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Integrated image-based deep learning and 
language models for primary diabetes care

Primary diabetes care and diabetic retinopathy (DR) screening persist as 
major public health challenges due to a shortage of trained primary care 
physicians (PCPs), particularly in low-resource settings. Here, to bridge the 
gaps, we developed an integrated image–language system (DeepDR-LLM), 
combining a large language model (LLM module) and image-based deep 
learning (DeepDR-Transformer), to provide individualized diabetes 
management recommendations to PCPs. In a retrospective evaluation, 
the LLM module demonstrated comparable performance to PCPs and 
endocrinology residents when tested in English and outperformed PCPs and 
had comparable performance to endocrinology residents in Chinese.  
For identifying referable DR, the average PCP’s accuracy was 81.0% 
unassisted and 92.3% assisted by DeepDR-Transformer. Furthermore, 
we performed a single-center real-world prospective study, deploying 
DeepDR-LLM. We compared diabetes management adherence of 
patients under the unassisted PCP arm (n = 397) with those under the 
PCP+DeepDR-LLM arm (n = 372). Patients with newly diagnosed diabetes 
in the PCP+DeepDR-LLM arm showed better self-management behaviors 
throughout follow-up (P < 0.05). For patients with referral DR, those in 
the PCP+DeepDR-LLM arm were more likely to adhere to DR referrals 
(P < 0.01). Additionally, DeepDR-LLM deployment improved the quality and 
empathy level of management recommendations. Given its multifaceted 
performance, DeepDR-LLM holds promise as a digital solution for 
enhancing primary diabetes care and DR screening.

It has been estimated that more than 500 million people had diabetes 
worldwide in 2021, with 80% living in low- and middle-income coun-
tries (LMICs)1,2. The escalating prevalence imposes a substantial public 
health challenge, particularly in these low-resource settings1,3–5. In 
LMICs, insufficient healthcare resource and a lack of trained primary 
care physicians (PCPs) remain principal barriers, resulting in wide-
spread underdiagnosis, poor primary diabetes management and inad-
equate and/or inappropriate referrals to diabetes specialist care4,6,7. This 
not only impacts on individual health outcomes but also has broader 
socioeconomic consequences4,8–10.

Diabetic retinopathy (DR) is the most common specific compli-
cation of diabetes, affecting 30–40% of individuals with diabetes11–13, 

and remains the leading cause of blindness in economically active, 
working-aged adults11,14,15. The presence of DR also signifies a height-
ened risk of other complications elsewhere (for example, kidney, heart 
and brain)16. Thus, regular DR screening has been universally recom-
mended as a key part of primary diabetes care17. However, DR screen-
ing is often neglected in low-resource settings in LMICs owing to a 
scarcity of infrastructure, manpower and sustainable cost-effective 
DR screening programs.

Several digital technologies have emerged to address gaps in 
diabetes care and DR screening, including telemedicine18–20, artificial 
intelligence (AI)-assisted glucose monitoring and prediction21, retinal 
image-based deep learning (DL) models22–24 and the development of 
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LLM that used 371,763 real-world management recommendations from 
267,730 participants. We then performed a head-to-head comparative 
analysis, where we examined the system’s LLM module’s proficiency 
in providing evidence-based diabetes management recommendations 
against that of LLaMA, PCPs and in-training specialists (endocrinology 
residents), with assessments conducted in both English and Chinese 
languages (Fig. 2a). Second, we trained and tested the performance of 
DeepDR-Transformer for referable DR detection, using multiethnic, 
multicountry datasets comprising 1,085,295 standard (table-top) and 
161,840 portable (mobile) retinal images (Fig. 2b). Third, we evalu-
ated the impact of DeepDR-Transformer in assisting PCPs and profes-
sional graders to identify referable DR (Fig. 2c). Finally, we conducted 
a two-arm, real-world prospective study to determine the impact of 
DeepDR-LLM system when integrated into clinical workflow in the pri-
mary care setting. Over a 4-week period, we monitored and compared 
the adherence to diabetes management recommendations between 
patients under the care of unassisted PCPs and those under the care of 
PCPs assisted by DeepDR-LLM (Fig. 2d). Collectively, our work offers 
a digital solution for primary diabetes care combining DR screening 
and referral, particularly useful in high-volume, low-resource settings 
in LMICs.

Results
Study design and participants
The DeepDR-LLM system consists of two modules: (1) module I (the LLM 
module), which provides individualized management recommenda-
tions for patients with diabetes; (2) module II (the DeepDR-Transformer 

low-cost and portable retinal cameras25,26. However, these solutions 
often focus either on enhancing diabetes management or on providing 
DR screening but rarely integrate both important aspects for diabetes 
care. These current solutions also require sufficiently trained PCPs 
capable of utilizing these digital tools, understanding diabetes care, 
and referral guidelines for severe DR cases that require specialists 
interventions, but there are few trained PCPs in low-resource settings27.

Recently, large language models (LLMs)28–31, achieving natural 
language understanding and generation, have been developing rapidly 
and show promise in enhancing healthcare service delivery. LLMs have 
the potential to optimize patient monitoring, personalization of treat-
ment plans, and patient education, potentially resulting in improved 
outcomes for patients with diabetes32–34 and retinal diseases35,36. 
However, while they perform well in answering some general medical 
queries31,37, current LLMs fall short in providing reliable and detailed 
management recommendations for major specific diseases31,38,39, such 
as diabetes.

To address these interrelated gaps in diabetes care, we developed 
an innovative image–language system—DeepDR-LLM—which integrates 
an LLM module with an image-based DL module to offer a comprehen-
sive approach for primary diabetes care and DR screening. Our system 
is tailored for PCPs, particularly those working in high-volume and 
low-resource settings. The DeepDR-LLM system comprises two core 
components: an LLM module and an image-based DL module, referred 
to as DeepDR-Transformer (Fig. 1). Our evaluation of DeepDR-LLM’s 
performance relied on four experiments outlined in Fig. 2a–d. First, 
we developed the LLM module by fine-tuning LLaMA38, an open-source 
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Fig. 1 | Architecture of the DeepDR-LLM system. The DeepDR-LLM 
system consists of two modules: (1) module I (LLM module), which provides 
individualized management recommendations for patients with diabetes; 
(2) module II (DeepDR-Transformer module), which performs image quality 
assessment, DR lesion segmentation and DR/DME grading from standard or 
portable fundus images. There are two modes of integrating module I and 
module II in the DeepDR-LLM system. In the physician-involved integration 
mode, the outputs of module II (that is, fundus image gradability; the lesion 
segmentation of microaneurysm, cotton-wool spot, hard exudate and 

hemorrhage; DR grade; and DME grade) could assist physicians in generating  
DR/DME diagnosis results (that is, fundus image gradability, DR grade, DME 
grade and the presence of lesions). In the automated integration mode, the  
DR/DME diagnosis results include fundus image gradability, DR grade, DME 
grade classified by module II, and the presence of lesions segmented out by 
module II. These DR/DME diagnosis results and other clinical metadata will be 
fed into module I to generate individualized management recommendations for 
people with diabetes.
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module), which performs image quality assessment, lesion segmenta-
tion and DR grading from standard or portable fundus images for each 
patient. The outputs of module II (results of real-time DR screening) 
can also be used as inputs for the LLM module (module I). Extended 
Data Fig. 1 depicts a schematic overview of the DeepDR-LLM system.

The LLM module was retrospectively evaluated in head-to-head 
comparisons against the nontuned LLaMA by PCPs and endocrinology 
residents, in both English and Chinese languages.

The DeepDR-Transformer module was developed and validated in 
14 datasets across 5 countries (China, Singapore, India, Thailand and 
the UK) with standard fundus images, and 7 datasets across 3 countries 
(China, Algeria and Uzbekistan) with portable fundus images. The 
characteristics of the datasets are summarized in Supplementary 
Tables 1 and 2.

Performance of the LLM module (experiment 2a)
To evaluate the DeepDR-LLM system’s proficiency in providing dia-
betes management recommendations in both English and Chinese 
languages, we compared DeepDR-LLM against LLaMA, PCPs and 

endocrinology residents on the basis of 100 cases randomly selected 
from China National Diabetic Complications Study (CNDCS) (Sup-
plementary Table 3 and Extended Data Fig. 2). The recommendations 
were evaluated on the basis of three axes, namely the extent of inap-
propriate content, extent of missing content and likelihood of possible 
harm (Supplementary Table 4).

Figure 3a reports evaluations of diabetes management recommen-
dations generated in four different ways (DeepDR-LLM, LLaMA, PCP 
and resident) summarized into three different domains (inappropri-
ate content, missing content and likelihood of possible harm) in both 
English and Chinese languages. In English, 71% of DeepDR-LLM recom-
mendations were judged to have no inappropriate content, higher 
than LLaMA (51%), but comparable to the PCP (71%). In addition, 36% 
of DeepDR-LLM recommendations were judged not to have missing 
content (PCP: 27%). Lastly, 57% of DeepDR-LLM recommendations were 
rated as ‘low likelihood’ for possible harm, comparable to 55% in PCP. In 
Chinese, 77% of DeepDR-LLM recommendations were judged to have 
no inappropriate content, higher than LLaMA (66%) and PCP (54%). 
Additionally, 63% of DeepDR-LLM recommendations were judged not 
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Fig. 2 | Study design overview for the DeepDR-LLM system evaluation. 
a, Head-to-head comparative assessment of diabetes management 
recommendations generated by DeepDR-LLM, nontuned LLaMA, PCPs and 
endocrinology residents, using 100 cases randomly selected from CNDCS.  
b, Efficacy analysis of the DeepDR-Transformer module on multiethnic datasets 
of standard and portable fundus images. c, Utility evaluation of the DeepDR-
Transformer module as an assistive tool for PCPs and professional graders in the 

detection of referable DR. d, Study design of a two-arm, real-world, prospective 
study to evaluate the impact of DeepDR-LLM on patients’ self-management 
behavior. In the outcome analysis, for substudy I, 253 participants in the 
unassisted PCP arm and 234 participants in the PCP+DeepDR-LLM arm were 
included; for substudy II, 154 participants in the unassisted PCP arm and 144 
participants in the PCP+DeepDR-LLM arm were included.
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to have missing content, compared to 46% in PCP. Eighty-eight percent 
of DeepDR-LLM recommendations were rated as ‘low likelihood’ for 
possible harm, compared to 60% in PCP.

Figure 3b shows the total scores (defined as the sum of domain- 
specific scores) of the management recommendations generated in 
four different ways. In English, management recommendations given 
by DeepDR-LLM were significantly better than those given by LLaMA 
(P < 0.001) and comparable to the PCP and endocrinology resident. In 
Chinese, management recommendations given by DeepDR-LLM were 
significantly better than those by LLaMA (P < 0.001) and PCP (P = 0.010) 
but comparable to the endocrinology resident.

Multiethnic validation of DeepDR-Transformer (experiment 2b)
The DeepDR-Transformer module was retrospectively developed and 
validated in 14 datasets with standard fundus images and 7 datasets 
with portable fundus images. The characteristics of datasets used in 
the performance evaluation of DeepDR-Transformer are summarized 
in Supplementary Tables 1 and 2.

Supplementary Tables 5 and 6 summarize the performances 
of DeepDR-Transformer in image quality assessment and lesion 

segmentation. For DR grading, we assessed the performance of the 
DeepDR-Transformer model in detecting early-to-late stages of DR 
(multiclass) from standard fundus images and referable DR from porta-
ble fundus images (Supplementary Table 7). In standard fundus images, 
the DeepDR-Transformer model showed excellent performance in 
identifying referable DR, with areas under the receiver operating char-
acteristic curve (AUCs) ranging from 0.892 to 0.933 across 12 external 
test sets. In portable fundus images, the model showed AUCs ranging 
from 0.896 to 0.920 across six external test sets.

DeepDR-Transformer as an assistive tool (experiment 2c)
To evaluate DeepDR-Transformer as an assistive tool for PCPs and pro-
fessional nonphysician graders (these graders are now used in many DR 
screening programs, such as the UK, Singapore and Vietnam, in place of 
PCPs40–43) in identifying referable DR, we assessed both the accuracy and 
time efficiency of the grading processes with and without the assistance 
of the DeepDR-Transformer module (Fig. 4, Extended Data Tables 1–3 
and Supplementary Fig. 1). Based on standard fundus images graded by 
PCPs in the urban area (Fig. 4a and Extended Data Table 1), we observed a 
sensitivity range of 37.2–81.6% for unassisted PCPs, which subsequently 
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Fig. 3 | Head-to-head comparison between DeepDR-LLM, nontuned LLaMA, 
PCP and endocrinology resident in both English and Chinese. a, Evaluators 
were invited to rate management recommendations for patients with diabetes, 
based on three domains, namely the extent of inappropriate content, the extent 
of missing content and the likelihood of possible harm, using 100 cases randomly 
selected from CNDCS. b, The total scores of management recommendations 

generated by LLaMA, DeepDR-LLM, PCPs and endocrinology residents, using  
100 cases randomly selected from CNDCS. Box plot (n = 100), median and 
quartiles; whiskers, data range. The comparison was performed using two-sided 
Friedman tests. Post-hoc pairwise comparisons were performed using two-sided 
Wilcoxon signed-rank tests. P values for multiple comparisons were adjusted 
using the Bonferroni method. **P = 0.010, ***P < 0.001.
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increased to 78.0–98.4% with DeepDR-Transformer assistance. Simi-
larly, specificity improved from the original range of 84.4–94.8% 
(unassisted) to 90.4–98.8% when assisted with DeepDR-Transformer. 
Moreover, with the assistance of DeepDR-Transformer, the median 
time taken for assessment was reduced from 14.66 s (interquartile 
range (IQR) 14.09–15.57) per eye to 11.31 s (IQR 10.82–11.84) (P < 0.001), 
indicating a significant enhancement in both the accuracy and effi-
ciency of DR grading.

Because table-top-mounted retinal cameras require more 
space and are typically more expensive, we conducted another 
experiment using portable retinal cameras. For portable fundus 
images graded by PCPs in the urban area (Fig. 4b and Extended 
Data Table 3), the sensitivity ranged from 64.0% to 90.8% for unas-
sisted PCPs, which subsequently increased to 78.4% to 99.6% with 
DeepDR-Transformer assistance. Specificity improved from the 
original range of 69.6–92.8% (unassisted) to 82.0–97.6% with 
DeepDR-Transformer assistance. Furthermore, the median time taken 
for assessment was reduced from 7.39 s (IQR 6.69–8.42) per eye to 6.13 s 
(IQR 5.82–6.73) with DeepDR-Transformer’s assistance (P < 0.001). 

Similar trends were observed in standard and portable fundus 
images graded by PCPs in the rural area (Fig. 4c,d and Extended Data  
Tables 1 and 3).

Prospective real-world study of DeepDR-LLM (experiment 2d)
To evaluate the impact of implementing the integrated DeepDR-LLM 
system (combining both the LLM and DeepDR-Transformer mod-
ules), on diabetes self-management behaviors, we carried out a 
proof-of-concept, two-arm, prospective study in a real-world set-
ting. Extended Data Fig. 3 shows the study design of this real-world 
prospective study (showing numbers of participants included in the 
outcome analysis). Participants were allocated to two groups: one 
receiving management recommendations from PCPs without the 
assistance of DeepDR-LLM (referred to as the unassisted PCP arm) 
and the other receiving augmented input where PCPs’ recommenda-
tions were enhanced with insights from DeepDR-LLM (referred to as 
the PCP+DeepDR-LLM arm). Comparisons of baseline characteristics 
of included participants in two substudies between the two arms are 
presented in Extended Data Table 4.

a    Standard fundus images graded by PCPs in the urban area b    Portable fundus images graded by PCPs in the urban area
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Fig. 4 | Receiver operating characteristic curves showing performance of 
DeepDR-Transformer alone versus PCPs (when unassisted and assisted by 
DeepDR-Transformer) in identifying referable DR. a, Standard fundus images 
(500 eyes: 250 nonreferable eyes and 250 referable eyes) graded by PCPs in the 
urban area. b, Portable fundus images (500 eyes: 250 nonreferable eyes and  

250 referable eyes) graded by PCPs in the urban area. c, Standard fundus images 
(500 eyes: 250 nonreferable eyes and 250 referable eyes) graded by PCPs in the 
rural area. d, Portable fundus images (500 eyes: 250 nonreferable eyes and  
250 referable eyes) graded by PCPs in the rural area.
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For patients diagnosed with newly diagnosed diabetes at base-
line, they were followed up after 2 weeks and 4 weeks to evaluate their 
self-management practices. Patients in the PCP+DeepDR-LLM arm 
showed better self-management of diabetes in several aspects at the 
2-week follow-up, including decreased consumption of refined grains 
and alcohol, increased consumption of whole grains and fresh veg-
etables, increased physical activities and adherence to drug therapy 
(all P < 0.05, after adjusting for age, sex and baseline HbA1c level; 
Extended Data Table 5). At the 4-week follow-up, participants in the 
PCP+DeepDR-LLM arm maintained better self-management of diabe-
tes and exhibited behaviors of increased consumption of fresh fruits, 
decreased consumption of starchy vegetables, more frequent blood 
glucose monitoring and better adherence to antidiabetic medication, 
compared to those in the unassisted PCP arm (all P < 0.05, after adjust-
ing for age, sex and baseline HbA1c level).

For patients diagnosed with referable DR at baseline visit, the 
2-week follow-up revealed a significantly positive trend. Those patients 
in the PCP+DeepDR-LLM arm were more likely to follow through with 
their referral and consult an ophthalmologist within 2 weeks (77.78% 
versus 58.44%; P = 0.001, as indicated in Extended Data Table 5). 

Furthermore, patients in the PCP+DeepDR-LLM arm scheduled their 
post-referral ophthalmologist appointments significantly sooner 
than those in the unassisted PCP arm (4 (IQR 3–5) days versus 7  
(IQR 6–8) days; P < 0.001). These findings underscore the positive 
influence of the integrated DeepDR-LLM system in fostering more 
proactive self-management actions.

In addition, we carried out a post-deployment evaluation to assess 
the quality and level of empathy provided by the DeepDR-LLM sys-
tem alone, PCP alone and PCP+DeepDR-LLM (Extended Data Fig. 4). 
This evaluation involved three consultant-level endocrinologists and 
372 patients. Across these 372 cases evaluated by the three endocri-
nologists, of the three versions of management recommendations, 
PCP+DeepDR-LLM’s recommendations were most preferred (56.36%; 
Fig. 5a) by the endocrinologists. In total, 68.37% of PCP+DeepDR-LLM’s 
recommendations were rated as either ‘good’ or ‘very good’ quality, and 
71.06% recommendations were deemed ‘empathetic’ or ‘very empa-
thetic’ (Fig. 5b). From the patients’ perspective, the majority (238/372, 
63.98%) also favored PCP+DeepDR-LLM’s recommendations over the 
other two versions (Fig. 5a). Similarly, 69.35% of PCP+DeepDR-LLM’s 
recommendations were rated by the surveyed patients as either ‘good’ 
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three consultant-level endocrinologists was invited to evaluate all the 372 cases. 
c, Bar plots showing the quality and empathy ratings of PCP, DeepDR-LLM 
and PCP+DeepDR-LLM’s recommendations, as evaluated by the 372 surveyed 
patients (number of cases 372).
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or ‘very good’ quality, and 73.92% recommendations were deemed 
‘empathetic’ or ‘very empathetic’ (Fig. 5c).

Finally, to capture the PCPs’ perceptions and satisfactions towards 
the DeepDR-LLM system after using its insights, the 12 PCPs who partici-
pated in the PCP+DeepDR-LLM arm of the real-world prospective study 
were also asked to complete a user satisfaction questionnaire. This 
questionnaire was completed within 2 weeks after the study closure 
(Extended Data Table 6). Across the 12 PCPs, the DeepDR-LLM system 
obtained an average score of 4.42 for being understandable (out of 
5.00), 4.33 for time-saving, 4.17 for effectiveness and 4.17 for being safe 
in clinical practice. It also obtained an overall satisfaction score of 4.50.

Discussion
Primary diabetes care that is accessible, timely and appropriate per-
sists as a major public health challenge due to insufficient healthcare 
infrastructure and a lack of trained PCPs, particularly in low-resource 
settings in many LMICs4. Adding to this complexity in primary diabetes 
care is the need to manage diabetes complications, such as DR, the most 
specific complication, with its presence often signaling other complica-
tions in major organ systems (for example, kidney, heart and brain)11,12. 
While DR screening has been widely recommended by international 
guidelines, such programs are lacking in low-resource settings due to 
the scarcity of infrastructure and a lack of trained PCPs who can admin-
ister and manage such programs. To address these gaps, we developed 
an integrated image–language system (DeepDR-LLM) combining an 
LLM module and a DL module (DeepDR-Transformer), with an aim to 

provide tailored personalized diabetes management recommendations 
and real-time fully automated DR screening and referral recommenda-
tions to aid the PCPs working in primary diabetes care.

Key features and findings of our system should be emphasized. 
First, our LLM module was fine-tuned on an open-source LLM (using 
more than 300,000 real-world management recommendations from 
more than 250,000 participants), focusing on providing individu-
alized and reliable management recommendations for the PCPs to 
manage common scenarios in diabetes. In our head-to-head analysis 
(experiment 2a), we showed that our LLM module performed better 
than nontuned ‘generic’ LLMs (that is, LLaMA) and PCPs, and with 
comparable performance to endocrinology residents. Furthermore, 
our two-arm, real-world prospective study in a primary diabetes care 
context demonstrated that the integration of DeepDR-LLM with PCP 
consultations enhanced self-management behaviors in newly diag-
nosed patients with diabetes and increased adherence to DR referrals 
for those with identified referable DR.

For the LLM module, in the head-to-head comparison (experi-
ment 2a), we demonstrated that the LLM module of the DeepDR-LLM 
system could mostly generate reliable management recommenda-
tions for patients with diabetes in the retrospective evaluations in 
both English and Chinese. Previous studies have shown the promis-
ing potential of ‘generic’ LLMs in generating answers to real-world 
consumer queries for medical information, which are usually general 
and somewhat superficial31,37. However, previous LLMs did not provide 
specific and detailed management recommendations for patients 
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Fig. 6 | Envisioning the future of primary diabetes care with the clinical 
integration of the DeepDR-LLM system. First, patients with diabetes undergo 
comprehensive evaluations that include medical history taking that can be 
augmented by automated voice-to-text technology, physical examinations, 
laboratory assessments and fundus imaging. Following this, the DeepDR-LLM  

system processes the accumulated clinical data to concurrently deliver DR 
screening results and tailored management recommendations for PCPs. 
Subsequently, augmented with these AI-derived insights, PCPs then offer 
treatment guidance and health education to patients, either in person or through 
teleconsultation services.
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with common diseases31,38,39, such as diabetes. Another limitation of 
previous head-to-head evaluations between LLMs and clinicians was 
the lack of model answers serving as benchmarks to compare the 
performance of different players31. In our study, we enlisted an inter-
national panel of experts in endocrinology and ophthalmology (names 
listed in Methods) to formulate the model answers for each case, using 
established clinical guidelines (that is, 2023 American Diabetes Asso-
ciation Guidelines on Diabetes Care44 and 2018 International Council 
of Ophthalmology Guidelines on Diabetic Eye Care17). Encouragingly, 
the LLM module showed performance comparable to endocrinology 
resident in Chinese and PCPs in English, in all three evaluated axes. 
These results demonstrated the potential of the DeepDR-LLM system 
to provide reliable management recommendations for PCPs to manage 
patients with diabetes.

With respect to the image-based DL component for DR screening, 
the DeepDR-Transformer module provided robust performance of 
DR grading in diverse multiethnic cohorts of patients with diabetes 
(experiment 2b). Importantly, we demonstrated this performance in 
both standard (desktop) and portable (mobile) fundus images. Exist-
ing DL systems for DR screening primarily focused on standard retinal 
images taken with more expensive desktop fundus cameras22–24. In this 
study, we showed that DeepDR-Transformer could also achieve optimal 
performance in lower-resolution portable fundus images, with AUCs 
ranging from 0.896 to 0.920 for detecting referable DR across six exter-
nal test datasets from China, Algeria and Uzbekistan. The robustness 
and generalizability of the DeepDR-Transformer module for identifying 
referable DR from portable fundus images could potentially empower 
point-of-care DR screening by PCPs in lower-resourced settings, where 
future DR screening models will probably involve such smaller, cheaper 
fundus cameras rather than standard retinal cameras45.

Finally, to further demonstrate the impact of DeepDR-LLM on 
patients’ self-management behavior for diabetes care (experiment 
2d), we conducted a two-arm, real-world prospective study in a primary 
care setting. In the unassisted PCP arm, PCPs gave the management 
recommendations without the help of DeepDR-LLM. We found that 
these recommendations given by PCPs were generally rule-based with 
‘one-size-fits-all’ treatment targets and lifestyle interventions, with 
little personalization (examples shown in Supplementary Table 8). 
These findings are probably explained by routine generic answers 
provided by PCPs, in part due to the lack of in-depth diabetes-specific 
training of PCPs, a problem even in high-resource settings4. On the 
other hand, in the PCP+DeepDR-LLM arm, using electronic health 
records and fundus images, our integrated DeepDR-LLM system could 
generate good quality and empathetic recommendations. These sug-
gestions were then used by PCPs to formulate management plans 
for each patient. Evaluations by consultant-level endocrinologists 
and patients indicated that the integration of DeepDR-LLM could 
significantly enhance the quality and perceived empathy of the PCPs’  
recommendations.

Current digital and AI solutions cannot realize their full potential 
unless seamlessly integrated into existing clinical workflows46. We 
showed that the integration of the DeepDR-LLM system into primary 
diabetes care could improve patient outcomes in two aspects. First, 
for patients with newly diagnosed diabetes, the DeepDR-LLM sys-
tem could promote better self-management behaviors, including 
dietary modifications (for example, increased consumption of whole 
grains and decreased consumption of starchy vegetables), increased 
physical activities and adherence to antidiabetic medication. Con-
currently, for those patients diagnosed with referable DR, receiving 
recommendations from PCPs that were augmented with DeepDR-LLM’s 
recommendation could improve the compliance rate of attending 
the ophthalmologists within 2 weeks, as well as shorten the referral 
interval. These results highlight the beneficial impact of the integrated 
DeepDR-LLM system in promoting patient engagement and encourag-
ing more proactive health management behaviors.

For the implementation of digital solutions, feedback from 
end-users (in this case, PCPs) is critical. In our real-world prospective 
evaluation of the integrated DeepDR-LLM system, post deployment, 
most PCPs deemed the system simple and understandable, effec-
tive and safe. PCPs who participated in our survey also indicated they 
would like to use the DeepDR-LLM system in their future practice. Thus, 
our DeepDR-LLM system holds great potential for primary diabetes 
care to empower AI-assisted face-to-face consultation or teleconsul-
tation (Fig. 6). Nevertheless, for clinical adoption, other workflow 
challenges need to be addressed, including addressing data quality 
issues, ethical, privacy and legal considerations, and integration with 
existing healthcare information technology infrastructure47. Thus, 
future research directions for DeepDR-LLM should focus on developing 
more transparent and unbiased datasets applicable to more diverse 
populations, thereby mitigating data quality issues and the risk of bias 
and discrimination; exploring ethical and legal frameworks for safe 
and responsible primary care setting implementation; integration 
with other technologies (for example, wearables) to further optimize 
patient engagement; and evaluating the long-term cost-effectiveness 
and patient outcomes as well as identifying areas for further improve-
ment and refinement39,48.

Our study had limitations. First, since our integrated system was 
trained and fine-tuned exclusively on Chinese populations, additional 
training or fine-tuning on more diverse clinical and demographic 
cohorts may further improve the diagnostic accuracy and clinical 
utility of this system. However, we tested the generalizability of the 
DeepDR-Transformer module in diverse multiethnic multicountry 
datasets that showed consistently robust performance across dif-
ferent datasets. Second, the LLM module of the DeepDR-LLM system 
was evaluated in English and Chinese. Future studies should extend 
this evaluation to other languages to better assess its broader appli-
cability. Additionally, we did not compare the performance between 
the LLM module and other open-source LLMs due to concerns about 
privacy leakage. Third, in the evaluation of the DeepDR-Transformer 
module of the DeepDR-LLM system as an assistive tool in identify-
ing referable DR, a 1-week washout period between unassisted and 
DeepDR-Transformer assistant decisions may not be sufficient to fully 
eliminate the recall bias. Fourth, our real-world prospective evalua-
tion of the DeepDR-LLM system was not designed as a randomized 
controlled trial, and it primarily focused on self-management behav-
iors as the key clinical outcomes of interest with a relatively short 
follow-up period and not sufficiently on objective clinical outcomes 
(for example, documented progression of DR). As such, the find-
ings of our study could potentially be influenced by sampling bias 
and self-reporting inaccuracies. Additionally, PCPs were the same in 
the two arms, which could lead to biases in the intervention due to 
priori approaches and expectations. Despite these limitations, our 
study serves as a foundational proof-of-concept that can inform the 
design of future, prospective or community-based studies or rand-
omized controlled trials. We believe that it is essential to evaluate the 
longer-term effectiveness of this intervention via future (preferably 
blinded) randomized studies with a more extended observation period 
and multiple clinical outcomes (including objective measurements, 
duration of the consultation interactions, PCPs’ attitude toward the 
proposed system and subsequent patient outcomes).

In conclusion, we developed an integrated image–language system 
synergistically combining an LLM module and an image-based DL mod-
ule (DeepDR-Transformer). We demonstrated that our DeepDR-LLM 
system could provide personalized high-quality and empathetic man-
agement recommendations for patients with diabetes based on their 
retinal images and routine clinical data. This integrated digital solution 
could provide complementary functionality to enhance individual-
ized diabetes management and may be useful in low-resource but 
high-volume settings. Given its multifaceted performance and poten-
tial impact, our proposed system holds promise as a digital solution 
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for primary diabetes care management, particularly relevant to 80% 
of the world’s diabetes population living in underserved, resource- 
limited settings.
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maries, source data, extended data, supplementary information, 
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Methods
Ethical approval
The study was approved by the Ethics Committee of Shanghai Sixth Peo-
ple’s Hospital (2019-087, approved 29 August 2019; 2023-KY-023(K), 
approved 7 March 2023; 2023-KY-123(K), approved 5 September 
2023) and Huadong Sanatorium (2023-08, approved 2 April 2023). 
Only deidentified retrospective data were used for the develop-
ment of the LLM module. For the development and validation of the 
DeepDR-Transformer module, informed consent was obtained from 
all participants. For the real-world prospective study, informed con-
sent was obtained from all participants. This study was conducted in 
accordance with the Declaration of Helsinki.

Data acquisition and diagnosis criteria
Fourteen independent cross-sectional datasets with standard fundus 
images and seven independent cross-sectional datasets with port-
able fundus images from people with diabetes were included in this 
study. For datasets with standard fundus images, two datasets were 
used to develop and internally validate the DeepDR-Transformer 
module: the Shanghai Integration Model (SIM) cohort24,49 and the 
Shanghai Diabetes Prevention Program (SDPP) cohort. In addition, 
12 multiethnic datasets were enrolled for external validation: the 
Nicheng Diabetes Screening Project (NDSP) cohort, the Diabetic 
Retinopathy Progression Study (DRPS) cohort, the Wuhan Tongji 
Health Management (WTHM) cohort, the Peking Union Diabetes 
Management (PUDM) cohort, the CNDCS cohort50, the Guangzhou 
Diabetic Eye Study (GDES) cohort, the Chinese University of Hong 
Kong-Sight-Threatening Diabetic Retinopathy (CUHK-STDR) cohort51, 
the Singapore Epidemiology of Eye Diseases study (SEED) cohort22,52, 
the Singapore National Diabetic Retinopathy Screening Program 
(SiDRP) cohort22, the Sankara Nethralaya-Diabetic Retinopathy Epi-
demiology and Molecular Genetics Study (SN-DREAMS) cohort53, the 
Thai National Diabetic Retinopathy Screening Program (TNDRSP) 
cohort54 and United Kingdom Biobank (UKB) cohort. Use of data from 
the UK Biobank was approved with the UK Biobank Resource under 
application number 104443.

Portable fundus images from the NDSP cohort were utilized to 
fine-tune the DeepDR-Transformer module. Another six datasets were 
included for external validation: the Chinese Portable Screening Study 
for Diabetic Retinopathy-East (CPSSDRE) cohort, the Chinese Portable 
Screening Study for Diabetic Retinopathy-Middle (CPSSDRM) cohort, 
the Chinese Portable Screening Study for Diabetic Retinopathy-West 
(CPSSDRW) cohort, the Chinese Portable Screening Study for Diabetic 
Retinopathy-Northeast (CPSSDRN) cohort, the Algerian Diabetic Retin-
opathy Study (ADRS) cohort and the Uzbek Diabetic Retinopathy Study 
(UDRS) cohort. The CPSSDRE, CPSSDRM, CPSSDRW and CPSSDRN 
cohorts were derived from real-world DR screening programs assisted 
by Phoebusmed. For the ADRS and UDRS datasets, the participants 
were recruited in regions of Algeria and Uzbekistan, respectively. 
These fundus images were captured using a variety of desktop and 
handheld fundus cameras from Canon, Topcon, Carl Zeiss, Optomed 
and MicroClear.

DR severity was graded into five levels (non-DR, mild nonprolif-
erative DR (NPDR), moderate NPDR, severe NPDR or proliferative DR 
(PDR), respectively), according to the International Clinical Diabetic 
Retinopathy Disease Severity Scale (AAO, October 2002)55. Diabetic 
macular edema (DME) was considered to be present when there was 
retinal thickening at or within one disk diameter of the macular center 
or definite hard exudates in this region56. Referable DR was defined 
as moderate NPDR or worse, DME or both. The adjudication process 
and interrater reliability of DR and DME grading of each dataset 
are presented in Supplementary Table 9. Retinal photographs were 
flagged as ungradable according to our previous study24. Diabetes 
was diagnosed according to the latest American Diabetes Associa-
tion guidelines57.

The architecture of the DeepDR-LLM system
The DeepDR-LLM consists of two modules: the LLM module (module I)  
and the DeepDR-Transformer module (module II). Module II is used for 
image quality assessment, lesion segmentation and DR/DME grading 
from standard or portable fundus images, based on image-based DL. 
Module I is used for integrating clinical metadata of people with dia-
betes, including medical history, physical examinations, laboratory 
tests and DR/DME diagnosis results, to provide personalized diabetes 
management recommendations, based on LLM. Specifically, DR/DME 
diagnosis results could be derived from medical records or module 
II. In the integrated fashion, DeepDR-LLM could combine DR/DME 
diagnosis results derived from module II using fundus images as inputs 
with other clinical metadata to generate individualized management 
recommendations for people with diabetes.

LLM module’s supervised fine-tuning. Module I is a domain knowl-
edge enhanced LLM model that is designed to formulate diabetes 
management recommendations, based on various clinical metadata 
from medical history, physical examinations, laboratory tests, and 
DR and DME diagnosis results. The primary foundational LLM (that 
is, LLaMA) was not directly effective in generating diabetes manage-
ment recommendations due to a lack of domain-specific knowledge. 
Recognizing this gap, we developed a supervised fine-tuning approach 
to integrate diabetes management-related knowledge into the LLM 
training process. This approach could enhance the model’s capabil-
ity to generate diabetes management recommendations by adding 
essential domain knowledge to the foundational LLM. The dataset for 
supervised fine-tuning was retrospectively sourced from 371,763 paired 
clinical data and real-world management recommendations from 
267,730 participants from Shanghai Sixth People’s Hospital and Hua-
dong Sanatorium after deidentification. Characteristics of the dataset 
are presented in Supplementary Table 10. Our proposed supervised 
fine-tuning approach can work with various LLM models, and we used 
LLaMA-7B as the foundational LLM for module I in further experiments.

As updating all parameters (that is, the original weights of the 
LLM) during the fine-tuning of LLM is evidently not optimal in terms of 
efficiency58, we employ the LoRA59 and Adapter60 techniques here. Spe-
cifically, LoRA adds additional network layers, forming a bypass path 
adding to the original LLM vertically, which emulates intrinsic rank by 
executing a one-dimensionality reduction followed by a dimensionality 
increase. During training, the parameters of LLM remain fixed, with only 
the matrices A (for reduction) and B (for expansion) undergoing train-
ing. The dimensionality-reducing matrix A is initialized with a random 
Gaussian distribution, whereas the dimensionality-expanding matrix 
B is initialized as a zero matrix. The process is formulated as

y = W0x + BAx,

where x  and y are the input and output, respectively. W0 is the pre-
trained weight of the original LLM.

Besides, within each Transformer layer of LLM, we embed addi-
tional initialized Adapter networks, which are used for dimensionality 
reduction and subsequent expansion of the Transformer’s feature 
representations. Each Adapter network, consisting of a two-layered 
multilayer perceptron (MLP) and an activation layer, is behind the 
feed-forward layer and before the residual connection in a Transformer 
layer.

Combining the above two techniques, the training focuses solely 
on the newly incorporated layers, with the parameters of the original 
LLM frozen. For the training phase, we set a learning rate of 10−4 with 
a cosine learning rate scheduler, a warmup ratio of 0.03 and training 
epochs of 10. For the detailed training parameters, we used a batch 
size of 8, selected mapping dimensions of 4,096 for both LoRA and 
Adapters, and limited the maximum text length to 512 tokens, with a 
rank of 64, an alpha of 128 and a dropout rate of 0.05.
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DeepDR-Transformer module’s development and training. As men-
tioned before, module II serves as a tool for module I in analyzing 
fundus images for DR predictions. So, we propose a separate model 
named DeepDR-Transformer, which can extract distinct features from 
fundus images after fine-tuning on specific tasks.

We address the prediction and analysis of fundus images, including 
two main objectives: standard retinal image prediction and portable 
retinal image prediction. We utilize standard fundus images and related 
labels from the developmental dataset for model training. Moreover, 
we incorporate the Vision Transformer (ViT) architecture61 and conduct 
supervised training with this dataset. We train DeepDR-Transformer for 
four tasks using standard fundus images: quality assessment models for 
images (determining gradability), DR grading prediction models, pre-
diction models for DME (present or absent) and lesion segmentation 
models (microaneurysms, hemorrhages, cotton-wool spots (CWS) and 
hard exudates). For each model, we load pretrained weights from Ima-
geNet62, initiating end-to-end fine-tuning thereafter. For the structured 
prediction output yielded by this module II (DeepDR-Transformer), we 
devise standardized linguistic templates, for example, ‘DR grade: 0 (DR 
not present); DME grade: 0 (DME not present)’. These linguistic tem-
plates could be subsequently integrated as a part of the input prompt 
for module I (LLM module), thus forming the integrated DeepDR-LLM 
system altogether. For instance, the generated DR/DME diagnosis 
results generated by DeepDR-Transformer, along with other clinical 
metadata could be fed into the LLM module to generate individualized 
management recommendations for people with diabetes.

DeepDR-Transformer fine-tuning for the classification and 
segmentation from standard fundus images
We choose ViT as the backbone model of our DeepDR-Transformer for 
its robust performance in modeling images. Our DeepDR-Transformer 
module is initialized by the pretrained weights from ImageNet and then 
fine-tuned on the developmental dataset for image quality assessment, 
DR grading, DME grading and lesion segmentation.

The architecture of the DeepDR-Transformer module is composed 
of a series of Transformer layers. We represent the output features of 
these layers as Z1,Z2,⋯ ,Zn, where Zn corresponds to the feature derived 
from the nth Transformer layer. Our DeepDR-Transformer model is 
initialized by the pretrained weights from ImageNet and then 
fine-tuned on the developmental dataset for four classification and 
segmentation tasks, respectively.

The tasks of fundus image quality assessment, DR grading and 
DME grading are three classification problems. We apply the global 
average pooling to the final layer feature Zn of the DeepDR-Transformer 
module. Subsequently, it is processed by a fully connected linear layer 
to produce a vector that matches the number of classes in the respec-
tive classification task.

The objective of the fundus image lesion segmentation is to gener-
ate lesion pixel-level masks within the original two-dimensional image 
size of h ×w, where h represents the height and w denotes the width of 

the original image. Consequently, we transform the feature Zn ∈ ℝ
h×w
p×p

×c 

into a feature OS ∈ ℝ
h
p
× w

p
×c, where p is the patch size and c is the number 

of channels. We alternate between convolutional layers and upsampling 
operations with a factor of 2×. Thus, to restore from OS to the original 
size of the input image, four upsampling operations are required. The 
final channel number is adjusted to 5, where the 0th channel represents 
the background and the other channels represent the lesions.

All these tasks are considered classification problems (with seg-
mentation being pixel-level classification). The loss function employed 
across these tasks is cross-entropy loss. We set the number of Trans-
former layers n as 12 and the patch size p as 16. We used the standardized 
structure for Transformer layers, with the following parameters for 
each layer: an embedding size of 768, an MLP size of 3072 (derived from 
an MLP ratio of 4) and 12 attention heads. The activation function is 

Gaussian error linear units, and layer normalization is applied. Our 
learning strategy includes a learning rate set at 10−3, a weight decay of 
0.05 and a layer decay of 0.75. We leverage the stochastic gradient 
descent optimizer for optimization tasks. To enhance stability and 
mitigate overfitting, the learning rate is scheduled to decrease by a 
factor of 0.1 every 10 epochs throughout a span of 40 epochs. Each 
gradient update iteration is configured with a batch size of 16, and the 
model’s input image resolution is set at 448 × 448 pixels. To improve 
the training dataset’s diversity and prevent overfitting, data augmenta-
tion techniques are utilized, including random resized cropping, affine 
transformations, horizontal and vertical flips, and Krizhevsky-inspired 
color augmentation. This color augmentation method introduces color 
noise to images based on precomputed eigenvectors and eigenvalues. 
It generates a color vector from a normal distribution (mean 0, standard 
deviation 0.5), calculates the noise using these eigenvalues and eigen-
vectors, and adds the resulting noise to the input image to achieve 
realistic color variation.

Transfer learning from standard to portable fundus images
The fine-tuned DeepDR-Transformer models, initially trained on stand-
ard fundus images, may yield inconsistent results when deployed on 
portable fundus images, given the inherent disparities in equipment, 
noise and image dimensions. To address this, we utilize transfer learn-
ing63 on portable device images. This adaptation leveraged a tuning 
set derived from the NDSP dataset, including labels for image quality 
assessment, DR grading and DME detection.

Integration of module I and module II. In our DeepDR-LLM system, 
there are two modes of integrating module I and module II.

In the physician-involved integration mode, the outputs of module 
II (that is, fundus image gradability; the lesion segmentation of microa-
neurysm, CWS, hard exudate and hemorrhage; DR grade; and DME 
grade) could help physicians generate DR/DME diagnosis results (that 
is, fundus image gradability; DR grade; DME grade; and the presence 
of lesions). These DR/DME diagnosis results and other clinical meta-
data will be fed into module I to generate individualized management 
recommendations for people with diabetes.

In the automated integration mode, the DR/DME diagnosis results 
from module II and other clinical metadata could be automatically fed 
into module I to generate individualized management recommenda-
tions for people with diabetes. Specifically, the DR/DME diagnosis 
results include fundus image gradability, DR grade, DME grade clas-
sified by module II, and the presence of lesions segmented out by 
module II.

Evaluation of the LLM module in a retrospective dataset
To evaluate the capability of the LLM module to provide comprehensive 
diabetes management recommendations in both English and Chinese 
languages, we curated a retrospective dataset comprising 100 cases 
randomly selected from CNDCS (Supplementary Table 3). The flow-
chart of the evaluation is depicted in Extended Data Fig. 2.

We first translated the case scenarios into English. An international 
expert panel was then convened to derive reference evidence-based 
management recommendations from initial drafts created by four 
senior consultant-level endocrinologists (W.J., Y.B., H.L. and J.Y.). 
The international expert panel comprised eight endocrinologists—
J.C.N.C., J.B.E.-T., L.C., A.O.Y.L., J.E.S., L.-L.L., R.S. and Y.M.B.—and two 
ophthalmologists, G.S.W.T. and L.J.C. After thorough review and 
consensus-building discussions, this group of ten experts subsequently 
agreed upon the English model answers, establishing the benchmark 
for the management recommendation evaluations in English.

For the Chinese recommendation evaluations, three consultant- 
level endocrinologists (W.J., H.L. and J.Y.) and two consultant-level 
ophthalmologists (T.C. and Q.W.) first translated the English reference 
recommendations into Chinese. They further contextualized these 
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by incorporating guidelines from the Chinese Diabetes Society64, 
aligning the recommendations with local clinical practices in China. 
These Chinese model answers, which had gone through careful evalu-
ations by Chinese experts, were then applied for assessments in the  
Chinese language.

Utilizing the aforementioned 100 cases, we generated manage-
ment recommendations using both the nontuned LLaMA and our 
fine-tuned LLM module in DeepDR-LLM, in both English and Chinese. 
For the English-language assessment, we invited an endocrinology 
resident and a PCP (A.A., with more than 10 years of clinical expe-
rience), to formulate management strategies for these cases. The 
recommendations from LLaMA, DeepDR-LLM, the resident and the 
PCP were then anonymized and subsequently appraised by a separate 
assessment panel of eight consultant-level physicians (L.-L.L., C.C.L., 
H.C.T., Z.H.L., C.S.-Y.T., S.L.K., A.Y.L.L. and S.F.M.), measured against the 
preestablished model answers in English described above. In a parallel 
process for the Chinese-language assessment, we sought recommen-
dations from an endocrinology resident and a PCP (Y. Huang, with 
15 years of clinical experience), from China. These recommendations 
were similarly anonymized and then evaluated by a separate assess-
ment panel of four consultant-level endocrinologists from China, 
against the Chinese model answers previously generated. The 100 
cases were distributed at random for assessment in both English and 
Chinese. Evaluations were anchored to three domains: the extent of 
inappropriate content, the extent of missing content and the likeli-
hood of possible harm. This evaluation framework was adapted from 
a methodology employed in a prior study31 (refer to Supplementary 
Table 4). Supplementary Table 8 shows an example of one case, along 
with its corresponding model answer for management, and four man-
agement recommendations provided by LLaMA, DeepDR-LLM, PCP and  
endocrinology resident.

Moreover, we have conducted an additional ablation study to 
investigate whether the integration of the DeepDR-Transformer 
module, affects the performance of diabetes management recom-
mendations. In our original analysis of the head-to-head comparative 
analysis of management recommendations provided by DeepDR-LLM, 
LLaMA, PCPs and endocrinology residents, we did not utilize the 
DeepDR-Transformer module. We included participants with grada-
ble standard fundus images. We just input the ground truth DR/DME 
grading and other clinical metadata into the LLM module to generate 
diabetes management recommendations.

To investigate whether the integration of the DeepDR-Transformer 
module, an image-based DL module (module II), would affect the per-
formance of diabetes management recommendations, we conducted 
ablation studies in both English and Chinese languages. The design of 
the ablation studies is shown in Supplementary Fig. 3. There were three 
arms in the comparison:

	 1.	 Arm 1: input the ground truth DR/DME diagnosis results  
(that is, fundus image gradability, DR grade, DME grade and  
the presence of lesions) and other clinical metadata into the 
LLM module.

	 2.	 Arm 2 (using the automated integration mode of the 
DeepDR-LLM system): input the DR/DME diagnosis results 
derived from the DeepDR-Transformer module (module II) and 
other clinical metadata into the LLM module.

	 3.	 Arm 3: input the other clinical metadata but without DR/DME 
diagnosis results into the LLM module.

For evaluations in English, we invited ten physicians from Sin-
gapore, Malaysia, Spain and the USA. For evaluations in Chinese, 
we invited four consultant-level endocrinologists from China. The 
evaluation results are shown in Supplementary Fig. 4. The results 
showed that the performance of the LLM module (module I) after 
integration with module II (that is, arm 2 in this experiment) was com-
parable to that using the ground truth DR/DME diagnosis results as 

inputs (arm 1). Expectedly, when DR/DME diagnosis results were not 
input into the LLM module, the performance of the LLM module was  
significantly decreased.

Evaluation of the performance of the DeepDR-Transformer on 
retrospective datasets
The DeepDR-Transformer module was retrospectively developed and 
validated in 14 datasets with standard fundus images and 7 datasets 
with portable fundus images as described before. The characteristics 
of the participants and eyes used in the performance evaluation of 
DeepDR-Transformer are summarized in Supplementary Tables 1 and 2.

For image quality assessment, we assessed the discriminative 
performance of the DeepDR-Transformer module for gradability 
assessment (gradable or ungradable image) on the internal test data-
set, four external test datasets with standard fundus images (NDSP, 
DRPS, WTHM and PUDM) and six external test datasets with portable 
fundus images (CPSSDRE, CPSSDRM, CPSSDRW, CPSSDRN, ADRS 
and UDRS).

For lesion segmentation, we annotated retinal lesions, including 
microaneurysms, CWS, hard exudates and hemorrhages on 5,690 
gradable eyes (11,380 images) in the developmental dataset and 2,438 
gradable eyes (4,876 images) in the internal test dataset (7:3). For retinal 
lesion annotation, each fundus image was annotated by two ophthal-
mologists. Two ophthalmologists generated two lesion annotations 
for each type of lesion. We considered the two annotations valid if the 
Intersection over Union (IoU) between them was greater than 0.85. 
Otherwise, a senior supervisor would check the annotations and give 
feedback to provide guidance. The image would be reannotated by the 
two ophthalmologists until the IoU was larger than 0.85. Finally, we took 
the union of valid annotations as the final ground truth segmentation 
annotation. We assessed the performance of DeepDR-Transformer for 
segmenting microaneurysm, CWS, hard exudate and hemorrhage on 
the internal test dataset.

For DR grading, we assessed the performance of DeepDR- 
Transformer for detecting early-to-late stages of DR, DME and refer-
able DR on the internal test dataset and 12 external test datasets with 
standard fundus images (NDSP, DRPS, WTHM, PUDM, CNDCS, GDES, 
CUHK-STDR, SEED, SiDRP, SN-DREAMS, TNDRSP and UKB). Moreover, 
we assessed the performance of DeepDR-Transformer for detecting 
referable DR on six external test datasets with portable fundus images 
(CPSSDRE, CPSSDRM, CPSSDRW, CPSSDRN, ADRS and UDRS).

Evaluation of DeepDR-Transformer as an assistive tool in 
identifying referable DR
In this retrospective evaluation, we enlisted three distinct study sites: 
Huadong Sanatorium in the urban area of Shanghai, China; The People’s 
Hospital of Sixian County in the rural area of Anhui Province, China; and 
Singapore National Eye Centre, Singapore. While the two study sites in 
China employed PCPs for DR grading, the Singapore study site utilized 
professional graders. At two study sites in China, we recruited 6 PCPs 
with different levels of experience in DR grading from each study site: 
2 PCPs under 2 years ( junior), 2 PCPs around 4 years (intermediate) 
and 2 PCPs over 6 years (senior), respectively. At the study site in Sin-
gapore, we recruited three graders with varying levels of experience 
in DR grading: one junior grader with under 2 years of experience, 
one intermediate grader with 4 years and one senior grader with over 
6 years of experience.

For the fundus images used in the study sites in China, 500 grada-
ble eyes of standard fundus images (250 nonreferable eyes and 250 
referable eyes) were randomly selected from six external test datasets 
(NDSP, DRPS, WTHM, PUDM, CNDCS and GDES), while 500 gradable 
eyes of portable fundus images (250 nonreferable eyes and 250 ref-
erable eyes) were randomly selected from six external test datasets 
(CPSSDRE, CPSSDRM, CPSSDRW, CPSSDRN, ADRS and UDRS). For the 
fundus images used in the study site in Singapore, 300 gradable eyes 
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of standard fundus images (150 nonreferable eyes and 150 referable 
eyes) were randomly selected from the SEED study. Referable DR was 
defined as moderate NPDR or worse, DME or both.

To evaluate the accuracy and time efficiency of detecting ref-
erable DR cases, we conducted a comparative analysis before and 
after the integration of the DeepDR-Transformer module into the 
grading process. Initially, all human experts (that is, PCPs or profes-
sional graders) determined the referability of cases without the aid of 
DeepDR-Transformer. After a washout period of 1 week to minimize 
recall bias, these experts reassessed the same cases, this time with the 
assistance of the DeepDR-Transformer module. To ensure the integrity 
of the evaluation, the sequence of the cases was randomized before 
each grading session.

Real-world prospective study
The real-world two-arm, prospective study was conducted in Huadong 
Sanatorium (affiliated to Shanghai Municipal Health Commission), 
which is a public medical institution integrating high-volume primary 
care and health examinations. The study aimed to investigate the 
impact of the DeepDR-LLM system on patient health outcomes, and sat-
isfaction of both patients and PCPs, when deployed into a high-volume 
primary care setting. This real-world prospective study was approved 
by the Ethics Committee of Huadong Sanatorium (2023-08, approved 
2 April 2023). The number of enrolled participants was estimated on 
the basis of the proportion of participants with diabetes and average 
visits per week in the study site, before the deployment of DeepDR-LLM.

The study design of the real-world prospective study is shown in 
Extended Data Fig. 3 (showing numbers of participants included in the 
outcome analysis), and the flow diagram illustrating the screening, 
selection, and management of study participants is shown in Sup-
plementary Fig. 2. In these 12 weeks, 20,124 participants attended the 
health examinations. They received medical history taking, physical 
examinations, laboratory tests and fundus examinations (Supple-
mentary Table 11). Among them, patients with diabetes and gradable 
fundus images (n = 1,994) were subsequently recruited and included 
in this study. Details of the inclusion and exclusion criteria are shown 
in Supplementary Section B. These participants were allocated into 
two arms (the unassisted PCP arm and the PCP+DeepDR-LLM arm) 
according to the visit time of the participant. The physician-involved 
integration mode of the DeepDR-LLM system was deployed in the 
PCP+DeepDR-LLM arm. Participants attending health examinations 
from 10 April 2023 to 21 May 2023 (first 6 weeks of evaluation period) 
were included in the unassisted PCP arm, while those from 22 May 
2023 to 2 July 2023 (later 6 weeks of evaluation period) were included 
in the PCP+DeepDR-LLM arm. In this study, a total of 12 PCPs were 
responsible for primary diabetes care management (Supplementary 
Table 12). In the unassisted PCP arm, based on examination results, 
PCPs gave management recommendations. In the PCP+DeepDR-LLM 
arm, the DeepDR-LLM system was integrated into the clinical work-
flow (Extended Data Fig. 4). Initially, PCPs gave management recom-
mendations independently. Then, the DeepDR-LLM system assisted 
PCPs in generating DR/DME diagnosis results and utilized DR/DME  
diagnosis results and patient information from the electronic 
health systems, including medical history, physical examinations 
and laboratory tests to automatically generate recommendations. 
Subsequently, PCPs edited and produced their final recommenda-
tions by taking DeepDR-LLM’s recommendations into account. In 
both arms, participants were given treatment advice for diabetes 
face to face by PCPs based on the above recommendations (details in  
Supplementary Section B).

These participants registered on the mobile follow-up platform 
deployed in the study site, which could reach the participants via 
instant messaging and collect information on their current condition of 
diabetes management using online questionnaires. They were followed 
up at 2 weeks and/or 4 weeks through the mobile follow-up platform. 

For all participants diagnosed as referable DR, they were contacted 
at the 2-week follow-up to check whether (and when) they attended 
appointments with an ophthalmologist. For all participants with newly 
diagnosed diabetes, they filled out a questionnaire investigating their 
status of diabetes management at baseline, 2-week follow-up and 
4-week follow-up (Extended Data Fig. 3). The questionnaire investi-
gated the frequency of blood glucose monitoring, physical therapy, 
nutrient therapy, drug therapy and cessation of drinking and smoking.

The post-deployment evaluation of management recommenda-
tions (ranking, quality and empathy) was conducted in substudies 
I and II of the PCP+DeepDR-LLM arm, which was provided by three 
consultant-level endocrinologists and participants. For participants, 
their opinions on three recommendations were collected at the 4-week 
follow-up. We collected opinions from 372 participants with newly 
diagnosed diabetes and/or referable DR (6 participants with both 
newly diagnosed diabetes and referable DR) in the PCP+DeepDR-LLM 
arm. Each of the three consultant-level endocrinologists was invited 
to evaluate all the cases. For each case, the PCP, DeepDR-LLM and 
PCP+DeepDR-LLM’s recommendations were anonymized and ran-
domly ordered. The endocrinologists and surveyed participants ranked 
these three recommendations and judged both ‘the quality of informa-
tion provided’ (very poor, poor, acceptable, good or very good) and 
‘the empathy or bedside manner provided’ (not empathetic, slightly 
empathetic, moderately empathetic, empathetic or very empathetic).

Furthermore, PCPs who used the DeepDR-LLM system in this 
real-world study were invited to complete a satisfaction questionnaire 
within two weeks after the conclusion of the study. The questionnaire 
included seven-item questions assessing these PCPs’ views regarding 
the integration of DeepDR-LLM into daily routine practice (Extended 
Data Table 6).

Statistical analysis
In the retrospective evaluation of the LLM module in both Eng-
lish and Chinese languages, the total score (defined as the sum of 
domain-specific scores) was calculated by summing the scores gained 
in three domains, ranging from 3 to 9 points. For ‘extent of inappro-
priate content’ and ‘extent of missing content’, 1 point was given for 
‘Present, substantial clinical significance’, 2 points for ‘Present, little 
clinical significance’ and 3 points for ‘None’. For ‘likelihood of possible 
harm’, 1 point was given for ‘High’, 2 points for ‘Medium’ and 3 points 
for ‘Low’. We compared the total scores of DeepDR-LLM, LLaMA, PCPs 
and endocrinology residents using the Friedman tests. Post-hoc pair-
wise comparisons were performed using the Wilcoxon signed-rank 
test. P values for multiple comparisons were adjusted using the  
Bonferroni method.

In the development and validation of the DeepDR-Transformer 
module, the performance of the image quality assessment and DR 
grading was measured by the AUCs generated by plotting sensitivity 
(true positive rate) versus 1 − specificity (false positive rate). The oper-
ating thresholds for sensitivity and specificity were selected using the 
Youden index. The performance of lesion segmentation was measured 
using the IoU and F score. Cluster-bootstrap, biased-corrected, asymp-
totic two-sided 95% confidence intervals (CIs) adjusted for clustering 
by patients were calculated and presented for proportions (sensitivity, 
specificity) and AUC, respectively22.

In the evaluation of DeepDR-Transformer as an assistive tool for 
PCPs and professional graders in identifying referable DR, the per-
formance was measured by sensitivity and specificity of detecting 
referable DR. The 95% CIs of the assessment time per eye were calcu-
lated using bootstrap methods. The assessment time before and after 
the DeepDR-Transformer assistance was compared using Wilcoxon 
signed-rank tests.

In the real-world prospective study, to compare the differences in 
outcomes at baseline, 2-week and 4-week follow-up among participants 
with newly diagnosed diabetes or referable DR between two arms, 
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we performed linear mixed models, logistic regression models, and 
linear regression models, adjusting for age, sex and baseline HbA1c. 
For post-deployment evaluation of management recommendations by 
both endocrinologists and participants, we reported the percentage 
of evaluators for their first-choice preference as well as the Clopper–
Pearson 95% CI. All hypotheses tested were two-sided, and a P value of 
less than 0.05 was considered statistically significant.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Individual-level patient data can be accessible with the informed con-
sent of the Data Management Committee from institutions and are not 
publicly available. Interested investigators can obtain and certify the 
data transfer agreement and submit requests to T.Y.W. (wongtienyin@
tsinghua.edu.cn). Investigators who consent to the terms of the data 
transfer agreement, including, but not limited to, the use of these 
data only for academic purposes, and to protect the confidentiality 
of the data and limit the possibility of identification of patients, will 
be granted access. Requests will be evaluated on a case-by-case basis 
within one month before receipt of a response. All data shared will be 
deidentified. For the reproduction of our algorithm code, we have also 
deposited a minimum dataset at Zenodo (https://doi.org/10.5281/ 
zenodo.11501225) (ref. 65), which is publicly available for scientific 
research and noncommercial use. Source data are provided with  
this paper.

Code availability
The code being used in the current study for developing the algorithm 
is provided via GitHub at https://github.com/DeepPros/DeepDR-LLM.
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Extended Data Fig. 1 | Schematic overview of the DeepDR-LLM system.  
a, Model architecture of the DeepDR-Transformer module. b, Model architecture 
of the LLM module. DME, diabetic macular edema; DR, diabetic retinopathy; 

NPDR, non-proliferative diabetic retinopathy; PDR, proliferative diabetic 
retinopathy; LLM, large language model; LoRA, Low-Rank Adaptation; MLP, 
Multi-Layer Perceptron.
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Extended Data Fig. 2 | Study design of head-to-head comparison on  
diabetic management recommendations between large language models 
(DeepDR-LLM and LLaMA) and clinicians in both English and Chinese 

languages. CNDCS, China National Diabetic Complications Study; PCP, primary 
care physician; ADA, American Diabetes Association; ICO, International Council 
of Ophthalmology.
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Extended Data Fig. 3 | Study design of the real-world, two-arm, prospective 
study. For patients in the unassisted PCP arm, ten patients were diagnosed 
with both newly diagnosed diabetes and referable DR. For patients in the 

PCP+DeepDR-LLM arm, six patients were diagnosed with both newly  
diagnosed diabetes and referable DR. PCP, primary care physician; DR,  
diabetic retinopathy.
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Extended Data Fig. 4 | Study design of the post-deployment evaluation 
of management recommendations’ quality and level of empathy. a, In 
the PCP + DeepDR-LLM arm, the DeepDR-LLM system was integrated into 
the clinical workflow. Initially, PCPs and DeepDR-LLM gave management 
recommendations independently. The recommendations given by DeepDR-
LLM was automatically generated from electronic health systems, by extracting 
and analyzing the fundus images, medical history, physical examinations, and 
laboratory tests. Subsequently, PCPs edited their recommendations in text form 

by taking DeepDR-LLM’s recommendations into account. b, For participants 
in the PCP + DeepDR-LLM arm, they filled out a questionnaire investigating 
their opinions on three recommendations at the 4-week follow-up. Evaluators, 
including endocrinologists and surveyed participants, ranked these three 
recommendations and judged both ‘the quality of information provided’ 
(very poor, poor, acceptable, good, or very good) and ‘the empathy or bedside 
manner provided’ (not empathetic, slightly empathetic, moderately empathetic, 
empathetic, and very empathetic).
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Extended Data Table 1 | Evaluation of DeepDR-Transformer as an assistive tool for China-based primary care physicians in 
detecting referable diabetic retinopathy from standard fundus images
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Extended Data Table 2 | Evaluation of DeepDR-Transformer as an assistive tool for Singapore-based professional graders in 
detecting referable diabetic retinopathy from standard fundus images
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Extended Data Table 3 | Evaluation of DeepDR-Transformer as an assistive tool for China-based primary care physicians in 
detecting referable diabetic retinopathy from portable fundus images
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Extended Data Table 4 | Baseline characteristics of participants with newly diagnosed diabetes or referable diabetic 
retinopathy in the real-world prospective study, categorized by the unassisted PCP and PCP+DeepDR-LLM arms

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-024-03139-8

Extended Data Table 5 | Comparative analysis of self-management behaviors in patients between the unassisted PCP arm 
and PCP+DeepDR-LLM arm in the real-world prospective study
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Extended Data Table 6 | Post-deployment assessment by primary care physicians using the DeepDR-LLM system
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