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Abstract

Past research suggests that resilience to health hazards increases with age, potentially because 

less resilient individuals die at earlier ages, leaving behind their more resilient peers. Using 

lifetime cigarette smoking as a model health hazard, we examined whether accelerated epigenetic 

aging (indicating differences in the speed of individuals’ underlying aging process) helps explain 

age-related resilience in a nationally representative sample of 3,783 older U.S. adults from the 

Health and Retirement Study. Results of mediation moderation analyses indicated that participants 

aged 86 or older showed a weaker association between lifetime cigarette smoking and mortality 

relative to participants aged 76–85 and a weaker association between smoking and multimorbidity 

relative to all younger cohorts. This moderation effect was mediated by a reduced association 

between smoking pack-years and epigenetic aging. This research helps identify subpopulations 

of particularly resilient individuals and identifies epigenetic aging as a potential mechanism 

explaining this process. Interventions in younger adults could utilize epigenetic aging estimates 

to identify the most vulnerable individuals and intervene before adverse health outcomes, such as 

chronic disease morbidity or mortality, manifest.
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Introduction

Cognitive and physical functioning tend to decline at later ages, leading to chronic disease 

morbidity, physical limitations and disability, and ultimately mortality (Crimmins 2020; 

Gladyshev et al. 2021; Khan et al. 2017; López-Otín et al. 2013). Research has found 

that as individuals age, they become less able to respond to stressors, physical insults, 

and other health risks (Angevaare et al. 2020; Cosco et al. 2019; Ukraintseva et al. 2021). 

When individuals cannot protect against or repair damage from these hazards, damage 

accumulates, leading to physiological dysfunction, morbidity, and mortality. According 

to the geroscience hypothesis, this damage accumulation represents the aging process, 

and the most effective way to avoid the frailty, morbidity, and mortality associated with 

chronological age is to slow the aging process itself (Kennedy et al. 2014; Levine and 

Crimmins 2018). Epigenetic aging measures, indices of deoxyribonucleic acid methylation 

(DNAm) sites associated with phenotypic aging, represent useful tools for measuring this 

underlying aging process (Binder and Horvath 2022; Horvath and Raj 2018).
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The aging process is substantially heterogeneous in human populations. Some individuals 

live to old age in relatively good health despite experiencing stress, engaging in adverse 

behaviors, and being exposed to other health hazards. Thus, some individuals might be 

resilient to these hazards, whereas others are particularly vulnerable (Hadley et al. 2017; 

Pyrkov et al. 2021; Whitson et al. 2016). For example, cigarette smoking is a relatively 

well-understood health hazard associated with hundreds of thousands of excess deaths 

per year in the United States (Fenelon and Preston 2012; Lariscy et al. 2018), but 

individuals vary substantially in the actual health risks associated with smoking (Levine 

and Crimmins 2014). Understanding vulnerability and resilience in aging is a critical issue 

for understanding the aging process generally and for developing interventions to support 

longer, healthier lives.

What Is Resilience?

Resilience here refers to more positive responses to adversity or other health risks than 

might be expected (Cosco et al. 2019). Typically, research has focused on factors that 

could buffer or amplify the effect of a health risk (Janssen et al. 2022; Poole et al. 2017; 

Puterman and Epel 2012). Increasing evidence suggests that differences in resilience might 

explain why some people live longer, healthier lives. That is, as individuals age, those most 

vulnerable to health hazards experience the greatest accumulation of damage and greatest 

acceleration of aging (Carroll et al. 2017; Schutte et al. 2016). These more vulnerable, 

less resilient individuals tend to die earlier, leaving behind a population of relatively more 

resilient individuals (Behrman et al. 1990; Rogers 1992; Wrigley-Field 2020). Thus, the 

oldest-old represent individuals from their cohort who were the most resilient to various 

health hazards. Research has recognized this heterogeneity in resilience and, conversely, 

frailty (e.g., Crimmins et al. 2009; Vaupel et al. 1979; Vaupel and Yashin 1985). In the 

current study, we focus on epigenetic aging as a potential biological mechanism explaining 

age-associated resilience. That is, we build on this classical demographic research by 

identifying a biological pathway underlying this process. We focus on lifetime cigarette 

smoking as a model exposure.

Epigenetic Aging

DNAm is an epigenetic mechanism—a process that affects gene expression in response to 

environmental factors without altering the underlying genetic code—that has been widely 

studied in research on health and aging (Andrasfay and Crimmins 2023; Sugden et al. 2023). 

DNAm, is a processes whereby methyl groups are attached to phosphate groups between 

cytosine and guanine leading to lowered expression of a given gene (especially when in 

a gene’s promoter region) (Horvath and Raj 2018). DNAm has been shown to change in 

response to environmental, social, and behavioral exposures (e.g., socioeconomic status, 

adverse childhood events, diet) (Sugden et al. 2019, 2023; Waziry et al. 2023) and has been 

linked to health outcomes (e.g., coronary artery disease, depressive symptoms, mortality) 

(Klopack, Crimmins et al. 2022; McCrory et al. 2021; Si et al. 2023). Research in animal 

models has found that anti-aging interventions (e.g., calorie restriction, rapamycin) are 

associated with changes in age-related DNAm (Unnikrishnan et al. 2019). Indeed, DNAm is 

considered a hallmark of aging, a basic process underlying the aging process (López-Otín et 

al. 2013).
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Many large, population-based studies have collected DNAm data using the EPIC platform 

from Illumina. This assay includes more than 850,000 sites from across the genome. 

Recently, several measures have been produced with these DNAm data to measure aging 

using machine learning techniques. These epigenetic aging measures are weighted indices 

of DNAm sites associated with age and health outcomes related to age (Horvath and Raj 

2018; Raffington et al. 2021). So-called first-generation epigenetic clocks based on DNAm 

(e.g., HorvathAge and HannumAge) were designed to identify methylation sites associated 

with chronological age. These measures have now been shown to have only relatively weak 

associations with morbidity and mortality (Horvath and Raj 2018).

Alternatively, second-generation DNAm aging measures (e.g., GrimAge and PhenoAge) 

were trained on chronological age, biomarkers of aging, and aging-related health behaviors 

(Levine et al. 2018; Lu et al. 2019). More specifically, PhenoAge was produced in two 

steps: (1) a phenotypic age measure was created using a machine learning approach with 

42 biomarkers (reduced to 9 and chronological age via penalized regression) predicting 

mortality in the National Health and Nutrition Examination Survey; and (2) DNAm 

PhenoAge (what we use here) was trained using the InCHIANTI data to predict this 

phenotypic age measure in a penalized regression (Levine et al. 2018). GrimAge was also 

developed using a two-step approach: (1) DNAm surrogates of 88 plasma proteins and 

smoking pack-years (indices of weighted DNAm sites that are predictive of each marker 

and pack-years) were developed using penalized regression in the Framingham Heart Study; 

and (2) 12 DNAm surrogates that were correlated above r = .35 with their measured value 

in testing data were used in an elastic net with age and gender predicting time to death 

(eight surrogates, age, and gender were selected by this model). Thus, GrimAge is an index 

combining weighted DNAm surrogates of these blood-based biomarkers and pack-years, 

along with actual age and gender (Lu et al. 2019). Third-generation DNAm aging measures 

designed to address the rate of aging (e.g., Dunedin Pace of Aging Calculated from the 

Epigenome [DunedinPACE]) were trained on changes in biomarkers associated with aging 

over time using the Dunedin Study (Belsky et al. 2020).

As with much of the past research on epigenetic aging, we focus on accelerated epigenetic 

aging: how much one’s epigenetic age differs from one’s chronological age. Later 

generation measures of accelerated DNAm aging are predictive of important aging-related 

health outcomes, including physical frailty, chronic disease morbidity, and mortality (Fiorito 

et al. 2017; Föhr et al. 2021; Horvath and Raj 2018; McCrory et al. 2021). These measures 

are also strongly associated with health risk exposures, such as smoking (Horvath and Raj 

2018; Lei et al. 2020; Sugden et al. 2019), drinking (Jung et al. 2022; Kim et al. 2022; 

Zindler et al. 2022), and social stress (Beydoun et al. 2022; Klopack, Crimmins et al. 2022; 

Oblak et al. 2021; Simons et al. 2021).

These epigenetic aging measures were trained on different criterion variables, were 

developed in different populations, and there is little overlap in the DNAm sites that are 

identified by each measure (Belsky et al. 2018). Past studies utilizing these measures have 

typically analyzed only one of them (Föhr et al. 2021; Protsenko et al. 2021; Yang and 

Wu 2021) or analyzed them in separate analyses (Crimmins et al. 2021; Fiorito et al. 2017; 

Klopack, Crimmins et al. 2022; McCrory et al. 2021; Simons et al. 2022). Because these 
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epigenetic aging measures were developed using different processes, some have argued that 

they tap into different parts of the same underlying aging process. For example, because 

GrimAge was designed to capture DNAm variation associated with pack-years, it might be 

more sensitive to smoking behavior and more predictive of lung disease than other DNAm 

aging measures (Klopack, Carroll et al. 2022). DunedinPACE measures the current pace 

of aging and therefore might be more sensitive to changes and recent exposures (Belsky 

et al. 2020). However, despite their differences, these summary measures of epigenetic 

methylation tend to covary and were designed to assess the same underlying construct. 

To the extent that these measures assess acceleration of the underlying aging process, 

combining information from multiple epigenetic aging measures (e.g., principal components 

analysis, confirmatory factor analysis) might provide a more accurate estimate of epigenetic 

aging acceleration. This combination represents an important contribution to the literature 

on epigenetic aging because it shows how these measures function as indicators of a single 

underlying aging process and how they differ in their predictive capability.

Lifetime Cigarette Smoking

Cigarette smoking is an ideal exposure to examine resilience in the aging process. Smoking 

is a widespread health behavior with well-understood health risks (Goodchild et al. 2018; 

Klopack, Carroll et al. 2022; Preston et al. 2014; U.S. Department of Health and Human 

Services 2014;) and is robustly associated with epigenetic aging (Beach et al. 2015; Gao 

et al. 2016; Lei et al. 2020; Yang et al. 2019). In addition, recent evidence suggests that 

the timing and number of cigarettes smoked across the life course affect epigenetic aging 

(Klopack, Carroll et al. 2022). Thus, research utilizing life course smoking measures, 

such as lifetime pack-years (the product of packs of cigarettes smoked per day and 

years smoking) is particularly vital. However, not all smokers are at equal risk. Emerging 

evidence suggests that smoking is less robustly associated with mortality and health-relevant 

biomarkers among older adults than younger adults, suggesting that these older adults might 

be more resilient members of their cohort who survived to later ages (Levine and Crimmins 

2014).

Current Study

Our conceptual model is shown in Figure 1. As noted earlier, past research suggests that 

resilience reduces, prevents, or helps repair damage from health risk exposures. This damage 

might manifest as accelerated epigenetic aging. More resilient individuals experience less 

accelerated aging despite health risk exposure and therefore live longer, healthier lives 

and make up a larger proportion of older cohorts. To assess vulnerability and resilience 

in the aging process, we utilized nationally representative data from U.S. adults older 

than 55. We divided the sample by age into four groups (56–65, 66–75, 76–85, and 85 

or older) and assessed the effects of interactions between smoking pack-years and age 

category on epigenetic aging multimorbidity and mortality. Following emerging research 

in geroscience, we argue that aging is a general process whereby molecular and cellular 

processes deteriorate with age, leading to larger systemic dysfunction, morbidity, and 

ultimately death. Research indicates that the epigenetic aging measures utilized in the 

current study are useful indicators of this general aging process. Because we expect aging to 

affect multiple systems in similar ways, we focus on multimorbidity across seven diseases. 
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In the current study, we address two questions. First, does the effect of smoking pack-years 

on multimorbidity and mortality differ by age group? Second, does epigenetic aging help 

explain the differential effect of smoking pack-years by age (mediated moderation)?

Methods

Data

We utilized data from the Health and Retirement Study (HRS), a nationally representative 

sample of community-dwelling older adults in the United States. As part of data collection 

in 2016, a subsample of participants agreed to participate in the Venous Blood Study 

(VBS). Roughly 4,000 participants—who, when weighted, are a representative sample of 

those aged 56 years or older—had epigenome-wide analysis conducted using the Infinium 

MethylationEPIC BeadChip. More information about the VBS and epigenetic data analysis 

is available elsewhere (Crimmins et al. 2017; Crimmins et al. 2020).

Measures

Mortality—Mortality was assessed over four years after the venous blood collection as 

participant deaths known to the HRS as of 2020.

Multimorbidity—We constructed an index of seven chronic conditions by summing 

whether respondents reported in 2016 that a doctor had ever told them they had “high 

blood pressure or hypertension;” “diabetes or high blood sugar;” “cancer or a malignant 

tumor of any kind except skin cancer;” “chronic lung disease except asthma such as chronic 

bronchitis or emphysema;” “heart attack, coronary heart disease, angina, congestive heart 

failure, or other heart problems;” “stroke or transient ischemic attack (TIA);” or “arthritis or 

rheumatism.”

Our multimorbidity measure in this study has been used in past research. Other studies using 

this measure in the HRS have found that it is highly similar to other instrumentalizations of 

multimorbidity (Klopack2023). Research also indicates that the number of chronic diseases 

has predictive qualities similar to other multimorbidity measures (Huntley et al. 2012).

Epigenetic Aging—We utilized second- and third-generation epigenetic aging measures 

that have established associations with smoking, mortality risk, chronic disease morbidity, 

and lung functioning. Specifically, we used three epigenetic clocks: GrimAge, PhenoAge, 

and DunedinPACE. To create GrimAge, researchers created seven DNAm surrogates of 

proteins associated with mortality and a surrogate marker of smoking pack-years. They then 

used these surrogate markers, age, and gender to train a measure predictive of time to death 

(Lu et al. 2019). PhenoAge is a phenotypic age measure created using nine blood-based 

markers of immune and tissue function predictive of mortality. PhenoAge was then trained 

in epigenome-wide DNAm data to predict this phenotypic aging measure (Levine et al. 

2018). Finally, DunedinPACE was trained using the rate of change in 19 biomarkers of 

healthy aging over two decades of life (Belsky et al. 2022).

Lifetime Pack-Years—HRS asks respondents to indicate the ages at which they started 

and quit smoking cigarettes and about how many cigarettes per day they smoked when they 
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were smoking. We used the earliest age a respondent reported smoking and the age at which 

they quit (if they quit). We then multiplied the number of years smoking by the average 

of the number of cigarettes a respondent reported smoking per day at each wave and the 

maximum number smoked per day at the peak of their cigarette consumption divided by 20 

(the typical number of cigarettes per pack). This product indicated an individual’s lifetime 

cigarette smoking pack-years. For more information about this measure, see Haghani et al. 

(2020).

Age—Participants were divided into four chronological age groups: 56–65 (the youngest 

participant was 56), 66–75, 76–85, and 86 or older. The first three groups represent decades 

of life, but all participants over age 85 were combined because few participants were older 

than 95.

Controls—All models control for race/ethnicity (Black, not Hispanic; Hispanic; other 

race, not Hispanic; and White, not Hispanic as the reference group), gender (female = 1), 

educational attainment (less than 12 years, 12 years, 13–15 years, and 16 or more years as 

the reference group), and body mass index (BMI; underweight, overweight, obese [obese 1], 

morbidly obese [obese 2], and normal weight as the reference group).

Plan of Analysis

To assess our arguments, we estimated three structural equation models (SEMs) regressing 

each of the two outcome variables on epigenetic aging, smoking pack-years, age, and 

smoking pack-years × age and regressing epigenetic aging on smoking pack-years, age, 

and smoking pack-years × age. SEM allows us to test epigenetic aging as a mediator 

of the moderating effect of age on the association between smoking pack-years and 

health outcomes. Because all three epigenetic aging measures theoretically capture the 

same underlying construct, we created a latent factor representing epigenetic aging using 

confirmatory factor analysis (CFA) with the second- and third-generation measures as 

indicators. CFA is particularly well-suited to our study. A large body of research suggests 

that different epigenetic aging measures capture part of an underlying but unobserved 

aging phenomenon (e.g., Belsky et al. 2018). CFA can estimate latent factors representing 

underlying constructs that are partially measured by multiple indicator variables, making it 

useful not only for data reduction but also for measuring constructs not directly measured by 

individual indicators.

We declared mortality as dichotomous using the “CATEGORICAL ARE” command in 

Mplus. Because mediated moderation effects are likely nonnormally distributed, we utilized 

95% confidence intervals (CIs) using a bias-corrected bootstrap procedure for significance 

tests of moderated mediation.

Both GrimAge and PhenoAge were developed without a focus on the reliability of probes 

assessing DNAm at individual sites. Research suggests that poor reliability probes introduce 

noise into the data and therefore might affect the generalizability and replication of results. 

We therefore utilized so-called principal component (PC) versions of these measures, using 

PCs from individual site-level data to calculate aging measures. These PC measures have 

been shown to be more reliable longitudinally and to be more sensitive to the effects 
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of interventions (Higgins-Chen et al. 2022). Because DunedinPACE was developed using 

only probes shown to be highly reliable, we used this measure without PC adjustment. To 

assess accelerated epigenetic aging, we then regressed chronological age on these measures. 

We saved the residuals from these regressions and used them as indicators of accelerated 

epigenetic aging.

We applied survey weights and strata provided in the HRS tracker file to make the sample 

population representative. Of the 3,875 participants who were eligible for the study, 23 

were missing information on lifetime smoking and 69 were missing information on one 

or more control variables. Thus, 3,783 participants were included in the current study. 

We produced descriptive statistics using R and adjusted sample means using HRS sample 

weights. Significance tests are from bivariate regressions of each variable on age group. All 

models were fully recursive, so model fit statistics were uninformative. Data were prepared 

in R 4.1.3 “One Push-up” (R Core Team 2022) using the tidyverse (Wickham et al. 2019) 

and survey (Lumley 2004) packages. Analyses were conducted in Mplus 8.6 (Muthén and 

Muthén 2015).

Results

Descriptive Statistics

Descriptive statistics are shown in Table 1. Participants in the oldest category (86 or older) 

were more likely to die over the next four years relative to every other group. There were 

105 deaths in the oldest group, 161 in the 76–85 group, 92 in the 66–75 group, and 63 in 

the 56–65 group. The oldest group had more chronic illnesses than the youngest two groups 

(ages 56–65 and 66–75) and greater smoking pack-years than the youngest group. Mean 

chronic morbidities were 2.9 for the oldest group, 2.8 for the 76–85 group, 2.5 for the 66–75 

group, and 1.8 for the youngest group. The oldest group did not significantly differ from 

the other groups in terms of accelerated epigenetic aging because chronological age has 

been regressed out of these measures. We also include descriptive statistics for epigenetic 

aging variables without accelerated aging adjustment. As expected, PhenoAge and GrimAge 

increase with chronological age. Aging as measured by DunedinPACE is slower for the two 

youngest age groups than for the oldest group. We used the accelerated aging measures (i.e., 

with chronological age regressed out) in all models.

We also divided participants into tertiles of accelerated aging for each clock (see Table S1, 

online appendix). Relative to the tertile with relatively less accelerated aging (tertile 1), 

participants in the most accelerated aging tertile had significantly greater mortality risk, had 

more morbidities, smoked more, were less likely to be female, were more likely to have less 

than 12 or 12 years of education, and were more likely to be morbidly obese (obese 2) for all 

three epigenetic aging measures.

SEM Results

SEM results are shown in Figures 2 and 3 for mortality and multimorbidity, respectively. 

Because the epigenetic aging measures and health outcomes are on different scales, these 

figures display standardized results to ease comparison across models. All three epigenetic 
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aging measures loaded significantly on a single latent factor. All factor loadings were 

highly significant and greater than .6 in both models, suggesting that the latent variable 

characterizes the underlying latent construct of accelerated epigenetic aging well.

Mortality risk and multimorbidity were significantly associated with the latent accelerated 

epigenetic aging factor (β = .40 and .30, respectively; p < .001). Specifically, participants 

who had more accelerated epigenetic aging also had a higher mortality risk and more 

chronic illnesses relative to same-aged peers. Across both models, relative to respondents 

aged 86 or older, respondents aged 56–65 had less accelerated aging if they reported 0 

pack-years (β = −.13 and −.14, respectively; p < .05 and p < .01, respectively (because 

of the inclusion of the interaction terms). Similarly, participants aged 66–75 had less 

accelerated aging (β = −.11, p < .05) compared with the oldest group of participants 

in the multimorbidity model. The interaction terms were all significantly associated with 

accelerated epigenetic aging (all p < .01). These results suggest that the health risk 

associated with smoking pack-years is greater for younger respondents.

Mediated Moderation

Unstandardized results of the mediated moderation analysis are shown in Figure 4. Starting 

with results for mortality, total effect estimates and the percentage of the total effect 

explained by epigenetic aging are not easily interpretable because direct effects are in the 

opposite direction of total effects for ages 56–65. The total effect of smoking pack-years 

on mortality is significant only for participants aged 66–75 (95% CI = [0.001, 0.012]) and 

76–85 (95% CI = [0.002, 0.010]), potentially because of the relatively few mortality events 

among younger participants. (Only 63 participants aged 56–65 died during the study period.) 

However, the mediated moderation effect was significant for participants aged 56–65 (95% 

CI = [0.007, 0.013]), 66–75 (95% CI = [0.005, 0.010]; 100% of the total effect), and 76–85 

(95% CI = [0.003, 0.007]; 83.33% of the total effect). That is, for younger groups, the 

association between smoking pack-years and mortality mediated by epigenetic aging was 

larger than for older groups. Among the oldest three groups—who had a larger number 

of mortality events—the total effect of smoking pack-years on mortality was significant 

for participants aged 66–75 and 76–85 and this effect was entirely or mostly mediated by 

epigenetic aging; neither the total effect of smoking pack-years on mortality (95% CI = 

[−0.005, 0.011]) nor the indirect effect through epigenetic aging (95% CI = [−0.002, 0.003]) 

was significant for participants aged 86 or older. These findings suggest that the mortality 

risk associated with smoking was reduced for the oldest participants because of their greater 

resilience to smoking in terms of epigenetic aging.

[EK: I rearranged this section so that information is presented in the same 
order as for mortality above].—For multimorbidity, the total effect of smoking pack-

years on multimorbidity was significant for participants aged 56–65 (95% CI = [0.009, 

0.017]), 66–75 (CI = [0.005, 0.014]), and 76–85 (95% CI = [0.004, 0.011]). The moderated 

mediation effect was significant for participants aged 56–65 (95% CI = [0.009, 0.015]; 

84.62% of the total effect), 66–75 (95% CI = [0.006, 0.011]; 80.00% of the total effect), 

and 76–85 (95% CI = [0.004, 0.007]; 62.50% of the total effect), and the portion of this 

total effect mediated by epigenetic aging was significant. For respondents aged 86 or older, 
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neither the total (95% CI = [−0.005, 0.011]) nor indirect (95% CI = [−0.001, 0.003]) effects 

were significant. These findings suggests that the effect of lifetime cigarette smoking on 

chronic disease morbidity was weaker for the oldest adults because their epigenetic aging 

was less affected by cigarette smoking.

Additional and Supplemental Analyses

As a sensitivity analysis, we ran the main models with pack-years capped at 55 to determine 

years of smoking before age 56 (the age of the youngest respondent). We capped this 

variable at age 55 to ensure that associations involving pack-years were not inflated for 

older adults as a function of their having been alive longer, giving them more opportunity 

to smoke. This model was not substantively different from the main model (see Figures 

S1–S3, online appendix); however, for the mortality model, the total effect of pack-years on 

mortality risk was only marginally significant for the 66–75 age group. We also ran models 

without covariates to assess whether conditioning on these variables affected results (see 

Figures S4–S6, online appendix). The results were highly similar; however, the total effect 

of pack-years on mortality risk was significant for the 66–75 age group, and the indirect 

effect of pack-years on multimorbidity mediated by accelerated aging was significant for 

participants aged 86 or older (although the total effect was still nonsignificant). Because 

recollection error in the amount smoked in the past could bias the results, we reestimated 

the main models using the number of years reported smoking (duration) before age 56 (see 

Figures S7–S9, online appendix). The results were generally greater in magnitude, but the 

pattern of significant results was similar and led to the same substantive conclusions.

We found that GrimAge had the largest factor loading. To assess how much GrimAge 

drove the significant results, we reassessed models using the individual epigenetic aging 

measures instead of the latent factor based on multiple clocks (see Figures S10–S18, online 

appendix). Results using only the GrimAge measure were largely similar to those in the 

main analyses. Results focused on PhenoAge were generally weaker: the indirect effects of 

smoking on mortality and multimorbidity via PhenoAge were significant only for the 66–75 

and 76–85 age groups. Results using DunedinPACE were weaker than the main models, but 

significance tests from all indirect paths and total effects were similar.

To determine whether one disease drove the results for multimorbidity, we also estimated 

models using the same procedure as used for mortality, replacing mortality with each 

chronic illness (see Figures S19–S26, online appendix). The results differed slightly across 

diseases, mostly driven by different associations between the chronic illness and accelerated 

aging. For hypertension, the total effects of smoking were nonsignificant for all age groups, 

but indirect effects were significant for all but the oldest group. For diabetes, the total effect 

was significant only for the 76–85 age group, and indirect effects were significant for all 

but the oldest group. For cancer, total effects were significant for the 66–75 and 76–85 age 

groups, and indirect effects were significant for all but the oldest group. For lung disease, 

total effects were significant for all but the oldest group, and indirect effects were significant 

for all but the oldest group. For heart disease, no total effects were significant, but indirect 

effects were significant for all but the oldest group. For stroke, total effects were significant 

only for the 66–75 age group, but indirect effects were significant for all but the oldest 
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group. Finally, for arthritis, total effects were significant for the two youngest groups, but the 

indirect effect was significant only for the youngest group.

Discussion

Past research indicated hidden heterogeneity in vulnerability and resilience to health risks, 

such as cigarette smoking, and that this resilience is concentrated in older cohorts (Levine 

and Crimmins 2014). One explanation for this effect is that less resilient individuals tend to 

age faster than their peers when exposed to health risks. These less resilient individuals then 

die earlier, leaving behind a pool of increasingly resilient individuals (Behrman et al. 1990; 

Vaupel et al. 1979). Our results support this hypothesis: participants in older cohorts tended 

to experience a weaker association between lifetime cigarette smoking and health outcomes. 

This moderation effect was mediated by a reduced association between smoking pack-years 

and epigenetic aging. This effect was clearest in results for multimorbidity: the direct effects 

of smoking on the number of chronic illnesses remained fairly constant, and the reduced 

total effect was largely attributable to decreasing associations between smoking pack-years 

and epigenetic aging.

The direct effect of smoking pack-years on mortality risk was negative for participants aged 

56–65, leading to nonsignificant total effects. This finding is likely due to the relatively few 

mortality events in this younger cohort. However, the indirect effect of smoking pack-years 

on mortality risk mediated by epigenetic aging was significant for this group. Comparisons 

among participants aged 66–75, 76–85, and 86 or older (for whom there were more 

mortality events) were in the expected direction. Thus, future research with more follow-up 

is needed to assess how cigarette smoking pack-years affects aging and mortality in these 

younger groups. However, these findings suggest that greater accelerated aging among those 

aged 66–75 and 76–85 helps explain greater mortality risk for smokers in these cohorts.

Supplementary analyses using individual epigenetic aging measures showed that GrimAge 

is the most consistent mediator of the interaction between smoking pack-years and mortality 

and multimorbidity. This finding is consistent with past research finding that GrimAge is 

relatively robustly associated with health risks in HRS data and is strongly associated with 

health outcomes in multiple data sets (McCrory et al. 2021). GrimAge and DunedinPACE 

were developed by predicting time to death and pace of aging in middle-aged adults, 

respectively. Thus, they may be better suited to capturing long-term exposures from earlier 

in the life course than PhenoAge, which was trained to predict mortality. Because GrimAge 

also captures DNAm variance associated with smoking pack-years, it is logical that it would 

be the strongest mediator of the effects in this study. However, results for all the individual 

aging measures were generally weaker than those for the latent aging factor. This finding is 

consistent with our argument that these individual measures capture a portion of the larger 

underlying construct of accelerated aging and that combining them in a latent factor is useful 

for understanding aging processes. Ours is one of the first studies to use these measures as 

indicators of an underlying aging process. Because all three measures can be produced using 

the same underlying DNAm data, we encourage other researchers to utilize factor analysis in 

future research focused on accelerated aging.
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In analyses focused on individual diseases, results for illnesses most clearly linked to 

smoking (e.g., lung disease) were the strongest and most consistent with the main 

multimorbidity model. By contrast, we found relatively weak results for diseases more 

tenuously linked to smoking (especially arthritis). However, all these models produced 

weaker results than the main multimorbidity model, consistent with our arguments that 

aging is a general process and that chronic disease onset broadly results from this process. 

Models focused on individual diseases are less able to capture the general aging process. 

Future research focused on aging populations and demographic selection might want 

to focus on multiple diseases at once rather than individual clinical outcomes to better 

understand the aging process.

This study has limitations. Although the HRS is representative of older U.S. adults, 

additional research in international contexts is needed to understand how national context 

might affect the results. Additionally, it is unknown whether similar patterns would be found 

among younger people. Epigenetic aging was available at only one time point. Additional 

data could help differentiate potential age, period, and cohort effects. Additionally, a longer 

follow-up is needed. As noted earlier, few mortality events occurred among younger cohorts 

in the study period. As HRS collects more data, it will be possible to determine whether 

individuals whose epigenetic aging was more affected by smoking die earlier, leaving behind 

a more resilient cohort of survivors. Additionally, we did not investigate the sources of 

differential resilience in this study. Past research suggests that genetic and social factors 

might affect resilience to health hazards (Levine and Crimmins 2016). Smoking might 

be less important at older ages as other mortality risks become more important. Future 

research should investigate other mortality risk factors (e.g., diet and exercise, air pollution 

and environmental toxins) to examine whether the pattern we found for smoking can be 

replicated. Our results might differ by race/ethnicity and by sex/gender, given the different 

smoking rates among these groups. Future research should investigate differential resilience 

among these groups. The fact that a DNAm surrogate of pack-years is a part of the GrimAge 

measure could be considered a limitation of this study, but we argue that it is a strength. 

GrimAge partly represents the epigenetic processes associated with smoking and is therefore 

a potential biological pathway linking smoking behaviors to health and longevity. Analyses 

of cause-specific mortality are beyond the scope of the current study, but we expect that an 

analysis focused on causes of death relevant to smoking might show stronger results.

Despite these limitations, our study has important implications for demographic and aging 

research. Our findings help identify subpopulations of particularly resilient individuals who 

are notable for the low epigenetic age acceleration associated with exposure to a major 

health hazard: smoking. There has been a long-standing concern with understanding the 

sources of differential resilience and frailty (Behrman et al. 1990) and how frailty affects 

selection into mortality at earlier ages (Vaupel et al. 1979). This study identified epigenetic 

aging as a potential mechanism explaining this process that can be measured relatively early 

in life, before morbidity and mortality emerge, to provide indicators of resilience and frailty. 

Interventions for younger adults could utilize epigenetic aging estimates to identify the 

most vulnerable individuals and intervene before health outcomes such as chronic disease 

morbidity or mortality manifest. Future research is needed to understand the sources of 

differential resilience to understand and promote these factors.
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Figure 1. 
Conceptual model
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Figure 2. 
SEM results for Mortality

Note: standardized results shown; *** p < .001, ** p < .01, * p < .05
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Figure 3. 
Multi-morbidity results

Note: standardized results shown; *** p < .001, ** p < .01, * p < .05
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Figure 4. 
Moderated mediation results.

Note: unstandardized results shown. Estimates and 95% confidence intervals calculated from 

results of SEMs in Figures 2 and 3. The full bar represents the total effect of lifetime 

smoking pack years for each age group. The green section represents the indirect effect of 

pack years through epigenetic aging. The orange section represents all other effects. Some 
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direct effects of pack years on mortality are in the opposite direction of the total effect. 95% 

confidence intervals for indirect effects from bias-corrected bootstrap procedure.
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Table 1

Study variable means for each age group

Ages 56–65 Ages 66–75 Ages 76–85 Ages 86+

(N = 1,453) (N = 1,169) (N = 920) (N = 241)

Mortality Over Four Years (proportion) .039*** .067*** .175*** .496

Multimorbidity (number of conditions) 1.818*** 2.480*** 2.768 2.870

DunedinPACE Acceleration (in years of epigenetic aging per chronological year) −0.002 0.001 0.005 −0.006

PhenoAge Acceleration (in years) −0.071 0.181 −0.053 −0.310

GrimAge Acceleration (in years) −0.040 0.057 0.075 −0.198

DunedinPACE (in years of epigenetic aging per chronological year) 0.999*** 1.024*** 1.052 1.066

PhenoAge (in years) 58.515*** 67.390*** 76.164*** 85.309

GrimAge (in years) 71.176*** 78.424*** 85.913*** 93.437

Lifetime Pack-Years 10.284** 14.808 15.721 14.820

Gender (female = 1) .510*** .537** .575** .668

Education: 0–11 Years .339*** .311*** .230* .205

Education: 12 Years .105 .131 .194 .274

Education: 13–15 Years .269** .304** .358 .352

Education: 16+ Years .287** .254* .218 .169

Race/Ethnicity: White, Not Hispanic .744* .786 .847 .829

Race/Ethnicity: Black, Not Hispanic .113 .101 .076 .084

Race/Ethnicity: Hispanic .095 .088 .062 .073

Race/Ethnicity: Other, Not Hispanic .049*** .025 .015 .013

BMI: Underweight .010* .015 .025 .048

BMI: Normal .218*** .235*** .321** .449

BMI: Overweight .355 .382 .391 .377

BMI: Obese 1 .244*** .235*** .191*** .103

BMI: Obese 2 .174*** .133*** .072*** .023

Note: Significance tests are from a bivariate regression of the variable on the age category, with ages 86+ as the reference group.

*
p < .05;

**
p < .01;

***
p < .001
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