell types within
each dataset were selected as the reference cell types. Red blood cells (RBCs)
and clusters withmixed cell type signatures were excluded from the dataset.
For breast cancer 4399 datasets, as liver resident cell types were mainly
identified in the snPATHO-seq dataset, they were also excluded from the
reference. This includes cholangiocytes, hepatocytes, and LSECs. The ana-
lysis was then conducted on all normal and cancer epithelial cells with
Hidden Markov Model (HMM) prediction. Default parameters were kept
except for the cut-off, which was set to 0.1 according to the authors’
recommendation for 10x Chromium data.
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For breast cancer datasets, the HMM results for each gene were
summarized across all cancer nuclei. The results were rounded up to the
nearestmultiple of 0.5.Anygene eithernot detected in thedataset or showed
no CNV change was assigned with a value of 1. The results were sum-
marized per dataset and plotted together using the ggplot2 package (v3.4.2)
included in tidyverse (v2.0.0) in R.

Spatial transcriptomics data processing
For Visium spatial transcriptomics data, tissue morphology was annotated
at per spot level using the Loupe browser (v6.2.0, 10X Genomics). Spots
underneath regions affected by processing artefacts were annotated as
“exclude”. The countmetricswere converted into STutility objects (v1.1.1)51

for downstream processing. Low-quality spots annotated as “exclude”were
removed from the datasets. The metrics were then normalized using the
“NormalizeData” function from the Seurat package implemented by the
STutility package.

Inference of spatial transcriptomics data cellular composition
using deconvolution
Deconvolution of spatial cellular composition was performed using the
RCTD method implemented in the spacexr package (v2.2.0)52. Datasets
generated using 3’, Flex, and snPATHO-seq were used as single-cell type
references, respectively, for the deconvolution of matching Visium data.
Default parameters were used for the analysis, except that the minimal
number of cells required for each cell typewas reduced to 3 to accommodate
relatively low cell number in the current study. Deconvolution results were
then visualized as heatmaps using the ComplexHeatmap package or as
spatial feature plots using the ggplot2 package implemented in tidyverse.

Robust NMF program identification and downstream analysis
Robust NMF programs were derived using a published method23 with the
NMF package (v0.26) installed in R (v4.2.3). NMF analysis was first con-
ducted on breast cancer snRNA-seq data on a per dataset (per sample, per
snRNA-seq workflow) basis using ranks from 4 to 9 with 10 iterations at
each rank. This resulted in a total of 39 NMF programs derived from each
dataset. The NMF programs from all datasets were then filtered based on
similarities in gene composition using the published thresholds to define
robust NMF programs23. The robust NMF programs were then clustered
based on similarities to derive the final robust NMF program clusters using
the clustering method derived by the original authors23.

To evaluate the enrichment patterns of the robust NMF program
clusters in snRNA-seq and Visium data, Seurat gene module scores were
calculated using the “AddModuleScore” function with genes shared
between at least two robust NMF programs in each cluster53.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Raw and processed snRNA-seq and Visium spatial transcriptomics data
have been uploaded to Gene Expression Omnibus (GEO) under the
accession codesGSE268426 andGSE268427, respectively. PublishedPBMC
data was downloaded from the GEO through the accession code
GSE164378. Processed snRNA-seq andVisiumdata objects can be accessed
through the Dryad repository (https://doi.org/10.5061/dryad.7m0cfxq4s)54.

Code availability
Scripts used to analyze snRNA-seq andVisium spatial transcriptomics data
can be accessed at https://github.com/TaopengWang/snPATHO-seq_
public or Zenodo55.
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