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Abstract

Cancer of unknown primary (CUP) is a type of cancer that cannot be traced back to its 

primary site and accounts for 3–5% of all cancers. Established targeted therapies are lacking 

for CUP, leading to generally poor outcomes. We developed OncoNPC, a machine learning 

classifier trained on targeted next-generation sequencing data from 36,445 tumors across 22 

cancer types from three institutions. OncoNPC achieved a weighted F1 score of 0.942 for 

high confidence predictions (≥ 0.9) on held-out tumor samples, which made up 65.2% of all 

the held-out samples. When applied to 971 CUP tumors collected at the Dana-Farber Cancer 

Institute, OncoNPC predicted primary cancer types with high confidence in 41.2% of the tumors. 
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OncoNPC also identified CUP subgroups with significantly higher polygenic germline risk for the 

predicted cancer types and significantly different survival outcomes. Importantly, CUP patients 

who received first palliative intent treatments concordant with their OncoNPC-predicted cancers 

had significantly better outcomes (H.R. 0.348, 95% C.I. 0.210 – 0.570, p-value 2.32×10−5). 

Furthermore, OncoNPC enabled a 2.2-fold increase in CUP patients who could have received 

genomically-guided therapies. OncoNPC thus provides evidence of distinct CUP subgroups and 

offers the potential for clinical decision support for managing patients with CUP.

Introduction

When a standardized diagnostic work-up, including radiology and pathology assessments, 

fails to locate the primary site of a metastatic cancer, it is diagnosed as a cancer of 

unknown primary (CUP). CUP represents about 3–5% of all cancers worldwide [1] and 

is characterized by aggressive progression and poor prognosis (survival of 6 to 16 months 

[2]). The hidden nature of the primary sites limits treatment options since clinical responses 

to some treatments are known to vary based on patients’ tumor types (e.g., identical 

BRAF V600 mutations targetable in melanoma but not in colorectal cancer[3]). Emerging 

cancer treatments targeting actionable molecular alterations are typically developed for 

specific cancer types (e.g., HER2 in breast cancer and EGFR mutation or ALK/ROS1 

rearrangement in Non-small cell lung cancer [4]), and are thus inaccessible to patients with 

CUP. Accurately identifying the latent primary site for CUP tumors and demonstrating 

clinical benefit from site-specific therapies may thus open many existing treatment options 

for patients with CUP.

Pathology assessment plays a key role in determining primary cancer types of malignant 

tumors based on immunohistochemistry (IHC) results as well as tumor morphology and 

clinical findings; however, pathological diagnosis can be challenging for highly metastatic 

or poorly differentiated tumors. For known cancer types, prior studies showed that an 

IHC-based diagnostic work-up correctly identified 77 – 86% of primary tumors, which 

further decreased to 60 – 71% for metastatic tumors [5]. For patients with CUP, IHC results 

suggestive of a single primary diagnosis account for only 25% of tumors [2]. The subjective 

nature of pathological interpretation and guidelines, as well as the variability in IHC staining 

techniques across institutions thus makes it challenging to establish consistent protocols for 

CUP diagnosis [6].

Molecular tumor profiling has been proposed as an alternative for primary site classification, 

potentially for CUP tumors, due to its quantitative nature and high accuracy on tumors with 

known cancer types [7–12]. Such tools rely on microarray DNA methylation [7], whole 

genome sequencing (WGS) [8, 11], RNA sequencing data [10], or gene expression profiling 

[12, 13]. However, despite their effectiveness, these sequencing techniques have not been 

integrated into the standard of care and are often cost-prohibitive. In a recent study by 

Penson et al. [9], it was demonstrated that accurate primary cancer type classifications 

could be made from next generation sequencing (NGS) of targeted panels now routinely 

collected at many cancer centers and applicable to hundreds of thousands of tumors [14]. 
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However, its clinical utility in diagnosing and aiding treatment for patients with CUP was 

not systematically investigated.

Several recent studies have investigated the potential clinical benefit of molecular CUP 

classification, in non-randomized prospective studies [15–17] as well as the randomized 

clinical trials [18]. These trials have often struggled to recruit a sufficient number of 

representative patients and explore the full range of available therapies. A recent randomized 

phase II trial [18] did not find significant improvement in 1-year survival for the treatment 

group receiving site-specific therapy guided by molecular profiling. However, this study was 

limited by a small number of patients (n = 101) recruited over 7 years, with few common 

solid tumor types and well-established therapies [19]. Assessing the clinical benefits of 

molecular CUP classification thus poses both an opportunity for precision medicine and a 

major challenge for conventional randomized studies.

Retrospective EHR data, despite potential biases, can capture a larger and more 

heterogeneous patient population compared to prospective trials. When paired with tumor 

sequencing, this data can offer insights into the molecular workings of CUP tumors and 

how they relate to patient outcomes. As panel sequencing is often part of the standard 

of care, such insights also have the potential to assist diagnostic efforts and clinical 

management within existing molecular workflows. Here, we utilized multi-center, Next 

Generation Sequencing (NGS) targeted panel sequencing data from 36,445 tumor samples 

with known primary cancers to train and evaluate a machine learning classifier predicting a 

primary cancer type of a given tumor sample. We applied this classifier, named OncoNPC 
(Oncology NGS-based Primary cancer type Classifier), to 971 patients with CUP with 

clinical follow up at the Dana-Farber Cancer Institute (DFCI). Using the OncoNPC cancer 

type predictions, we identified CUP subgroups that shared specific characteristics with their 

corresponding predicted primaries including significant differences in clinical outcomes and 

elevated germline risk. Furthermore, we showed that site-specific treatments concordant 

with the OncoNPC cancer type predictions led to longer survival than those discordant with 

the cancer type predictions. Finally, OncoNPC predictions yielded a 2.2-fold increase in 

the number of CUP patients who could have received genomically-guided therapies. Our 

findings suggest that many CUP tumors can be classified into meaningful subgroups with 

the potential to aid clinical decision making.

Results

OncoNPC accurately classifies 22 known cancer types

We developed OncoNPC (Oncology NGS-based Primary cancer type Classifier), a 

molecular cancer type classifier trained on multicenter targeted panel sequencing data (Fig. 

1). OncoNPC utilized somatic alterations including mutations (single nucleotide variants 

and indels), mutational signatures, copy number alterations, as well as patient age at the 

time of sequencing and sex to jointly predict cancer type using a XGBoost algorithm [20] 

(see Methods and Supplementary Note 1 for more details on choosing input features). 

OncoNPC was trained and validated on the processed data consisting of 29,176 primary 

and metastasis tumor samples from 22 known cancer types collected at the DFCI, MSK, 

and VICC (see Table 1 for details regarding patient demographics, modeled cancer types, 
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and their corresponding abbreviations). Across all 22 cancer types, OncoNPC achieved a 

weighted F1 score of 0.784 on the held-out test tumor samples consisting of 7,289 tumor 

samples (weighted precision and recall: 0.789 and 0.791, respectively). Across 13 cancer 

groups (grouped by sites and treatment options; see Table 1), OncoNPC achieved an overall 

weighted F1 score of 0.806 (weighted precision and recall: 0.810 and 0.809, respectively). 

Despite the evident class imbalance across cancer types, OncoNPC showed well-balanced 

precision across the cancer types (Fig. 2a) and cancer groups (Fig. 2b; see Extended Data 

Fig. 1 for more performance details).

We evaluated the performance of OncoNPC at four distinct prediction confidence levels 

based on pmax (i.e, the maximum predictive probability across 22 cancer types): 0.0 

(encompassing all samples), 0.5, 0.7, and 0.9 (see Supplementary Note 2 for an alternative 

approach using a cancer type-specific threshold). Applying a threshold based on pmax 

resulted in further performance improvement: weighted F1 score of 0.830 with 91.6 % 

remaining samples at pmax ≥ 0.5 and 0.942 with 65.2% remaining samples at pmax ≥ 0.9 

(Fig. 2c, 2d). While rarer cancer types had generally lower overall performance, increasing 

the pmax threshold reduced this difference between common/rare cancer types. At pmax ≥ 

0, common cancer types in the upper quartile in terms of the number of tumor samples 

(NSCLC, BRCA, COADREAD, DIFG, PRAD, and PAAD) had a mean F1 of 0.841 while 

rare cancer types in the lower quartile (WDTC, MNGT, GINET, PANET, AML, and NHL) 

had a mean F1 of 0.581, whereas at pmax ≥ 0.9, common and rare cancer had a mean F1 

of 0.953 and 0.860, respectively. Furthermore, OncoNPC demonstrated robust performance 

against potential real-world dataset shifts due to the factors including cancer center, biopsy 

site type, sequence panel version, and patient ethnicity (Fig. 2e and Extended Data Fig. 

2a; see Supplementary Note 3 for more details on OncoNPC’s performance regarding 

real-world dataset shifts and difficult-to-predict cancer types such as CHOL and HNSCC). 

Finally, a feature ablation study demonstrated that OncoNPC continues to achieve high 

performance with only the top 50% of genomic features retained (overall weighted F1 score 

of 0.757 vs. 0.777 at pmax threshold of 0, and 0.950 vs. 0.960 at pmax threshold of 0.9; see 

Supplementary Note 4 and Extended Data Fig. 3).

Applying OncoNPC to CUP tumor samples

We applied OncoNPC to classify 971 CUP tumors from patients who were admitted to 

DFCI and sequenced as part of routine clinical care. OncoNPC classifications for CUPs 

had prediction probabilities lower than those of 3,690 held-out Cancer with Known Primary 

(CKP) tumors at DFCI in average (0.764 vs. 0.881), but comparable to those of 8,025 

CKPs at DFCI, including tumors with cancer types not modeled in OncoNPC (0.769). 

This indicates that CUP tumors may contain other rare cancer types (see Supplementary 

Note 5 and Extended Data Fig. 2b). Nevertheless, 41.2% of the CUP tumors (400 out 

of 971) could still be classified with high confidence (i.e., pmax ≥ 0.9), and multiple 

classified cancer types including NSCLC, BRCA, PAAD, and PRAD had distributions of 

predictive probabilities comparable to their corresponding CKPs (Fig. 3a). Interestingly, 

CUPs with predicted GINET were highly confident, despite their small number of tumor 

samples in the training cohort (n = 359; 0.99% of the training cohort), suggesting some 

rarer cancer types may nevertheless be confidently identifiable. As shown in Fig. 3b, the 
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most common CUP cancer types were NSCLC, PAAD, BRCA, EGC, and COADREAD. 

NSCLC, BRCA, and COADREAD were also the top-3 most common CKP types. These 

rates are broadly consistent with prior findings that the most frequently revealed underlying 

primary cancers for CUPs by autopsy include lung, large bowel, and pancreas cancers [21]. 

Finally, comparable rates were observed upon applying OncoNPC to 581 CUP tumors at 

MSK Cancer Center (Supplementary Fig. S4).

Explaining OncoNPC cancer type predictions

OncoNPC learns complex non-linear relationships between input somatic variants and 

clinical features and provides interpretable primary cancer type predictions, where impact 

of each input feature on a prediction is quantified as a SHAP value [22]. We investigated 

the most impactful features in predicting each cancer type across the CKP and CUP cohorts 

to evaluate face validity of OncoNPC (see Fig. 3d for the top 3 most frequently predicted 

cancer types in the CUP cohort: NSCLC, BRCA, and PAAD, and Supplementary Fig. 

S5 and S6 for other cancer types). For NSCLC, the most important features were EGFR 
mutation and SBS4, a tobacco smoking-associated mutation signature [23], for both CKP 

tumor samples and CUP with NSCLC predicted tumor samples, consistent with the known 

etiology of lung cancer. Somatic mutation in the EGFR gene is frequently observed in 

NSCLC tumors and the gene itself is a well-known therapeutic target for patients with 

NSCLC [24, 25]. Carcinogens in tobacco smoke have been known to cause lung cancer 

[26]. For BRCA, the most important feature for both CKP and CUP tumor samples was 

sex, as expected, followed by somatic mutation in PIK3CA and CNA event in CCND1 
gene, known drivers and prognostic indicators in breast cancer [27, 28]. For PAAD, KRAS 
mutation was significantly more common than the population averages and by far the most 

important somatic feature. Mutations in the KRAS gene occur frequently among patients 

with pancreatic cancer and are known to have prognostic significance [29, 30]. OncoNPC 

provides intuitive visualizations to explain individual-level predictions. As an example, we 

show how OncoNPC explained the classification of a tumor sample from a 76 year-old male 

patient with CUP (see Extended Data Fig. 4). The feature interpretation analysis showed 

that OncoNPC was able to capture cancer-specific signals in somatic mutations and clinical 

features, both at the individual and cohort level.

Germline PRS-based validation on CUP tumor samples

We hypothesized that, if OncoNPC was accurately identifying latent primary cancers, the 

classified CUP cancer types would exhibit increased germline risk for the corresponding 

cancers. To that end, we imputed common germline variation for each CUP patient and 

quantified their polygenic risk scores (PRS) across 8 common cancers using external cancer 

GWAS data (see Methods). PRSs are a continuous estimate of the underlying germline 

liability for a given cancer and orthogonal from the somatic data used to train OncoNPC. 

As hypothesized, patients with CUP had a significantly higher mean germline PRS for 

the OncoNPC predicted cancers (Fig. 3c and see Extended Data Fig. 5 for cancer type-

specific analysis) compared to other cancer types. The magnitude of the difference (i.e., 

Δ̂PRS) increased for more confident OncoNPC predictions (Δ̂PRS = 0.142, 95% C.I. 0.0494 – 

0.235, two-sided Wald test p-value: 2.66×10−3 at pmax threshold of 0.0 and Δ̂PRS = 0.204, 95%
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C.I. 0.0655 – 0.344, two-sided Wald test p-value: 3.98 × 10−3 at pmax threshold of 0.9). 

As a negative control, the same analysis, conducted with randomly shuffled OncoNPC 

labels, showed no enrichment. As a positive control, the same analysis conducted on CKPs, 

with available imputed PRS (n = 11,332), also demonstrated a highly significant germline 

enrichment, as expected. Notably, the enrichment for CUP tumors was in between that of 

CKPs and tumors with randomly shuffled labels, suggesting that while OncoNPC classified 

CUP tumors are genetically correlated with CKPs, they still exhibit additional heterogeneity.

OncoNPC-based risk stratification among patients with CUP

To demonstrate clinical utility of OncoNPC, we examined if OncoNPC cancer type 

predictions with moderately high confidence (≥ 0.5), a threshold consistently applied 

in subsequent clinical analyses, can stratify overall survival among patients with CUP. 

We identified subgroups which had significant prognostic differences in median survival 

based on the OncoNPC predictions (Chi-squared test, p-value: 4.90 × 10−14; see Fig. 4a). 

Overall, the poorest prognosis was observed in patients with CUP predicted to be EGC 

and PAAD: median survival 8.44 months for the combined cohort (95% C.I. 5.39 – 10.5, 

n = 107). The most favorable prognosis was observed in patients with CUP predicted 

to be HNSCC, GINET, and PANET: median survival 48.2 months for HNSCC (95% 

C.I. 19.6 - not estimable, n = 41) and not estimable median survival (i.e., the estimated 

survival curve never reached the median) for the combined GINET and PANET cohort 

(n = 57), respectively. Our identified favorable subgroups are consistent with established 

favorable CUP subtypes such as poorly or well differentiated neuroendocrine carcinomas 

of unknown primary and squamous cell carcinoma of non-supraclavicular cervical lymph 

nodes [31]. Furthermore, median survival times were significantly correlated across cancer 

types between CUP-metastatic CKP pairs (Spearman’s ρ: 0.964, p-value: 4.54×10−4), as 

detailed in Supplementary Note 7 and Fig. 4b. This suggests that genetics-based OncoNPC 

predictions capture prognostic signals specific to each predicted cancer type. Consequently, 

OncoNPC subgroups can be leveraged to meaningfully stratify the survival of patients with 

CUP. In an exploratory analysis, we also identified prognostic somatic variants common 

to both predicted CUP cancer groups and their corresponding metastatic CKP groups (see 

Supplementary Note 8).

Survival benefit from OncoNPC-concordant treatments

We performed retrospective survival analysis to investigate whether patients with CUP 

achieved clinical benefit when treated in concordance with their OncoNPC predictions. 

We restricted to a cohort of 158 patients with CUP, who received first treatment at 

DFCI with a palliative intent (see the exclusion criteria in Extended Data Fig. 6 and 

demographic details in Extended Data Table 1). Each case was then manually chart 

reviewed by a certified oncologist to determine whether the treatment administered was 

concordant with the OncoNPC prediction per National Comprehensive Cancer Network 

(NCCN) guidelines or standard of care (see Supplementary Note 9). We used two estimation 

strategies to minimize potential bias and estimate the impact of treatment concordance 

on patient survival: multivariable Cox regression and Inverse Probability of Treatment 

Weighted (IPTW) Kaplan-Meier estimator, which have recently been utilized to emulate 

estimates from randomized trials [32, 33]. By applying these methods, we adjusted for 
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baseline covariates including sex, age, OncoNPC prediction uncertainty, metastasis sites, 

and pathological histology (see Methods). Notably, patients with CUP who received first 

palliative treatments concordant with their OncoNPC predicted cancer types exhibited 

significantly better survival than those who received discordant treatments as shown in Fig. 

5a and 5b (multivariable Cox regression: H.R. 0.348, 95% C.I. 0.210 – 0.570, p-value 2.32 × 

10−5, Proportional Hazard assumption test [34]: Chi-squared test with 17 degrees of freedom 

p-value 0.156, IPTW Kaplan-Meier estimator: weighted log-rank test p-value 1.97×10−6). 

Furthermore, after stratifying by OncoNPC predicted cancer groups and repeating the IPTW 

Kaplan-Meier analysis, we found that the treatment concordant group had improved survival 

across the cancer groups (breast, GI, and others), with the exception of the lung cancer group 

(Extended Data Fig. 7). The concordant treatment group achieved better survival outcomes 

even after restricting to a subset of patients (n = 33) who received their initial treatments 

after the OncoPanel sequencing results were available for clinical assessment (weighted 

log-rank test p-value 1.50 × 10−8; see Extended Data Fig. 8). Finally, the multivariable Cox 

regression (Fig. 5a) and the IPTW Kaplan-Meier analysis likewise identified significant 

hazardous and protective associations of several baseline covariates with survival and 

treatment concordance, respectively (see Supplementary Note 10).

Improving access to targeted treatments in patients with CUP

Based on a comprehensive review of the medical record for 158 patients with CUP by a 

certified oncologist, we identified 20 patients (12.7%) who received genomically-guided 

treatments, split evenly between concordant and discordant groups. We utilized the OncoKB 

knowledge base [35] to link actionable variants with their respective targeted treatments 

(see Methods). Notably, we found that 24 additional patients in the cohort (representing a 

2.2-fold total increase; 13 in the treatment concordant group and 11 in the discordant group) 

could have been eligible for genomically-guided treatments based on OncoNPC predictions. 

Specifically, actionable somatic variants, combined with the predicted cancer types, led to 

28 eligible drugs under Level 1 to 3, where Level 1 corresponds to FDA-approved drugs, 

Level 2 corresponds to Standard Care, and Level 3 corresponds to Biological Evidence [35]. 

Fig. 5c illustrates the OncoNPC predicted cancer types, corresponding actionable variants, 

and eligible drugs. Within a broader cohort of CUP tumors that were not chart reviewed (n 

= 794), we similarly found that 22.8% had potentially actionable somatic variants per their 

respective OncoNPC cancer type predictions (see Supplementary Note 11 and Extended 

Data Fig. 9).

Discussion

We developed OncoNPC, a machine learning model, for the molecular classification 

of tumor samples using multicenter NGS panel data. OncoNPC provided robust and 

interpretable predictions in held-out multicenter test data. Applied to CUP tumor samples, 

OncoNPC CUP subgroups showed significantly higher germline PRS risk for their predicted 

cancers; the first evidence of germline genetic correlation between CUP tumors and 

corresponding CKP tumors, to our knowledge. Furthermore, OncoNPC CUP subgroups 

showed significant survival differences, consistent with those observed in the corresponding 

CKP cancer types. In the retrospective survival analysis, patients with CUP treated in a 
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consistent manner with their OncoNPC predictions achieved significantly longer survival 

than those treated in an inconsistent manner. Finally, OncoNPC predictions enabled a 2.2-

fold increase in CUP patients who could have received genomically-guided therapies. Our 

findings suggest that CUP tumors share a genetic and prognostic architecture with known 

cancer types, and may benefit from molecular classification.

While prior studies have demonstrated accurate classification of known tumors using a 

variety of platforms [7–13, 36, 37], they typically applied algorithms to metastatic tumors of 

known types and did not investigate the clinical implications for CUP tumors at large scale. 

Notably, Moran et al. [7] observed a nominally significant difference in survival between 

patients with CUP who received site-specific treatments concordant with their molecular 

primary site predictions and those who received empiric treatments. However, this difference 

may be explained by systematically worse outcomes for the empirically treated group, 

which is typically a more challenging patient population [38]. To explicitly distinguish these 

scenarios, our analysis instead restricted to a CUP cohort wherein all patients received site-

specific treatments as the first palliative-intent therapy and estimated a significant survival 

benefit of concordant treatment vs. discordant treatment (excluding the empirically treated 

group) to mimic clinical trials in Real World data [32, 33]. Although we cannot rule 

out potential biases from unmeasured confounders, the proposed intervention (concordant 

treatment vs. discordant treatment) is particularly challenging to ethically evaluate through 

RCTs, necessitating the use of retrospective causal inference.

Our study has several limitations. Firstly, although we utilized multicenter data for training 

and evaluation of OncoNPC predictions, retrospective EHR data was only available from 

a single institution for downstream clinical analyses. Secondly, the majority of our cohort 

with panel sequencing data consists of white patients (83.2% in the training cohort), which 

may explain why OncoNPC performed better for the held-out tumors from white patients. 

Nevertheless, OncoNPC achieved an AUC-PR over 0.8 across all ethnicities. Thirdly, we 

considered only the 22 most common cancer types in the cohort as classification labels (68.1 

% of all tumor samples at DFCI, and 69.9 % across all three centers). As a result, if a CUP 

tumor sample harbors a distinct yet not modeled primary cancer type, then the tumor sample 

will likely have high uncertainty in the prediction, which we confirmed empirically (see 

Supplementary Note 5). Nevertheless, prior work has shown that the majority of resolvable 

primary sites of CUP tumor samples were from common cancers (e.g., lung, pancreas, and 

GI) [21], consistent with our findings. Fourthly, our classifier and analyses relied on data 

from panel sequencing assays targeting 300–500 genes, which are inherently only sensitive 

to coding mutations and deep copy number alterations in the targeted genes. Other molecular 

features may thus improve classification performance (see Supplementary Note 12). Our 

focus in this work was on assays that are in routine clinical use as those are linked to Real 

World clinical data and offer the most immediate translational potential. Notably, OncoNPC 

may still be effective with even more limited sequencing panels (see Supplementary Note 4). 

Lastly, we stress that OncoNPC subgroups are still algorithmically defined and should not 

be considered true molecular subtypes without further molecular validation and independent 

replication.
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Our findings suggest that routinely collected targeted tumor panel sequencing data have 

clinical utility in assisting diagnostic work-up and prognosis, and may additionally inform 

treatment decisions. Through our pathology-based evaluation, we discovered that 51.9% 

(67 out of 129 cases) of CUP cases in the cohort had agreement between OncoNPC 

predictions and at least one pathology-based suspected primary (see Supplementary Note 

13). Despite being substantially higher than expected by chance (19.9%, 95% C.I. 19.7% 

- 20.1%), this relatively low agreement underscores the challenge that highly metastatic 

or poorly differentiated tumors pose to pathological diagnosis [2, 5]. In several cases, we 

found that OncoNPC predictions could have been helpful where multiple primaries were 

pathologically suspected (see Supplementary Note 13). Due to the difficulty in diagnosing 

CUP cases, oncologists often resort to empiric treatment regimens [21, 39], even when 

targeted therapies would otherwise be the standard of care for a corresponding known 

primary. Upon retrospective chart review, we found that only 12.7% of patients with 

CUP (20 out of 158) received genomically-guided targeted treatments, which could have 

potentially increased to 44 (27.8%) patients based on OncoNPC predictions. In future work, 

we envision a multimodal foundational framework that incorporates molecular sequencing 

together with patient pathology images [37], longitudinal physiological data [40], and 

clinical notes [41] to directly predict optimal treatment regiments rather than just cancer 

types. We believe that our work paves a way for incorporating routine panel sequencing data 

into clinical decision support tools for clinically challenging cancers.

Methods

Our research complies with all relevant ethical regulations. Tumors samples at DFCI were 

selected and sequenced from patients who were consented under institutional review board 

(IRB)-approved protocol 11–104 and 17–000 from the Dana-Farber/Partners Cancer Care 

Office for the Protection of Research Subjects. Participants in this study provided written 

informed consent before being included. The secondary analyses of preexisting data were 

conducted with approval from the Dana-Farber IRB under protocols 19–033 and 19–025. 

Waivers for Health Insurance Portability and Accountability Act (HIPAA) authorization 

were granted for both protocols.

Patients and tumor samples

We used the next generation sequencing (NGS) targeted panel sequencing data collected 

at three institutions in routine clinical care as part of the AACR project GENIE [1]: 

Dana-Farber Cancer Institute (DFCI, n=18,816), Memorial Sloan Kettering Cancer (MSK, 

n=16,294) center, and Vanderbilt-Ingram Cancer Center (VICC, n=1,335). The collected 

tumor samples represented 22 different cancer types and included 971 total samples from 

cancer of unknown primary (CUP). National Death Index (NDI) and clinical death and last 

clinical appointment records were available for 20,281 DFCI patients (n = 16,376 for CKP 

and n = 838 for CUP). Demographic details of the patients and tumor samples can be found 

in Table 1.

The cancer centers, DFCI, MSK, and VICC, were chosen because of similar genomic data 

characterization of their sequence panels in terms of coverage and alteration types [1]. DFCI 
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samples were sequenced using a custom, hybridization-based panel called OncoPanel which 

targeted exons of 304–447 genes across three panel versions [1, 2]. MSK samples were 

sequenced using a custom panel called MSK-IMPACT which targeted 341–468 genes across 

3 panel versions [1, 3]. VICC samples were sequenced using custom panels called VICC-01-

T5A and VICC-01-T7, which targeted 322 and 429 genes, respectively [1]. All panels 

were capable of detecting single nucleotide variants (SNVs), small indels, copy number 

alterations, and structural variants [1]. Additionally, we have provided Supplementary File 

onconpc_feature_genes_targeted_across_panels.csv that lists all the genes used 

to develop the OncoNPC classifier, categorized by the targeted genes across panels.

The DFCI CUP cohort consisted of 971 sequenced tumor samples (from 962 patients) 

with a cancer diagnosis of CUP and the following detailed cancer type: Adenocarcinoma, 

Not Otherwise Specified (NOS) (n = 345), Cancer of Unknown Primary, NOS (n = 194), 

Squamous Cell Carcinoma, NOS (n = 114), Poorly Differentiated Carcinoma, NOS (n 

= 118), Neuroendocrine Tumor/Carcinoma, NOS (n = 170), Small Cell Carcinoma of 

Unknown Primary (n = 16), Undifferentiated Malignant Neoplasm (n = 12), and Mixed 

Cancer Types (n = 2). For downstream clinical analyses, we applied additional exclusion 

criteria, described in Extended Data Fig. 6.

Developing OncoNPC cancer type classifier

We used a gradient tree boosting framework (XGBoost [4]) to develop OncoNPC for 

predicting cancer types from molecular features. In this framework, decision trees for the 

input features are sequentially added to an existing ensemble of the trees, such that the 

algorithm fits the new tree to the residuals from the ensembles with regularization on the tree 

structure. As the trees (i.e., weak learners) are added, the model learns optimal weights to 

combine their predictions and produces the improved outcome from the combined ensemble 

[4]. Owing to its high performance and scalability, the XGBoost method has been used 

across a wide range of applications in the healthcare space [5–7].

OncoNPC was trained and evaluated using tumors from 22 known cancer types split into 

29,176 training samples and 7,289 test samples. Hyper-parameter selection was conducted 

using random search [8] with 10-fold cross validation within the training set while utilizing 

weighted F1 score as an evaluation metric. The optimal hyper-parameters were then selected 

and the model was evaluated on the held-out test set (n = 7,289). To predict primary sites 

of CUP tumors, the model was then re-trained on all CKP tumor samples and applied to 

the CUP tumors to estimate posterior probabilities across the 22 different cancer labels. For 

each tumor sample, a cancer type with the highest probability was chosen as the predicted 

primary site.

Feature selection and OncoNPC model interpretation

The OncoNPC model was trained on somatic variant features from tumor sequencing data, 

as well as patient age at the time of sequencing and sex. In order to avoid bias towards 

known cancers or creating performance disparities across patient subgroups, OncoNPC did 

not consider other aspects of tumor characteristics, pathology, or patient demographics (see 

Supplementary Note 1 for more details). Somatic variant features included mutations (i.e., 
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single nucleotide variants (SNV) and indels), Copy Number Alteration (CNA) events, and 

mutational signatures [9]. For each gene, the total count of a somatic mutation (i.e., single 

nucleotide variants and indels) was encoded as a positive integer feature. The presence 

of a CNA event for each gene was encoded as a categorical variable with 5 levels: −2 

(deep loss), −1 (single-copy loss), 0 (no event), 1 (low-level gain), and 2 (high-level 

amplification). Note that CNA events data for tumor samples from MSK and VICC were 

encoded as −2 (deep loss), 0 (no event), and 2 (high-level amplification). Each of 60 

different mutation signatures was inferred as the dot product of the weights derived from 

[9] and 96 single base substitutions in a trinucleotide context. The single base substitutions 

were computed using the deconstructSigs v1.8.0 R library [10]. See Supplementary File 

onconpc_features.csv for the full set of features.

To identify important features in the OncoNPC’s predictions, we used the recently proposed 

feature interpretation tool for tree-based models, called TreeExplainer [11] (Python shap 

v0.41.0). TreeExplainer uses an efficient polynomial time algorithm O TLD2 , T : number 

of trees, L: number of leaves, D: maximum depth) to approximate Shapley values which 

capture the impact of each feature on each individual model prediction. The Shapley value 

assigned to each feature is modeled as the average change in the model’s conditional 

expectation function over all possible feature orderings when introducing the corresponding 

feature into the model. It is formulated as ES f X ∣ do XS = xS , where S is the set of 

features, X is a random variable for the feature to perturb, and do notation [12] reflects the 

causal feature perturbation formulation. See [11] for more details on the algorithm and its 

properties.

Using TreeExplainer, we obtained local explanations for each OncoNPC prediction on a 

total of 7,289 CKP held-out and 971 CUP tumor samples. By combining local explanations 

for each cancer type, we characterized the cancer type in terms of the most important or 

predictive features based on their Shapley values, which provided insights into the somatic 

variants and clinical features most relevant to the classification of each cancer type.

Germline PRS-based validation on CUP tumor samples

To validate the OncoNPC predictions for CUP tumor samples (which do not otherwise 

have a ground truth), we utilized germline Polygenic Risk Scores (PRS) which were 

never available to OncoNPC for training. Germline imputation from the off-target tumor 

sequencing data was conducted as previously described in [13]. We limited our cohorts 

to individuals of European ancestry since the imputation model for germline variants and 

GWAS data for PRS was trained on a European population. Using weights from external 

GWAS data, we imputed PRS for Non-Small Cell Lung Cancer (NSCLC), Invasive Breast 

Carcinoma (BRCA), Colorectal Adenocarcinoma (COADREAD), Diffuse Glioma (DIFG), 

Melanoma (MEL), Ovarian Epithelial Tumor (OVT), Renal Cell Carcinoma (RCC), and 

Prostate Adenocarcinoma (PRAD). Pearson correlation between the PRS from off-target 

tumor data versus matched germline SNP array was previously shown to be higher than 0.9 

without observable outliers [13]. See Supplementary Note 6 for details on the accuracy of 

germline imputation in our cohorts.
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We hypothesized that germline PRS specific to the underlying primary cancer type of a 

CUP tumor sample would be enriched in a manner similar to how the PRS specific to CKP 

tumor sample with the same primary cancer type is enriched. To that end, given the set of 

8 different cancer types C we have the imputed PRS available for, we first restricted the 

cohort of CUP tumor samples to those with OncoNPC predictions in C NCUP, C = 505 . Then, 

we obtained standardized germline PRS values for the chosen CUP tumor samples over all 

the cancer types in C. Finally, we defined Δ̂PRS as the estimated mean difference between 

the PRS specific to the predicted primary cancer type C (i.e. concordant PRS; PRSC) and 

average of PRSs corresponding to the rest of the cancer types (i.e. discordant PRS; PRSD, 

where D ∈ C ∖ C) as follows

Δ̂PRS = Ê[PRSC − ÊD[PRSD ∣ C]] = 1
NCUP, C i

NCUP, C

(PRSci − 1
C ∖ ci di ∈ C ∖ Ci

PRSdi)

(1)

As a true positive reference, we repeated the above procedure for the CKP tumor samples. 

Finally, as a true negative reference, we estimated Δ̂PRS−random, where the concordant cancer 

type was randomly assigned. We then repeated the random assignment 100 times to obtain 

estimated mean and standard errors.

Survival function estimation

National Death Index (NDI) and in-house clinical records were available for 20,281 DFCI 

patients (n = 16,376 for CKP and n = 838 for CUP). A patient’s lost to follow-up date 

was determined at either the last NDI update date (12/31/2020) or their corresponding last 

contact date from the in-house records, whichever date is later. A patient’s death date was 

determined from the in-house records, or the NDI data if the patient was lost to follow-up.

OncoNPC-based risk stratification among patients with CUP

To identify OncoNPC CUP subgroups with significant prognostic differences, we estimated 

survival functions for 7 common OncoNPC subgroups with more than 35 CUP patients: 

NSCLC, PAAD, BRCA, HNSCC, EGC, GINET, and Pancreatic Neuroendocrine Tumor 

(PANET). Patients that were lost to follow up at time of sequencing were again excluded, as 

were CUPs with an OncoNPC prediction probability lower than 0.5 (see Extended Data Fig. 

6). We merged subgroups with similar morphology and estimated survival functions: PAAD 

and EGC, and GINET and PANET. To statistically test survival differences between these 5 

groups, we utilized Chi-squared test with 4 degrees of freedom.

Estimating impacts of treatment concordance on survival of patients with CUP

We estimated the impact of the concordance between treatment and OncoNPC CUP 

predictions on a mortality outcome in a retrospective survival analysis. We utilized 

the in-house patient follow-up and treatment data to identify patients with CUP who 

received first treatment at DFCI with a palliative intent (see Extended Data Fig. 6 for 

the exclusion criteria). Each patient was reviewed by a trained oncologist to determine 
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whether the OncoNPC predicted cancer type was concordant or discordant with the 

first line of treatment received, per National Comprehensive Cancer Network (NCCN) 

guidelines or standard of care, in most reasonable situations, and within the clinical context 

delineated in the medical record (see Supplementary Note 9). Refer to Supplementary File 

patient_info_treatment_analysis.csv for more details on clinical information of 

patients with CUP in the analysis, including primary cancer diagnosis, biopsy site, and first 

chemotherapy plan at DFCI.

As we were interested in the counterfactual causal impact of the OncoNPC-treatment 

concordance, we utilized the principles of causal inference to account for potential 

patient heterogeneity and confounding. Specifically, we estimated the effect of treatment 

concordance specified by the indicator variable, A, which was 1 when the first palliative 

treatment for a patient with CUP was concordant with the corresponding OncoNPC 

prediction and 0 otherwise. Our analyses make the following identifiability assumptions:

• Conditional ignorability : Ai ⫫ T i
ai ∣ Xi, where Ai ∈ 0, 1. It means that given 

patient i’s a set of covariates Xi, the patient’s treatment concordance Ai is as 

good as random.

• Consistency : T i
ai = T i, which means that a counterfactual outcome T i

ai for patient i
is the observed outcome for the patient with a treatment concordance ai.

• Overlap : P 0 < p Xi < 1 = 1 where p Xi = P Ai = 1 ∣ Xi , which means all 

patients have a strictly positive probability for receiving concordant treatment 

Ai = 1 .

In addition to the above identifiability assumptions, we made independent censoring (i.e. 

Ci ⫫ T i ∣ Xi) and independent entry assumption given the covariates (i.e. Ei ⫫ T i ∣ Xi).

We adopted two different estimation strategies to obtain the impact of treatment 

concordance: semi-parametric Cox Proportional Hazard estimator adjusted with a set of 

measured confounders X [14] and non-parametric Kaplan Meier estimator adjusted with 

Inverse Probability Treatment Weighting (IPTW). We formulated an IPTW, wi for each 

sample as wi = P A = ai
P Ai = ai ∣ Xi

 [15] and estimated P A  non-parametrically and P A ∣ X  using 

a logistic regression model (R stats v4.0.2 [16]) in a 10-fold cross-fitting. A set of 

measured confounders (i.e., Xi) included patients’ sex, age, OncoNPC prediction uncertainty 

(in entropy), sequencing panel (i.e., OncoPanel) version, mutational burden, CNA burden, 

subsets of OncoNPC predicted cancer types and metastasis sites, and finally pathological 

histology (e.g., adenocarcinoma tumor or neuroendocrine tumor). Since patients with CUP 

who met the treatment criteria but did not receive clinical panel sequencing (i.e., entry 

criterion) could not be included in the analysis, we adjusted for the left truncation by 

defining the risk set ℛ t  at time t, which corresponds to the set of patients followed up in 

the analysis up to time t as follows

ℛ t = i ∣ Ei ≤ t ≤ T i
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, where Ei is the entry time of patient i. With the independent entry assumption as stated 

before, we obtained survival function from Kaplan-Meier estimator as follows

Ŝ(t) =
i:T i ≤ t

1 − k:Tk = T i wk

j: j ∈ ℛ T i wj

In this formulation, each individual is weighted by the corresponding IPTW, wi, and we 

obtained two different survival functions for the treatment concordant and discordant groups. 

The adjusted Kaplan-Meier estimator provides a consistent estimate of the survival function 

for each group under the assumptions stated above [15]. Once we obtained the survival 

estimates for the two groups, we used a weighted log-rank test [15] to test for a significant 

difference in survival.

In the Cox proportional hazard regression framework, we estimated the hazard function 

of patient i as follows: λ t ∣ Ai, Xi = λ0 t exp αAi + βTXi , where α, Ai ∈ ℝ and β, Xi ∈ ℝm m

is the number of measured confounders). Under the above identifiability assumptions and 

validity of the estimation model, eα is the hazard ratio capturing the causal effect of the 

treatment concordance A. Finally, under the assumption of no ties between event times 

across the patients, the parameters α and β are estimated by maximizing the following partial 

likelihood

L(α, β) =
i:δi = 1

exp αAi + βXi

j: j ∈ ℛ T i exp αAj + βXj

[14].

Actionable somatic variants in CUP tumors

We estimated the frequency of known, actionable somatic alterations in each OncoNPC 

CUP subgroups using the OncoKB knowledge base [17]. We considered 3 different types 

for somatic variants: oncogenic mutations such as indels, missense mutations, and splice 

site mutations, amplifications such as high-level amplifications, and finally fusions such 

as gene-gene and gene-intergenic fusions as specified in OncoKB. For each actionable 

somatic variant, we assigned one of the four therapeutic levels: level 1 for FDA-approved 

drugs, level 2 for standard care drugs, level 3 for drugs supported by clinical evidence, 

and level 4 for drugs supported by biological evidence. Refer to Supplementary File 

patient_info_treatment_analysis.csv for more details on actionable variants and 

corresponding genomically-guided treatments.
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Extended Data

Extended Data Figure 1: OncoNPC classification performance: confusion matrix, and precision 
and recall.
Confusion matrices on the held-out test set (n = 7,289) for (a) 22 detailed cancer types 

and (b) 13 cancer groups (see Table 1). (c), (d) OncoNPC performance in precision and 

recall on the test set across (c) cancer types and (d) cancer groups at 4 different prediction 

confidences using pmax as a threshold. Each dot size is scaled by the proportion of tumor 

samples retained. In (d), we only considered cancer groups that have more than one cancer 

type. Overall scores were weighted according to the number of confirmed cases across 

cancer types and cancer groups, respectively.
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Extended Data Figure 2: OncoNPC prediction performance and prediction confidence levels (i.e., 
pmax) across different cohorts and centers.
(a) Center-specific OncoNPC performance (in F1) on the test CKP tumor samples (n = 

7,289). The figure is a breakdown of Main Fig. 2c based on cancer center (DFCI: ◯, MSK: 

◻, VICC: ◇). The performance was evaluated at 4 different prediction confidences (i.e., 

minimum pmax thresholds). Each dot size is scaled by the proportion of tumor samples 

retained. See Supplementary Table S3 for the center-specific number of test CKP tumor 

samples broken down by cancer types and prediction confidence thresholds. (b), (c) Box 

plots of prediction confidences (pmax) across (b) DFCI CUP tumors, MSK CUP tumors, 
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all DFCI CKP tumors (including those with cancer types not modeled in OncoNPC), DFCI 

held-out CKP tumors, and DFCI excluded CKP tumors (specifically those with cancer types 

not modeled in OncoNPC), and (c) DFCI held-out CKP tumors, MSK held-out CKP tumors, 

and VICC held-out CKP tumors. Note that DFCI excluded CKP tumors refers to the cohort 

of the rare CKP tumors whose cancer types were not considered during the development of 

OncoNPC. All cohorts in the analysis for (b) and (c) were not seen by OncoNPC during the 

model training
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Extended Data Figure 3: Robustness of OncoNPC performance with respect to input genomics 
features.
The figure shows the breakdown of OncoNPC performance in F1 score by 22 cancer types 

across increasing prediction confidence. The cancer types on the y-axis are sorted in a 

decreasing order of the number of tumor samples. In order to investigate the impact of 

input genomics features on OncoNPC’s robustness, we performed a feature ablation study, 

where we chose the most important genes based on their aggregated SHAP values and 

gradually reduced them from all 846 features associated with those genes, as well as age 

and sex, to only the top 10% (i.e., top 29 features). In each feature configuration, we 

re-trained the model with the same set of hyperparameters and evaluated its performance 

on the held-out CKP tumor samples (n = 7,289), which were utilized throughout this work. 

Supplementary File features_in_each_config_ablation_study.csv, provides a list 

of input features that correspond to the selected genes in each configuration.

Extended Data Figure 4: Explanation of OncoNPC prediction for a patient with CUP.
The patient is a 76 year-old male with a tumor biopsy from the liver. The pie chart on 

the left shows the Top 10 important features across three different feature categories (i.e., 

CNA events, somatic mutation, and mutation signatures), and the scatter plot on the right 

shows their SHAP values and feature values. The size of each dot is scaled by corresponding 

absolute SHAP value. From the chart review, we found that the patient reported a 60-pack 

year smoking history, as well as having lived near a tar and chemical factory as a child. 

Despite the CUP diagnosis, OncoNPC confidently classified the primary site as NSCLC 

with posterior probability of 0.98. SBS4, a tobacco smoking-associated mutation signature, 

was significantly enriched in the patient’s tumor sample, which has, by far, the most impact 

on the prediction, followed by SBS24 mutation signature associated with known exposures 

to aflatoxin, and KRAS mutation.
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Extended Data Figure 5: Germline Polygenic Risk Score (PRS) enrichment of CKP tumor 
samples and CUP tumor samples, broken down by 8 different cancer types.
(a) Colorectal Adenocarcinoma (COADREAD), (b) Diffuse Glioma (DIFG), (c) Invasive 

Breast Carcinoma (BRCA), (d) Melanoma (MEL), (e) Non-Small Cell Lung Cancer 

(NSCLC), (f) Ovarian Epithelial Tumor (OVT), (g) Prostate Adenocarcinoma (PRAD), and 

(h) Renal Cell Carcinoma (RCC). The magnitude of the enrichment is quantified by Δ̂PRS: 

the mean difference between the concordant (i.e. OncoNPC matching) cancer type PRS and 
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mean of PRSs of discordant cancer types (see Methods). Δ̂PRS is shown for CKPs in blue (for 

reference) and CUPs in green.

Extended Data Figure 6: Exclusion criteria for downstream clinical analyses
.
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Extended Data Figure 7: Estimated survival curves for the concordant and discordant treatment 
groups among patients with CUP, broken down by OncoNPC predicted cancer types.
(a) BRCA, (b) Gastrointestinal (GI) group (CHOL, COADREAD, EGC, and PAAD), (c) 

Lung (NSCLC and PLMESO), and (d) Other OncoNPC cancer types (BLCA, DIFG, 

GINET, HNSCC, MEL, OVT, PANET, PRAD, RCC, and UCEC). In each figure, the 

concordant treatment group and discordant treatment group are shown in blue and red, 

respectively. To estimate each survival curve, we utilized Inverse Probability of Treatment 

Weighted (IPTW) Kaplan-Meier estimator while adjusting for patient covariates and left 

truncation until time of sequencing (see Methods). Statistical significance of the survival 

difference between the two groups was estimated by a weighted log-rank test.
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Extended Data Figure 8: Estimated survival curves for the concordant and discordant treatment 
groups among patients with CUP who received their initial treatments after the results of the 
OncoPanel sequencing were available to clinicians.
Similarly, we utilized Inverse Probability of Treatment Weighted (IPTW) Kaplan-Meier 

estimator for each survival curve while adjusting for patient covariates and left truncation 

until time of sequencing (see Methods). Statistical significance of the survival difference 

between the two groups was estimated by a weighted log-rank test. Refer to Supplementary 

Table S2 for demographic information on the cohort.
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Extended Data Figure 9: OncoNPC-guided actionable variants in patients with CUP.
(a) The number of CUP tumors with actionable targets, based on OncoKB (see Methods), 

across actionable somatic variants (mutations, amplifications, and fusions). Each bar 

corresponds to an actionable target, color-coded by the number of CUP tumors in each 

predicted cancer type. Note that each tumor may contain more than one actionable somatic 

variant. (b) Proportions of CUP tumor samples with actionable somatic variants (Naction) to 

the total number of patients (Ntotal) across OncoNPC predicted cancer types. Proportions 

for 4 different therapeutic levels based on OncoKB, are shown in each bar: Level 1 - 

FDA-approved drugs, Level 2 – standard of care drugs, Level 3 - drugs supported by clinical 

evidence, and Level 4 - drugs supported by biological evidence.

Moon et al. Page 23

Nat Med. Author manuscript; available in PMC 2024 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Table 1:

Demographic details of patients with CUP in the concordant and discordant treatment 

groups. The OncoNPC predicted cancer groups, except for the GI group, match the cancer 

groups defined in Main Table 1. The GI group in this analysis consists of the upper GI 

group, including Cholangiocarcinoma (CHOL), Esophagogastric Adenocarcinoma (EGC), 

and Pancreatic Adenocarcinoma (PAAD), as well as Colorectal Adenocarcinoma 

(COADREAD).

Concordant treatment group (n = 
77)

Discordant treatment group (n = 
81)

Sex; male-female ratio 0.442–0.558 0.556–0.444

Age at seqeuncing (95% C.I.) 64 (61.6 – 66.4) 62 (59.4 – 64.6)

OncoNPC prediction uncertainty (in 
entropy; 95% C.I.) 0.550 (0.426 – 0.675) 0.988 (0.850 – 1.127)

OncoPanel version (proportion in %)

v1 1 (1.30%) 1 (1.24%)

v2 9 (11.7%) 15 (18.5%)

v3 67 (87.0%) 65 (80.2%)

Mutational burden (95% C.I.) 0.027 (0.021 – 0.033) 0.033 (0.027 – 0.040)

CNA burden (95% C.I.) 0.201 (0.166 – 0.236) 0.186 (0.155 – 0.217)

OncoNPC predicted cancer groups (proportion in %)

Lung 15 (19.5%) 24 (29.6%)

Breast 5 (6.50%) 11 (13.6%)

GI 33 (42.9%) 16 (19.8%)

Gyn 9 (11.7%) 5 (6.17%)

Others 15 (19.5%) 25 (31.0%)

Metastatic sites (proportion in %)

Brain 4 (5.20%) 8 (9.88%)

Bone 7 (9.10%) 10 (12.3%)

Soft tissue 6 (7.79%) 5 (6.17%)

Others 60 (77.9%) 58 (71.6%)

Histology (proportion in %)

Adenocarcinoma 41 (53.2%) 32 (39.5%)

Neuroendocrine 9 (11.7%) 11 (13.6%)

Squamous cell 2 (2.60%) 6 (7.41%)

Others 25 (32.5%) 32 (39.5%)

Treatment start date (95% C.I.) 2018–4–30 (2017–12–24 – 2018–9–3) 2018–3–1 (2017–10–28 – 2018–7–3)
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The participation of patients and the efforts of an institutional data collection system made this study possible, and 
we are grateful for their contributions. We would also like to express our appreciation to the DFCI Oncology Data 
Retrieval System (OncDRS) and AACR Project GENIE team for their role in aggregating, managing, and delivering 
the data used in this project.

IM and AG were supported by R01 CA227237, R01 CA244569, as well as grants from The Louis B. Mayer 
Foundation, The Doris Duke Charitable Foundation, The Phi Beta Psi Sorority, and The Emerson Collective. 
The funders had no role in study design, data collection and analysis, decision to publish or preparation of the 
manuscript.

Data Availability

The multicenter NGS tumor panel sequencing data is available upon request at the 

AACR Project GENIE website: https://www.aacr.org/professionals/research/aacr-project-

genie/. The fully trained OncoNPC model, processed somatic variants data from Profile 

DFCI, and de-identified clinical data used in the treatment concordance analysis are 

available in https://github.com/itmoon7/onconpc.

References

[1]. Pavlidis N, Khaled H, and Gaafar R, “A mini review on cancer of unknown primary site: A clinical 
puzzle for the oncologists,” Journal of advanced research, vol. 6, no. 3, pp. 375–382, 2015. 
[PubMed: 26257935] 

[2]. Varadhachary GR and Raber MN, “Cancer of unknown primary site,” New England Journal of 
Medicine, vol. 371, no. 8, pp. 757–765, 2014. [PubMed: 25140961] 

[3]. Hyman DM et al. , “Vemurafenib in multiple nonmelanoma cancers with braf v600 mutations,” 
New England Journal of Medicine, vol. 373, no. 8, pp. 726–736, 2015. [PubMed: 26287849] 

[4]. Hainsworth JD and Greco FA, “Cancer of unknown primary site: New treatment paradigms in the 
era of precision medicine,” American Society of Clinical Oncology Educational Book, vol. 38, 
pp. 20–25, 2018. [PubMed: 30231392] 

[5]. Anderson GG and Weiss LM, “Determining tissue of origin for metastatic cancers: Meta-analysis 
and literature review of immunohistochemistry performance,” Applied Immunohistochemistry & 
Molecular Morphology, vol. 18, no. 1, pp. 3–8, 2010. [PubMed: 19550296] 

[6]. Oien K and Dennis J, “Diagnostic work-up of carcinoma of unknown primary: From 
immunohistochemistry to molecular profiling,” Annals of Oncology, vol. 23, pp. x271–x277, 
2012. [PubMed: 22987975] 

[7]. Moran S et al. , “Epigenetic profiling to classify cancer of unknown primary: A multicentre, 
retrospective analysis,” The Lancet Oncology, vol. 17, no. 10, pp. 1386–1395, 2016. [PubMed: 
27575023] 

[8]. Jiao W et al. , “A deep learning system accurately classifies primary and metastatic cancers using 
passenger mutation patterns,” Nature communications, vol. 11, no. 1, p. 728, 2020.

[9]. Penson A et al. , “Development of genome-derived tumor type prediction to inform clinical cancer 
care,” JAMA oncology, vol. 6, no. 1, pp. 84–91, 2020. [PubMed: 31725847] 

[10]. He B et al. , “A neural network framework for predicting the tissue-of-origin of 15 common 
cancer types based on rna-seq data,” Frontiers in Bioengineering and Biotechnology, vol. 8, p. 
737, 2020. [PubMed: 32850691] 

Moon et al. Page 25

Nat Med. Author manuscript; available in PMC 2024 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.aacr.org/professionals/research/aacr-project-genie/
https://www.aacr.org/professionals/research/aacr-project-genie/
https://github.com/itmoon7/onconpc


[11]. Nguyen L, Van Hoeck A, and Cuppen E, “Machine learning-based tissue of origin classification 
for cancer of unknown primary diagnostics using genome-wide mutation features,” Nature 
communications, vol. 13, 2022.

[12]. Posner A et al. , “A comparison of dna sequencing and gene expression profiling to assist tissue 
of origin diagnosis in cancer of unknown primary,” The Journal of Pathology, vol. 259, no. 1, pp. 
81–92, 2023. [PubMed: 36287571] 

[13]. Zhao Y et al. , “Cup-ai-dx: A tool for inferring cancer tissue of origin and molecular subtype 
using rna gene-expression data and artificial intelligence,” EBioMedicine, vol. 61, p. 103030, 
2020. [PubMed: 33039710] 

[14]. A. P. G. Consortium et al. , “Aacr project genie: Powering precision medicine through an 
international consortium,” Cancer discovery, vol. 7, no. 8, pp. 818–831, 2017. [PubMed: 
28572459] 

[15]. Hainsworth JD et al. , “Molecular gene expression profiling to predict the tissue of origin and 
direct site-specific therapy in patients with carcinoma of unknown primary site: A prospective 
trial of the sarah cannon research institute,” Journal of Clinical Oncology, vol. 31, no. 2, pp. 
217–223, 2013. [PubMed: 23032625] 

[16]. Yoon H et al. , “Gene expression profiling identifies responsive patients with cancer of unknown 
primary treated with carboplatin, paclitaxel, and everolimus: Ncctg n0871 (alliance),” Annals of 
Oncology, vol. 27, no. 2, pp. 339–344, 2016. [PubMed: 26578722] 

[17]. Hayashi H et al. , “Site-specific and targeted therapy based on molecular profiling by next-
generation sequencing for cancer of unknown primary site: A nonrandomized phase 2 clinical 
trial,” JAMA oncology, vol. 6, no. 12, pp. 1931–1938, 2020. [PubMed: 33057591] 

[18]. Hayashi H et al. , “Randomized phase ii trial comparing site-specific treatment based on gene 
expression profiling with carboplatin and paclitaxel for patients with cancer of unknown primary 
site,” Journal of Clinical Oncology, vol. 37, no. 7, pp. 570–579, 2019. [PubMed: 30653423] 

[19]. Conway A-M, Mitchell C, and Cook N, “Challenge of the unknown: How can we improve 
clinical outcomes in cancer of unknown primary?” Journal of clinical oncology: official journal 
of the American Society of Clinical Oncology, vol. 37, no. 23, pp. 2089–2090, 2019. [PubMed: 
31211603] 

[20]. Chen T and Guestrin C, “Xgboost: A scalable tree boosting system,” in Proceedings of the 
22nd acm sigkdd international conference on knowledge discovery and data mining, 2016, pp. 
785–794.

[21]. Bochtler T and Krämer A, “Does cancer of unknown primary (cup) truly exist as a distinct cancer 
entity?” Frontiers in oncology, vol. 9, p. 402, 2019. [PubMed: 31165045] 

[22]. Lundberg SM et al. , “From local explanations to global understanding with explainable ai for 
trees,” Nature machine intelligence, vol. 2, no. 1, pp. 56–67, 2020.

[23]. Tate JG et al. , “Cosmic: The catalogue of somatic mutations in cancer,” Nucleic acids research, 
vol. 47, no. D1, pp. D941–D947, 2019. [PubMed: 30371878] 

[24]. da Cunha Santos G, Shepherd FA, and Tsao MS, “Egfr mutations and lung cancer,” Annual 
Review of Pathology: Mechanisms of Disease, vol. 6, pp. 49–69, 2011.

[25]. Zhang Y-L et al. , “The prevalence of egfr mutation in patients with non-small cell lung cancer: 
A systematic review and meta-analysis,” Oncotarget, vol. 7, no. 48, p. 78985, 2016. [PubMed: 
27738317] 

[26]. Hecht SS, “Tobacco smoke carcinogens and lung cancer,” JNCI: Journal of the National Cancer 
Institute, vol. 91, no. 14, pp. 1194–1210, 1999. [PubMed: 10413421] 

[27]. Dirican E, Akkiprik M, and Özer A, “Mutation distributions and clinical correlations of pik3ca 
gene mutations in breast cancer,” Tumor Biology, vol. 37, pp. 7033–7045, 2016. [PubMed: 
26921096] 

[28]. Elsheikh S et al. , “Ccnd1 amplification and cyclin d1 expression in breast cancer and their 
relation with proteomic subgroups and patient outcome,” Breast cancer research and treatment, 
vol. 109, no. 2, pp. 325–335, 2008. [PubMed: 17653856] 

[29]. Kim J et al. , “Unfavourable prognosis associated with k-ras gene mutation in pancreatic cancer 
surgical margins,” Gut, vol. 55, no. 11, pp. 1598–1605, 2006. [PubMed: 16682430] 

Moon et al. Page 26

Nat Med. Author manuscript; available in PMC 2024 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[30]. Luo J, “Kras mutation in pancreatic cancer,” in Seminars in oncology, Elsevier, vol. 48, 2021, pp. 
10–18. [PubMed: 33676749] 

[31]. Conway AM, Mitchell C, Kilgour E, Brady G, Dive C, and Cook N, “Br J CancerMolecular 
characterisation and liquid biomarkers in Carcinoma of Unknown Primary (CUP): taking the ‘U’ 
out of ‘CUP’,” Br J Cancer, vol. 120, no. 2, pp. 141–153, Jan. 2019. [PubMed: 30580378] 

[32]. Liu R et al. , “Systematic pan-cancer analysis of mutation–treatment interactions using large 
real-world clinicogenomics data,” Nature Medicine, vol. 28, no. 8, pp. 1656–1661, 2022.

[33]. Liu R et al. , “Evaluating eligibility criteria of oncology trials using real-world data and ai,” 
Nature, vol. 592, no. 7855, pp. 629–633, 2021. [PubMed: 33828294] 

[34]. Grambsch PM and Therneau TM, “Proportional hazards tests and diagnostics based on weighted 
residuals,” Biometrika, vol. 81, no. 3, pp. 515–526, 1994.

[35]. Chakravarty D et al. , “Oncokb: A precision oncology knowledge base,” JCO precision oncology, 
vol. 1, pp. 1–16, 2017.

[36]. Moiso E et al. , “Developmental deconvolution for classification of cancer origin,” medRxiv, 
2021.

[37]. Lu MY et al. , “Ai-based pathology predicts origins for cancers of unknown primary,” Nature, 
vol. 594, no. 7861, pp. 106–110, 2021. [PubMed: 33953404] 

[38]. Fizazi K, Greco F, Pavlidis N, Daugaard G, Oien K, and Pentheroudakis G, “Cancers of unknown 
primary site: Esmo clinical practice guidelines for diagnosis, treatment and follow-up,” Annals of 
Oncology, vol. 26, pp. v133–v138, 2015. [PubMed: 26314775] 

[39]. Mileshkin L et al. , “Cancer-of-unknown-primary-origin: A seer–medicare study of patterns of 
care and outcomes among elderly patients in clinical practice,” Cancers, vol. 14, no. 12, p. 2905, 
2022. [PubMed: 35740574] 

[40]. Moon I, Groha S, and Gusev A, “Survlatent ode: A neural ode based time-to-event model with 
competing risks for longitudinal data improves cancer-associated venous thromboembolism (vte) 
prediction,” in Machine Learning for Healthcare Conference, PMLR, 2022, pp. 800–827.

[41]. Kehl KL et al. , “Natural language processing to ascertain cancer outcomes from medical 
oncologist notes,” JCO Clinical Cancer Informatics, vol. 4, pp. 680–690, 2020. [PubMed: 
32755459] 

References

[1]. A. P. G. Consortium et al. , “Aacr project genie: Powering precision medicine through an 
international consortium,” Cancer discovery, vol. 7, no. 8, pp. 818–831, 2017. [PubMed: 
28572459] 

[2]. Garcia EP et al. , “Validation of oncopanel: A targeted next-generation sequencing assay for the 
detection of somatic variants in cancer,” Archives of Pathology and Laboratory Medicine, vol. 
141, no. 6, pp. 751–758, 2017. [PubMed: 28557599] 

[3]. Cheng DT et al. , “Memorial sloan kettering-integrated mutation profiling of actionable cancer 
targets (msk-impact): A hybridization capture-based next-generation sequencing clinical assay 
for solid tumor molecular oncology,” The Journal of molecular diagnostics, vol. 17, no. 3, pp. 
251–264, 2015. [PubMed: 25801821] 

[4]. Chen T and Guestrin C, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd 
acm sigkdd international conference on knowledge discovery and data mining, 2016, pp. 785–
794.

[5]. Chen Y et al. , “Physiol MeasClassification of short single-lead electrocardiograms (ECGs) for 
atrial fibrillation detection using piecewise linear spline and XGBoost,” Physiol Meas, vol. 39, 
no. 10, p. 104006, Oct. 2018. [PubMed: 30183685] 

[6]. Hatton CM, Paton LW, McMillan D, Cussens J, Gilbody S, and Tiffin PA, “Predicting persistent 
depressive symptoms in older adults: A machine learning approach to personalised mental 
healthcare,” Journal of affective disorders, vol. 246, pp. 857–860, 2019. [PubMed: 30795491] 

[7]. Ogunleye A and Wang Q-G, “Xgboost model for chronic kidney disease diagnosis,” IEEE/ACM 
transactions on computational biology and bioinformatics, vol. 17, no. 6, pp. 2131–2140, 2019.

Moon et al. Page 27

Nat Med. Author manuscript; available in PMC 2024 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[8]. Bergstra J and Bengio Y, “Random search for hyper-parameter optimization.,” Journal of machine 
learning research, vol. 13, no. 2, 2012.

[9]. Alexandrov LB et al. , “The repertoire of mutational signatures in human cancer,” Nature, vol. 
578, no. 7793, pp. 94–101, 2020. [PubMed: 32025018] 

[10]. Rosenthal R, McGranahan N, Herrero J, Taylor BS, and Swanton C, “Deconstructsigs: 
Delineating mutational processes in single tumors distinguishes dna repair deficiencies and 
patterns of carcinoma evolution,” Genome biology, vol. 17, no. 1, pp. 1–11, 2016. [PubMed: 
26753840] 

[11]. Lundberg SM et al. , “From local explanations to global understanding with explainable ai for 
trees,” Nature machine intelligence, vol. 2, no. 1, pp. 56–67, 2020.

[12]. Janzing D, Minorics L, and Blöbaum P, “Feature relevance quantification in explainable ai: 
A causal problem,” in International Conference on artificial intelligence and statistics, PMLR, 
2020, pp. 2907–2916.

[13]. Gusev A, Groha S, Taraszka K, Semenov YR, and Zaitlen N, “Constructing germline research 
cohorts from the discarded reads of clinical tumor sequences,” Genome medicine, vol. 13, pp. 
1–14, 2021. [PubMed: 33397400] 

[14]. Cox DR, “Regression models and life-tables,” Journal of the Royal Statistical Society: Series B 
(Methodological), vol. 34, no. 2, pp. 187–202, 1972.

[15]. Xie J and Liu C, “Adjusted kaplan–meier estimator and log-rank test with inverse probability 
of treatment weighting for survival data,” Statistics in medicine, vol. 24, no. 20, pp. 3089–3110, 
2005. [PubMed: 16189810] 

[16]. Marschner I, Donoghoe MW, and Donoghoe MMW, “Package ‘glm2’,” Journal, Vol, vol. 3, no. 
2, pp. 12–15, 2018.

[17]. Chakravarty D et al. , “Oncokb: A precision oncology knowledge base,” JCO precision oncology, 
vol. 1, pp. 1–16, 2017.

Moon et al. Page 28

Nat Med. Author manuscript; available in PMC 2024 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: Overview of model development and analysis workflow.
(a) OncoNPC, a XGBoost-based classifier, was trained and evaluated using 36,729 Cancers 

of Known Primary (CKP) tumor samples across 22 cancer types collected from three 

different cancer centers. (b) OncoNPC performance was evaluated on the held-out tumor 

samples (n = 7,289). (c) OncoNPC was applied to 971 CUP tumor samples at a single 

institution to predict primary cancer types. OncoNPC predicted CUP subgroups were 

then investigated for association with: (d) elevated germline risk, (e) actionable molecular 

alterations, (f) overall survival, and (g) prognostic somatic features. (h) A subset of CUP 

patients with detailed treatment data were evaluated for treatment-specific outcomes.

Moon et al. Page 29

Nat Med. Author manuscript; available in PMC 2024 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: Cancer type classification performance of OncoNPC.
The normalized confusion matrix of OncoNPC classification performance on the held-out 

test set (n = 7,289) for (a) 22 detailed cancer types and (b) 13 cancer groups (see Table 

1). Each confusion matrix displays precision for each cancer type or group on its diagonal. 

Below the matrix, the recall for each cancer type or group is shown, and the sample size is 

displayed to the left of the matrix for reference. The performance of OncoNPC in F1 score 

on the test set across cancer types (c) and groups (d) at 4 different pmax (i.e., prediction 

confidence) thresholds. Each dot size is scaled by the proportion of tumor samples retained. 

Note that in (d), we only considered cancer groups that have more than one cancer type. 

Overall F1 scores were weighted according to the number of confirmed cases across cancer 

types and cancer groups, respectively. (e) The precision-recall curves showing OncoNPC’s 

performance on the test set when grouped by cancer center, biopsy site type, sequence panel 
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version, and ethnicity. The yellow dotted curve represents the baseline performance across 

the entire test set.

Moon et al. Page 31

Nat Med. Author manuscript; available in PMC 2024 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: Application of OncoNPC to CUP tumors, germline PRS-based validation, and 
interpretation of OncoNPC cancer type predictions.
(a) Empirical distributions of prediction probabilities for correctly predicted, held-out 

CKP tumor samples (n = 3,429) and CUP tumor samples (n = 934) across CKP cancer 

types (blue) and their corresponding OncoNPC predicted cancer types for CUP tumors 

(green). Only OncoNPC classifications with at least 20 CUP tumor samples are shown. (b) 

Proportion of each CKP cancer type and the corresponding OncoNPC predicted CUP cancer 

type. All training CKP tumor samples (n = 36,445) and all held-out CUP tumor samples (n = 
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971) are included. For both (a) and (b), the cancer types (x-axis) are ordered by the number 

of CKP tumor samples in each cancer type. (c) Germline Polygenic Risk Score (PRS) 

enrichment of the CKP tumor samples (n = 11,332) and CUP tumor samples with available 

PRS data (n = 505) averaged across 8 cancer types. The magnitude of the enrichment is 

quantified by Δ̂PRS: the mean difference between the concordant (i.e., OncoNPC matching) 

cancer type PRS and mean of PRSs of discordant cancer types (see Methods). Δ̂PRS is shown 

for CKPs in blue (for reference) and CUPs in green. As a negative control, Δ̂PRS‐random is 

also shown after permuting the OncoNPC labels. (d) Top 15 most important features based 

on mean absolute SHAP values (i.e., μ̂ SHAP ) for the top 3 most frequently predicted 

cancer types in the CUP cohort: Non-Small Cell Lung Cancer (NSCLC), Invasive Breast 

Carcinoma (BRCA), and Pancreatic Adenocarcinoma (PAAD). The feature proportion (i.e., 

carrier rate) for each feature in corresponding CKP and CUP cancer cohorts as well as the 

entire CKP and CUP cohorts are shown as bars going downwards and star-shaped markers, 

respectively. For mutation signature features that have continuous values, individuals with 

feature values one standard deviation above the mean were treated as positives and the rest 

as negative. For age, individuals above the population mean were treated as positives and the 

rest as negatives. 95% confidence intervals were determined using the standard error of the 

sample mean for μ̂ SHAP  and the standard error of the sample proportion for the carrier 

rate. These intervals are centered at the respective sample values.
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Figure 4: OncoNPC-based risk stratification among patients with CUP and median survival 
comparison between CUP and CKP metastatic cases.
(a) Survival stratification for patients with CUP based on their OncoNPC predicted cancer 

types. The Kaplan-Meier estimator was used to estimate survival probability for each 

predicted cancer type over the follow-up time of 60 months from sequence date, with 

the statistical significance assessed by Chi-square test. (b) Median survival comparison 

between patients with CUP (across predicted cancer types in x-axis) and patients with 

CKP metastatic cancer (across corresponding cancer types in y-axis): Spearman’s rho 0.964 

(p-value: 4.54 × 10−4). The size of each dot reflects the p-value of the log-rank test for 

significant difference in median survival between CUP-metastatic CKP pairs. Only cancer 

types with at least 30 CUP tumor samples having OncoNPC prediction probabilities greater 

than 0.5 are shown. 95% confidence intervals were obtained non-parametrically using 

Kaplan-Meier estimated survival function Ŝ(t).
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Figure 5: Potential clinical decision support for patients with CUP based on OncoNPC 
predictions of their tumors.
(a) Forest plot of a multivariable Cox Proportional Hazards Regression on patients in the 

CUP cohort with first-line palliative treatment records at DFCI (n = 158; see Extended 

Data Fig. 6 for the exclusion criteria). Treatment concordance (colored in blue), encoded 

as 1 when the first palliative treatment a patient received at DFCI is concordant with 

their corresponding OncoNPC prediction and 0 otherwise, was significantly associated with 

overall survival of patients in the cohort (H.R. 0.348, 95% C.I. 0.210 – 0.570, p-value 2.32 
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× 10−5). (b) Estimated survival curves for patients with CUP in the concordant treatment 

group (shown in blue) and discordant treatment group (shown in red), respectively. To 

estimate the survival function for each group, we utilized Inverse Probability of Treatment 

Weighted (IPTW) Kaplan-Meier estimator while adjusting for left truncation until time of 

sequencing (see Methods). Statistical significance of the survival difference between the 

two groups was estimated by a weighted log-rank test. (c) Sankey diagram showing the 

OncoNPC predicted cancer types, corresponding actionable variants, and eligible drugs 

for 24 patients with CUP, which represented 15.2% of the patients in the treatment 

concordance analysis cohort (n = 158). These patients were identified as having the potential 

to receive genomically-guided treatments based on their OncoNPC predicted cancer types 

and actionable variants.
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Table 1:

Demographic information of the patients and tumor samples across DFCI, MSK, and VICC.

DFCI MSK VICC DFCI CUP

Number of patients 18,106 15,151 1,310 962

Patients age at sequence (95 
% C.I.) 60.7 (60.5 – 60.9) 60.2 (60.0 – 60.4) 58.3 (57.6 – 59.0) 61.9 (61.1 – 62.7)

Sex; male-female ratio 43.8 – 56.2 43.5 – 56.5 44.5 – 55.5 50.0 – 50.0

Patients ethnicity (proportion %)

White 16,105 (88.9 %) 11,575 (76.4 %) 1,089 (83.1 %) 853 (88.7 %)

Black 538 (3.0 %) 866 (5.7 %) 72 (5.5 %) 38 (4.0 %)

Asian 554 (3.1 %) 956 (6.3 %) 17 (1.3 %) 34 (3.5 %)

Hispanic 379 (2.1 %) 744 (4.9 %) 14 (1.1 %) 15 (1.6 %)

Others 530 (2.9 %) 1010 (6.7 %) 118 (9.0 %) 22 (2.2 %)

Sequenced Tumor Samples

Total number of samples 18,816 16,294 1,335 971

Panel version (proportion %; 95% sequence date range)

v1
OncoPanel v1 1,924 
(10.2 %; 2013–8–
20 – 2014–8–17)

MSK-IMPACT341 
1,803 (11.1 %; Not 

available)

VICC-01-T5A 
307 (23.0 %; Not 

available)

OncoPanel v1 47 
(4.8 %; 2013–9–8 – 

2014–8–12)

v2
OncoPanel v2 5,304 
(28.2 %; 2014–9–
28 – 2016–10–5)

MSK-IMPACT410 
6,917 (42.5 %; Not 

available)

VICC-01-T7 
1,028 (77.0 %; 
Not available)

OncoPanel v2 203 
(20.9 %; 2014–11–

5 – 2016–10–5)

v3

OncoPanel v3 
11,588 (61.6 %; 
2016–11–11 – 

2021–1–6)

MSK-IMPACT468 
7,574 (46.5 %; Not 

available)

OncoPanel v3 721 
(74.3 %; 2016–12–
14 – 2020–12–23)

Biopsy site type

Primary 11,662 (62.0 %) 9,576 (58.8 %) 622 (46.6 %)

Metastatic recurrence 5,737 (30.5 %) 6,718 (41.2 %) 637 (47.7 %)

Local recurrence 673 (3.6 %) Not available 64 (4.8 %)

Unspecified/others 744 (4.0 %) Not available 12 (0.9 %)

Cancer group Cancer type Predicted cancer 
type

Lung (Thoracic)

Non-Small Cell Lung 
Cancer (NSCLC) 3,489 (18.5 %) 3,183 (19.5 %) 137 (10.3 %) 280 (28.8 %)

Pleural Mesothelioma 
(PLMESO) 258 (1.4 %) 118 (0.7 %) 2 (0.1 %) 9 (0.9 %)

Invasive Breast Carcinoma 
(BRCA) 2,558 (13.6 %) 3,113 (19.1 %) 274 (20.5 %) 85 (8.8 %)

Colorectal Adenocarcinoma 
(COADREAD) 2,525 (13.4 %) 1,919 (11.8 %) 232 (17.4 %) 63 (6.5 %)
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DFCI MSK VICC DFCI CUP

Upper 
Gastrointestinal

Esophagogastric 
Adenocarcinoma (EGC) 988 (5.3 %) 495 (3.0 %) 59 (4.4 %) 69 (7.1 %)

Pancreatic Adenocarcinoma 
(PAAD) 772 (4.1 %) 980 (6.0 %) 53 (4.0 %) 85 (8.8 %)

Cholangiocarcinoma 
(CHOL) 241 (1.3 %) 338 (2.1 %) 44 (3.3 %) 33 (3.4 %)

Neuro

Diffuse Glioma (DIFG) 2,041 (10.8 %) 1,069 (6.6 %) 47 (3.5 %) 25 (2.6 %)

Meningothelial Tumor 
(MNGT) 179 (1.0 %) 42 (0.3 %) 15 (1.1 %) 4 (0.4 %)

Gynecologic

Ovarian Epithelial Tumor 
(OVT) 1,213 (6.4 %) 525 (3.2 %) 81 (6.1 %) 58 (6.0 %)

Endometrial Carcinoma 
(UCEC) 703 (3.7 %) 703 (4.3 %) 34 (2.5 %) 18 (1.9 %)

Urothelial

Renal Cell Carcinoma 
(RCC) 457 (2.4 %) 497 (3.1 %) 39 (2.9 %) 24 (2.5 %)

Bladder Urothelial 
Carcinoma (BLCA) 550 (2.9 %) 505 (3.1 %) 41 (3.1 %) 21 (2.2 %)

Prostate Adenocarcinoma 
(PRAD) 601 (3.2 %) 1,222 (7.5 %) 27 (2.0 %) 27 (2.8 %)

Melanoma (MEL) 729 (3.9 %) 619 (3.8 %) 187 (14.0 %) 43 (4.4 %)

Head and Neck

Head and Neck Squamous 
Cell Carcinoma (HNSCC) 473 (2.5 %) 285 (1.7 %) 20 (1.5 %) 52 (5.4 %)

Well-Differentiated Thyroid 
Cancer (WDTC) 166 (0.9 %) 166 (1.0 %) 8 (0.6 %) 1 (0.1 %)

Neuroendocrine

Gastrointestinal 
Neuroendocrine Tumors 

(GINET)
219 (1.2 %) 76 (0.5 %) 18 (1.3 %) 46 (4.7 %)

Pancreatic Neuroendocrine 
Tumor (PANET) 121 (0.6 %) 133 (0.8 %) 12 (0.9 %) 23 (2.4 %)

Gastrointestinal Stromal 
Tumor (GIST) 273 (1.5 %) 217 (1.3 %) 5 (0.4 %) 3 (0.3 %)

Hematologic

Acute Myeloid Leukemia 
(AML) 150 (0.8 %) 1 (0.0 %) 0 (0.0 %) 1 (0.1 %)

Non-Hodgkin Lymphoma 
(NHL) 110 (0.6 %) 88 (0.5 %) 0 (0.0 %) 1 (0.1 %)
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