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Artificial intelligence guided screening for 
cardiomyopathies in an obstetric population: 
a pragmatic randomized clinical trial

Nigeria has the highest reported incidence of peripartum cardiomyopathy 
worldwide. This open-label, pragmatic clinical trial randomized pregnant 
and postpartum women to usual care or artificial intelligence (AI)-guided 
screening to assess its impact on the diagnosis left ventricular systolic 
dysfunction (LVSD) in the perinatal period. The study intervention included 
digital stethoscope recordings with point of-care AI predictions and a 
12-lead electrocardiogram with asynchronous AI predictions for LVSD. 
The primary end point was identification of LVSD during the study period. 
In the intervention arm, the primary end point was defined as the number 
of identified participants with LVSD as determined by a positive AI screen, 
confirmed by echocardiography. In the control arm, this was the number 
of participants with clinical recognition and documentation of LVSD on 
echocardiography in keeping with current standard of care. Participants 
in the intervention arm had a confirmatory echocardiogram at baseline 
for AI model validation. A total of 1,232 (616 in each arm) participants 
were randomized and 1,195 participants (587 intervention arm and 608 
control arm) completed the baseline visit at 6 hospitals in Nigeria between 
August 2022 and September 2023 with follow-up through May 2024. Using 
the AI-enabled digital stethoscope, the primary study end point was met 
with detection of 24 out of 587 (4.1%) versus 12 out of 608 (2.0%) patients 
with LVSD (intervention versus control odds ratio 2.12, 95% CI 1.05–4.27; 
P = 0.032). With the 12-lead AI-electrocardiogram model, the primary 
end point was detected in 20 out of 587 (3.4%) versus 12 out of 608 (2.0%) 
patients (odds ratio 1.75, 95% CI 0.85–3.62; P = 0.125). A similar direction of 
effect was observed in prespecified subgroup analysis. There were no serious 
adverse events related to study participation. In pregnant and postpartum 
women, AI-guided screening using a digital stethoscope improved the 
diagnosis of pregnancy-related cardiomyopathy. ClinicalTrials.gov 
registration: NCT05438576
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1,195 (587 in the intervention arm and 608 in the control arm) completed 
baseline assessments following randomization and were included in a 
modified intention-to-treat (mITT) analysis as prespecified in the study 
protocol with follow-up through 15 May 2024 (Fig. 1). For participants 
in the control arm, baseline assessments included performance of a 
12-lead ECG (with AI-based predictions for age and sex), and for those 
in the intervention arm, baseline assessments involved performance 
of a 12-lead ECG (with AI-based predictions for age, sex and LVSD), 
digital stethoscope recordings (with AI-based predictions for LVSD) 
and an echocardiogram at baseline (for validation of AI-based LVSD 
prediction results) (Fig. 2). To avoid inflating the detection rate for LVSD 
based on the protocolized echocardiogram at baseline in the interven-
tion arm, a positive AI screen was required to be present to count the 
echocardiogram findings for the purpose of the primary end point. 
Given in-built data quality checks embedded as part of the US Food and 
Drug Administration (FDA)-cleared 12-lead ECG and digital stethoscope 
AI algorithms, recorded data deemed to be of poor quality in relation 
to the AI prediction results were conservatively assumed to be negative 
predictions (n = 7 out of 587 and n = 7 out of 587 respectively).

Study participant characteristics are displayed in Table 1. The 
median age was 31 years and all women identified as Black. Fifty-five 
percent were of Yoruba ethnicity, 28% Hausa, 11% Igbo and 6% were 
from other ethnic groups. At baseline, 150 (12.5%) women had been 
diagnosed with a hypertensive disorder of pregnancy (which includes 
chronic hypertension, gestational hypertension, pre-eclampsia and 
eclampsia) during the index pregnancy.

Primary outcome
Digital stethoscope. At study entry in the mITT analysis set, 22 cases 
(3.7%) of LVSD (LVEF < 50%) were identified in the intervention arm 
(positive point-of-care AI prediction for LVSD, maximum prediction 
across all recording locations confirmed with echocardiography) com-
pared to 11 (1.8%) in the control arm; odds ratio 2.11, 95% CI 1.02–4.40; 
P = 0.041. At the study end, three additional LVSD cases were identified 
with two in the intervention arm and one in the control arm, resulting 
in a total of 24 cases (4.1%) of LVSD (LVEF < 50%) identified in the inter-
vention arm compared to 12 (2.0%) in the control arm; odds ratio 2.12, 

In the United States, cardiomyopathy is a leading cause of maternal mor-
tality and the number one cause of death in the postpartum period. Its 
incidence is estimated to be 1 in 2,000 (refs. 1,2) and as high as 1 in ~700 
among African American women with milder forms likely going unde-
tected in the absence of screening2. In Nigeria, the incidence is reported to 
be 1 in 96 deliveries3,4, the highest reported worldwide5. Cardiomyopathy 
occurring during pregnancy and postpartum is challenging to diagnose 
due to similarities between heart failure symptoms and those related to 
physiologic changes of pregnancy6,7. This leads to a delay in diagnosis and 
consequently, adverse maternal outcomes6. While cardiomyopathy can 
occur de novo during pregnancy, hemodynamic changes of pregnancy 
can also unmask previously undiagnosed or asymptomatic LVSD8.

AI-enabled electrocardiograms (ECGs) have shown effective-
ness in identifying multiple cardiovascular pathologies9–12, including 
detection of low left ventricular ejection fraction (LVEF)13,14. A retro-
spective study (area under the curve (AUC) = 0.89)15 and a pilot pro-
spective study among pregnant and postpartum women in the United 
States showed AI-based screening to be effective (AUC = 1.00 using 
a 12-lead ECG and 0.98 using a digital stethoscope)16 in identifying 
pregnancy-related LVSD with LVEF < 45%. Other retrospective stud-
ies in the United States and the Republic of Korea have also shown 
good performance of separate AI-ECG models for detecting perinatal 
LVSD17,18. Based on these previous studies, we surmised that this new 
technology has the potential to enhance screening and identifica-
tion of LVSD in the peripartum period; however, it remains unknown 
whether AI-guided screening improves cardiomyopathy detection 
in obstetric patients beyond the current standard of care. To address 
this question, we conducted an open-label, randomized, pragmatic 
clinical trial among pregnant and postpartum women to evaluate 
whether AI-guided screening (using a digital stethoscope and 12-lead 
ECG) improves the diagnosis of pregnancy-related LVSD in an obstetric 
population in Nigeria compared to usual care.

Results
Sample characteristics
A total of 1,232 participants were randomized and enrolled between 15 
August 2022 and 28 September 2023 across six sites in Nigeria. Of these, 

Participants consented (n = 1,232)

Randomized (n = 1,232)

Allocated to intervention arm (n = 616) Allocated to control arm (n = 616)

Excluded (n = 29)
• Not eligible (n = 2)
• Echocardiogram not completed (n = 11)
• Digital stethoscope and echocardiogram not completed (n = 8)
• 12­lead ECG and digital stethoscope not completed (n = 1)
• 12­lead ECG not completed (n = 1)
• 12­lead ECG, digital stethoscope, and echocardiogram not completed (n = 1)
• Withdrew (n = 4)
• Died (n = 1)

Excluded (n = 8)
• Not eligible (n = 1)
• 12­lead ECG not completed (n = 4)
• Withdrew (n = 2)
• Died (n = 1)

Analyzed (n = 608)Analyzed (n = 587)

Fig. 1 | Consort diagram. This diagram shows study participant flow in the screening for peripartum cardiomyopathies in Nigeria study (SPEC-AI Nigeria).
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95% CI 1.05–4.27; P = 0.032 (Table 2). The estimated number needed to 
screen (NNS) to detect one additional case of LVSD was 47.

The 36 cases of LVSD were primarily from the northern region of 
Nigeria (86%, 31 out of 36). As a sensitivity analysis, the primary end 
point was analyzed with adjustment for site. This analysis yielded con-
sistent results; odds ratio 2.25, 95% CI 1.09–4.66; P = 0.029. To address 
the potential limitation of the mITT analysis, a full intention-to-treat 
(ITT) analysis for the primary end point using the digital stethoscope 
was conducted to include all 1,232 individuals randomized. To be con-
servative, all initially excluded patients were included and assumed 
to have normal LVEF. The point estimate for the intervention effect 
remained stable and statistically significant for the primary outcome 
measured over the 18-month study period showing an unadjusted odds 
ratio of 2.04 (95% CI 1.01–4.12, P = 0.042) and site-adjusted odds ratio 
of 2.13 (95% CI 1.03–4.41, P = 0.041).

12-lead ECG. US FDA-cleared AI-ECG algorithm. At study entry, 18 cases 
(3.1%) of LVSD (LVEF < 50%) were identified in the intervention arm 
(positive 12-lead ECG AI prediction for LVSD, confirmed with echocar-
diography) compared to 11 (1.8%) in the control arm; odds ratio 1.72, 
95% CI 0.80–3.67; P = 0.158. At the study end, three additional LVSD 
cases were identified with two in the intervention arm and one in the 
control arm, resulting in a total of 20 cases (3.4%) of LVSD (LVEF < 50%) 
identified in the intervention arm compared to 12 (2.0%) in the control 
arm; odds ratio 1.75, 95% CI 0.85–3.62; P = 0.125 (Table 2). Although 
a numerically higher number of LVSD cases were identified with the 
12-lead AI-ECG screening, this did not reach statistical significance.

Original Mayo Clinic AI-ECG algorithm. At study entry, 14 cases (2.4%) 
of LVSD (LVEF < 50%) were identified in the intervention arm (positive 
12-lead AI-ECG prediction for LVSD, confirmed with echocardiogra-
phy) compared to 11 (1.8%) in the control arm; odds ratio 1.33, 95% CI 
0.60–2.94; P = 0.487. At the study end, five additional LVSD cases were 
identified with four in the intervention arm and one in the control arm 
resulting in a total of 18 cases (3.1%) of LVSD (LVEF < 50%) identified 
in the intervention arm compared to 12 (2.0%) in the control arm; 
odds ratio 1.57, 95% CI 0.75–3.29; P = 0.227 (Table 2). Similar to the 

US FDA-cleared model, a numerically higher number of LVSD cases 
were identified with this AI model but this did not reach statistical 
significance.

Secondary outcomes
Digital stethoscope performance by subgroups. Evaluation of the 
primary outcome within prespecified subgroups were consistent with 
a tendency toward improved detection of LVSD in the intervention 
arm compared to the control arm across all prespecified subgroups 
(age group, ethnicity, region, presence of hypertensive disorders and 
pregnancy/postpartum status). A summary figure is provided in Fig. 3a.

12-Lead ECG performance by subgroups. Subgroup analysis using 
the US FDA-cleared 12-lead AI-ECG algorithm also showed consistent 
results across the prespecified subgroups except for age group, where 
the odds ratio for identifying LVSD among those younger than 30 
years was 0.9 (95% CI 0.4–2.5) and 4.2 (95% CI 1.2–15.0) for those aged 
30 years and older (Fig. 3b). This may suggest improved performance 
of the model in older compared to younger patients. We also provide 
a summary figure for the subgroup analysis using the original Mayo 
Clinic 12-lead AI-ECG algorithm (Fig. 3c) and the direction of effect was 
in keeping with the US FDA-cleared 12-lead AI-ECG algorithm.

Effectiveness of the AI-stethoscope for LVSD detection. Among 
participants in the intervention arm, the digital stethoscope (maximum 
prediction across all locations recorded) had an AUC of 0.976 (95% CI 
0.953–0.998) for detection of LVEF < 50%, whereas for detection of 
LVEF < 40%, AUC was 0.985 (95% CI 0.974–0.996) using the diagnostic 
quality recordings (Supplementary Fig. 1). Table 3 provides a com-
prehensive examination of the diagnostic performance of the digital 
stethoscope AI model across the various recording locations and a 
range of ejection fraction thresholds at study entry for only the diag-
nostic quality recordings. Supplementary Table 1 provides a sensitivity 
analysis for the digital stethoscope’s diagnostic performance results, 
including the recordings identified by the software as being of poor 
quality. Of note, only one case of LVSD identified on echocardiography 
(n = 23) was incorrectly classified, corresponding to a sensitivity of 

Control arm

Intervention arm

Postpartum

Delivery Study end

Visit 
2

Visit 
3

Visit 
4

Visit 
5

Visit 
6

Visit 
7

• 12-lead ECG + usual care
• AI-based age and sex prediction

• 12-lead ECG + digital stethoscope recording 
• AI-based age and sex prediction
• AI-based LVSD prediction
• Echocardiogram at baseline

Study procedures

Randomization

Pregnant

Visit 
1*

Follow-up
Study entryIntervention

Control 

Pregnant 
and 
postpartum 
women

+

+

Fig. 2 | Summary of study design. This figure summarizes the study design, 
interventions, study-related visits and key study procedures. Participants  
could enter the study at any time point during pregnancy or postpartum (up to  
12 months). As such, each individual participant could have up to seven visits 
if they enter the study in the first trimester of pregnancy and fewer depending 
on the time of study entry. AI-based screening was performed up to seven times 
during the study period, including during each trimester of pregnancy (first 
trimester, <14 weeks; second trimester, 14 to <28 weeks; and third trimester,  
28 to <42 weeks and post-term) (up to three ECGs), between delivery and 6 weeks, 

between 6 weeks and 3 months, between 3 and 5 months, and between 5 and  
12 months postpartum (up to four ECGs). Only participants in the intervention 
arm had a baseline echocardiogram as well as a simultaneous portable ECG 
recorded at each time point. AI-based prediction for LVSD using the digital 
stethoscope was available in real time at the point of care and 12-lead AI-ECG 
predictions for LVSD were provided asynchronously, usually within 1 week of ECG 
acquisition. *, visit 1 can vary for each participant depending on the time point at 
study entry in relation to delivery.
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95.7% (22 out of 23) based on the maximum AI prediction in all record-
ing locations. We also noted some differences in performance based on 
recording location (angled, V2 or handheld) with the highest individual 
performance for detection of LVEF < 50% across all metrics seen in the 
angled position (Table 3). While using the maximum prediction (any 
positive screen across all recording locations) increased sensitivity 
for detection of LVEF < 50%, this resulted in a decrease in the posi-
tive predictive value. Between the angled and maximum prediction, 
the positive predictive value was lowered from 30.8% to 18.0% while 
increasing the sensitivity from 87.0% to 95.7%. The false positive rate 
was also higher for the maximum prediction (100 out of 580, 17%) 
compared to the angled position (45 out of 562, 8%).

Effectiveness of the 12-lead AI-ECG for LVSD detection. Among 
participants in the intervention arm, the US FDA-cleared 12-lead AI-ECG 
algorithm had an AUC of 0.928 (95% CI 0.875–0.981) for detection of 
LVEF < 50%, whereas for detection of LVEF < 40%, the AUC was 0.928 
(95% CI 0.865–0.990; Supplementary Fig. 2). Table 3 shows the diag-
nostic performance of the US FDA-cleared 12-lead AI-ECG model and 
the original Mayo Clinic 12-lead AI-ECG model results across a range of 
ejection fraction thresholds. For the original Mayo Clinic 12-lead AI-ECG 
model, the AUC values were 0.892 (95% CI 0.825–0.960) and 0.921 (95% 
CI 0.864–0.979) for detection of LVEF < 50% and <40%, respectively 
(Supplementary Fig. 3).

Other prespecified (exploratory) outcomes
A summary of other prespecified (exploratory) outcomes is shown in 
Table 2. There was no statistically significant difference in the num-
ber of composite adverse outcomes between groups (100 out of 587 
versus 104 out of 608, OR 1.00, 95% CI 0.74–1.35 P = 0.976). Composite 
adverse outcomes include systolic heart failure, diastolic heart failure, 
gestational hypertension, pre-eclampsia, eclampsia, gestational dia-
betes, valvular heart disease, atrial arrhythmias, sustained ventricular 
arrhythmias and any other reported pregnancy-related complication. 
We also found no statistically significant difference in the number 
of composite adverse cardiovascular outcomes between groups  
(56 out of 587 versus 53 out of 608, OR 1.10, 95% CI 0.74–1.64, P = 0.621). 
Composite adverse cardiovascular outcomes include diastolic heart 
failure, gestational hypertension, pre-eclampsia, eclampsia, valvular 
heart disease, atrial arrhythmias and sustained ventricular arrhythmias.

There were 15 (1.3%) deaths (all-cause mortality) in the overall 
study cohort, 12 out of 587 (2%) in the intervention arm and 3 out of 
608 (0.5%) in the control arm (hazard ratio 4.20, 95% CI 1.18–14.87). Of 
these, 5 out of 12 (42%) in the intervention arm and 3 out of 3 (100%) 
in the control arm were attributed to cardiovascular causes, show-
ing a numerically higher but a statistically insignificant difference in 
CVD-related mortality between the two groups (hazard ratio 1.75, 95% 
CI 0.42–7.33) (Table 2).

Safety. There were no serious adverse events reported in relation to 
study participation as defined in the study protocol (Supplementary 
Information). Five participants reported skin irritation due to place-
ment of adhesive ECG electrodes on the skin, one in the intervention 
arm and four in the control arm.

Discussion
The SPEC-AI Nigeria randomized trial evaluated AI-guided screening 
(using a digital stethoscope and standard 12-lead ECG) compared to a 
control group among pregnant and postpartum women in Nigeria and 
showed: (1) AI-guided screening with a digital stethoscope doubled 
the diagnosis of pregnancy-related cardiomyopathy when compared 
to usual obstetric care, identifying women who may have otherwise 
remained undiagnosed with this condition. (2) We demonstrate a high 
prevalence of LVSD, in an obstetric population in Nigeria that sup-
ports the need for screening. (3) We found that an AI-enabled digital 

Table 1 | Demographic and clinical characteristics of the 
study sample at baseline

Characteristic n Median (Q1– Q3) or  
n (%) of patients

Intervention 
arm (n = 587)

Control arm 
(n = 608)

Age, years 1,195 31 (27–35) 31 (26–35)

Race (Black) 1,195 587 (100.0%) 608 (100.0%)

Ethnicity 1,195

  Hausa 163 (27.8%) 174 (28.6%)

  Igbo 61 (10.4%) 68 (11.2%)

  Other 35 (6.0%) 41 (6.7%)

  Yoruba 328 (55.9%) 325 (53.5%)

Status at entry 1,195

  Pregnant 423 (72.1%) 451 (74.2%)

  Postpartum 164 (27.9%) 157 (25.8%)

Time point of pregnancy/ 
postpartum

1,195

  First trimester 37 (6.3%) 50 (8.2%)

  Second trimester 150 (25.6%) 173 (28.5%)

  Third trimester 238 (40.5%) 229 (37.7%)

 � Time of delivery or up to 6 weeks 
after delivery

116 (19.8%) 132 (21.7%)

 � Greater than 6 weeks and up to  
3 months after delivery

23 (3.9%) 9 (1.5%)

 � Greater than 3 months and up to  
5 months after delivery

7 (1.2%) 7 (1.2%)

 � Greater than 5 months and up to  
12 months after delivery

16 (2.7%) 8 (1.3%)

Weight, kg 1,195 70 (60–81) 70 (60–83)

Height, cm 1,195 161 (157–165) 161 (157–165)

Systolic blood pressure, mm Hg 1,194 110 (100–120) 110 (100–120)

Diastolic blood pressure, mm Hg 1,195 70 (60–80) 70 (60–80)

Resting heart rate, bpm 1,195 87 (80–95) 88 (80–95)

Hemoglobin (g dl−1) 1,046 11 (10–12) 11 (10–12)

Hematocrit (%) 1,088 33 (30–35) 33 (30–35)

Blood type 1,134

  A 98 (17.7%) 90 (15.5%)

  B 106 (19.2%) 120 (20.7%)

  AB 29 (5.2%) 28 (4.8%)

  O 320 (57.9%) 343 (59.0%)

Hemoglobin genotype 1,136

  AA 402 (72.7%) 436 (74.8%)

  AS 131 (23.7%) 124 (21.3%)

  SS 5 (0.9%) 9 (1.5%)

  Sc 1 (0.2%) 4 (0.7%)

  Other 14 (2.5%) 10 (1.7%)

Infectious screen

  HIV 1,195 7 (1.2%) 6 (1.0%)

  Hepatitis C 1,195 3 (0.5%) 7 (1.2%)

  Syphilis 1,195 4 (0.7%) 3 (0.5%)

  Hepatitis B 1,195 9 (1.5%) 6 (1.0%)

Urinalysis positive for protein 1,154 61 (10.8%) 64 (10.9%)

HIV, human immunodeficiency virus.
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stethoscope that analyzes single-lead ECG and phonocardiogram 
recordings, as well as an AI-enabled 12-lead ECG detected the pres-
ence of cardiomyopathy with high sensitivity, specificity and negative 
predictive value. Only one case of LVSD was incorrectly classified by 
the digital stethoscope at study entry.

We completed a large prospective trial evaluating an AI-guided 
intervention for cardiomyopathy screening in an obstetric population 
and the results are consistent with findings from a pilot, prospective 
study conducted by members of our team in a sample of 100 pregnant 
and postpartum individuals and the EAGLE trial, which evaluated an 
AI-enabled 12-lead ECG in the primary care patient population. In the 
pilot prospective study, we showed that an AI-enabled 12-lead ECG 
had perfect discrimination for detection of LVEF < 50% and the digital 
stethoscope had an AUC of 0.97 with 100% sensitivity16. The EAGLE 
trial showed that AI-guided screening, using a standard 12-lead ECG, 
improved the detection of asymptomatic LVSD with a 32% increase in 
the odds of detection14, whereas our study showed a doubling of the 
odds of LVSD detection. A large, prospective observational study in 
the United Kingdom has also demonstrated the effectiveness of an 
AI-enabled digital stethoscope in detecting LVSD at the point of care 
in a primary care population19 and small, prospective US-based studies 
showed similar effectiveness16,20. The key advantages of this screening 
modality in a low-to-middle-income country such as Nigeria include the 
following: portability of equipment (allowing it to be transported easily 
across clinical locations and settings), battery-powered (so it does not 

rely on availability of a stable electric power supply), enclosed system 
(reduced likelihood of electromagnetic interference on recorded ECG 
signals) and real-time availability of AI predictions at the point of care. 
It also has the potential to improve risk stratification before cardiology 
referral given the shortage of cardiovascular specialists in the country; 
as of 2023, there were approximately 450 cardiologists in Nigeria in a 
population of 213.4 million people21.

We show in this study, that the NNS to identify one new case of 
perinatal LVSD is 47. Taken in context with other studies in the obstetric 
population, the NNS to prevent one case of preterm pre-eclampsia 
using the Fetal Medicine Foundation triple test is 250 (ref. 22), the NNS 
to prevent one case of postpartum depression using the Edinburgh 
Postnatal Depression Scale is 25 (ref. 23), the NNS to detect one addi-
tional case of severe congenital heart disease using fetal echocardiog-
raphy is 436 (ref. 24) and the NNS to detect one spontaneous preterm 
delivery using cervical length measured with transvaginal ultrasound 
ranges from 161 to 1,018 for high- and low-risk pregnancies, respec-
tively25. This emphasizes the powerful benefit of using AI for LVSD 
screening in this population. The result of this study also validates the 
effectiveness of the AI-enabled digital stethoscope and 12-lead ECG for 
cardiomyopathy screening in pregnancy, postpartum, a predominantly 
Black population and in low-resource obstetric settings and supports 
the hypothesis that digital technologies have the potential to narrow 
the disparity gap in cardiovascular care.

The maternal mortality ratio unfortunately remains very high in 
Nigeria (estimated at 1,047 per 100,000 live births in 2020) and in many 
low-to-middle-income countries26. Nigeria had the highest number 
of maternal deaths in 2020 (approximately 82,000), accounting for 
28.5% of all global maternal deaths26. In the current study, the observed 
mortality rate was 1.3% and 53% of these were from cardiovascular 
causes; however, the study sample is not necessarily representative 
of the broader obstetric population. In Nigeria, the high maternal 
mortality is attributed to inadequate access to timely and affordable 
health services. Despite these challenges, the availability and uptake 
of mobile and smart phone technologies has grown exponentially. In 
fact, Nigeria and Ethiopia are estimated to become the fastest growing 
economies for mobile phone and mobile internet technology in Africa 
by 2025 (ref. 27). This highlights an opportunity to leverage digital 
and mobile technologies to transform healthcare in Nigeria and other 
African countries.

Peripartum cardiomyopathy, a unique form of pregnancy-related 
LVSD believed to occur de novo in late pregnancy and the early postpar-
tum period28, is a leading cause of maternal mortality particularly in the 
postpartum period29,30, and its true incidence remains unknown due to 
lack of routine screening2. Previously reported estimates from Nigeria 
note an incidence rate of ~1 in 100 live births. In this study, the total num-
ber of cardiomyopathy cases identified during an 18-month time frame 
was 37 out of 1,195 (3.1%), higher than previously reported, although this 
study did not attempt to exclude patients with previous diagnosis of 
peripartum cardiomyopathy or known LVSD before pregnancy. Studies 
have shown that delays in the diagnosis of cardiomyopathy during the 
peripartum period is associated with poorer outcomes6 as such, it is 
imperative that we are able to identify cardiac dysfunction early so that 
appropriate care can be initiated to reduce associated adverse maternal 
and infant outcomes. More recently, one study demonstrated increased 
risk of adverse outcomes in subsequent pregnancies among women 
with a previous history of peripartum cardiomyopathy31. This supports 
the need to screen women across the perinatal continuum, including 
before conception. A low-cost screening intervention for effective 
and early identification of pregnancy-related cardiomyopathy has the 
potential to reduce adverse maternal and infant outcomes given that 
these are closely linked32. In fact, maternal death is known to be a large 
driver of infant mortality with up to a 46-fold higher risk of infant death 
within the first month33. Although in the present study, we showed 
a significantly higher all-cause mortality (largely from renal failure, 

Table 2 | Primary and other prespecified outcomes

Outcome Intervention 
(n = 587)

Control 
(n = 608)

Effect estimate 
(95% CI)

P value

Primary outcome

 � AI-enabled digital 
stethoscope

24/587 12/608 2.12  
(1.05, 4.27)

0.032

 � AI-enabled 12-lead 
ECG (US FDA-cleared)

20/587 12/608 1.75  
(0.85, 3.62)

0.125

 � AI-enabled 12-lead 
ECG (Mayo model)

18/587 12/608 1.57  
(0.75, 3.29)

0.227

Other prespecified (exploratory) outcomes

 � Composite adverse 
eventsa

100/587 104/608 1.00  
(0.74, 1.35)

0.975

 � Composite 
cardiovascular eventsb

56/587 53/608 1.10  
(0.74, 1.64)

0.621

  Diastolic heart failure 2/587 1/608 2.08  
(0.19, 22.95)

0.543

  Pre-eclampsia 21/587 19/608 1.15  
(0.61, 2.16)

0.664

  Eclampsia 6/587 4/608 1.56  
(0.44, 5.55)

0.490

 � Valvular heart diseasec 1/587 1/608 1.04  
(0.06, 16.60)

0.980

  All-cause mortalityd 12/587 3/608 4.20  
(1.18, 14.87)

0.026

 � Cardiovascular 
mortalityd

5/587 3/608 1.75  
(0.42, 7.33)

0.442

The odds ratio and 95% large sample CI was estimated using a logistic regression model 
and statistical significance was assessed with a Pearson chi-squared test at the α = 0.05 
level of significance (two-sided). No adjustments for multiple comparison were performed. 
aComposite adverse events include systolic heart failure, diastolic heart failure, heart 
failure hospitalization, any cardiomyopathy, hypertensive disorders of pregnancy, valvular 
heart disease, atrial arrhythmias, sustained ventricular arrhythmias and any other reported 
pregnancy-related complication. bComposite cardiovascular events include diastolic heart 
failure, gestational hypertension, pre-eclampsia, eclampsia, valvular heart disease, atrial 
arrhythmias and sustained ventricular arrhythmias. cThis captures clinically recognized 
valvular heart disease complicating pregnancy or a new diagnosis with clinical impact during 
index pregnancy. dCox-proportional hazards regression analysis was performed and hazard 
ratios are reported with 95% CI.
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Group

Region

n

Northern Nigeria

Overall

Southern Nigeria

Control arm

Age group

Intervention arm

30+ years

<30 years

Odds ratio

Ethnicity

Hausa

Other

Status at entry

Postpartum

Pregnant

HDP

Yes

No

Overall

395

800

673

522

337

858

321

874

143

1,052

1,195

31/395
7.8% (5.4%, 11.0%)

5/800
0.6% (0.2%, 1.5%)

15/673
2.2% (1.3%, 3.6%)

21/522
4.0% (2.5%, 6.1%)

27/337
8.0% (5.3%, 11.4%)

9/858
1.0% (0.5%, 2.0%)

32/321
10.0% (6.9%, 13.8%)

4/874
0.5% (0.1%, 1.2%)

6/143
4.2% (1.6%, 8.9%)

30/1,052
2.9% (1.9%, 4.0%)

36/1,195
3.0% (2.1%, 4.1%)

12/202
5.9% (3.1%, 10.1%)

0/406
0.0% (0.0%, 0.9%)

3/340
0.9% (0.2%, 2.6%)

9/268
3.4% (1.5%, 6.3%)

11/174
6.3% (3.2%, 11.0%)

1/434
0.2% (0.0%, 1.3%)

11/157
7.0% (3.5%, 12.2%)

1/451
0.2% (0.0%, 1.2%)

0/72
0.0% (0.0%, 5.0%)

12/536
2.2% (1.2%, 3.9%)

12/608
2.0% (1.0%, 3.4%)

19/193
9.8% (6.0%, 14.9%)

5/394
1.3% (0.4%, 2.9%)

12/333
3.6% (1.9%, 6.2%)

12/254
4.7% (2.5%, 8.1%)

16/163
9.8% (5.7%, 15.5%)

8/424
1.9% (0.8%, 3.7%)

21/164
12.8% (8.1%, 18.9%)

3/423
0.7% (0.1%, 2.1%)

6/71
8.5% (3.2%, 17.5%)

18/516
3.5% (2.1%, 5.5%)

24/587
4.1% (2.6%, 6.0%)

1.7 (0.8, 3.7)

11.5 (0.6, 208.3)

4.2 (1.2, 15.0)

1.4 (0.6, 3.4)

1.6 (0.7, 3.6)

8.3 (1.0, 66.9)

1.9 (0.9, 4.2)

3.2 (0.3, 31.0)

14.4 (0.8, 260.4)

1.6 (0.8, 3.3)

2.1 (1.0, 4.3)

0.1 1 10 100 1,000
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Southern Nigeria

Control arm

Age group

Intervention arm

30+ years
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Odds ratio

Ethnicity

Hausa

Other

Status at entry

Postpartum

Pregnant

HDP

Yes

No
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395
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874

143

1,052

1,195

27/395
6.8% (4.6%, 9.8%)

5/800
0.6% (0.2%, 1.5%)

15/673
2.2% (1.3%, 3.6%)

17/522
3.3% (1.9%, 5.2%)

24/337
7.1% (4.6%, 10.4%)

8/858
0.9% (0.4%, 1.8%)

28/321
8.7% (5.9%, 12.4%)

4/874
0.5% (0.1%, 1.2%)

3/143
2.1% (0.4%, 6.0%)

29/1,052
2.8% (1.9%, 3.9%)

32/1,195
2.7% (1.8%, 3.8%)

12/202
5.9% (3.1%, 10.1%)

0/406
0.0% (0.0%, 0.9%)

3/340
0.9% (0.2%, 2.6%)

9/268
3.4% (1.5%, 6.3%)
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1/434
0.2% (0.0%, 1.3%)

11/157
7.0% (3.5%, 12.2%)
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0.2% (0.0%, 1.2%)

0/72
0.0% (0.0%, 5.0%)

12/536
2.2% (1.2%, 3.9%)

12/608
2.0% (1.0%, 3.4%)

15/193
7.8% (4.4%, 12.5%)
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1.3% (0.4%, 2.9%)

12/333
3.6% (1.9%, 6.2%)

8/254
3.1% (1.4%, 6.1%)

13/163
8.0% (4.3%, 13.3%)

7/424
1.7% (0.7%, 3.4%)

17/164
10.4% (6.2%, 16.1%)

3/423
0.7% (0.1%, 2.1%)

3/71
4.2% (0.9%, 11.9%)

17/516
3.3% (1.9%, 5.2%)

20/587
3.4% (2.1%, 5.2%)

1.3 (0.6, 2.9)

11.5 (0.6, 208.3)

4.2 (1.2, 15.0)

0.9 (0.4, 2.5)

1.3 (0.6, 3.0)

7.3 (0.9, 59.3)

1.5 (0.7, 3.4)

3.2 (0.3, 31.0)

7.4 (0.4, 146.1)

1.5 (0.7, 3.1)
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3.0% (1.4%, 5.5%)

8/254
3.1% (1.4%, 6.1%)

11/163
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10.4% (6.2%, 16.1%)

1/423
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c

Fig. 3 | Forest plots showing primary outcome stratified by subgroups.  
a, Performance of the digital stethoscope. b, Performance of the US FDA-cleared 
12-lead AI-ECG algorithm. c, Performance of the original Mayo Clinic 12-lead 
AI-ECG algorithm in detecting the primary outcome within each prespecified 
subgroup. Data in the columns are presented as frequencies and percentages 
with 95% exact CI in parenthesis. The column with error bars represents odds 

ratio estimates depicted as a black dot and the error bar represents the large 
sample 95% CI around the odds ratio estimate. The odds ratios and 95% large 
sample CI were estimated using logistic regression. HDP, hypertensive disorder 
of pregnancy (includes chronic hypertension, gestational hypertension,  
pre-eclampsia and eclampsia).
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Table 3 | Secondary outcomes: AI-enabled digital stethoscope and 12-lead ECG performance in the intervention arm at 
study entry (n = 587)

Outcome Model 
(threshold)

n/N AUC Sensitivity Specificity Positive predictive 
value

Negative predictive 
value

LVEF ≤ 35%

Angled (0.43) 562/587 0.972  
(0.940, 1.000)

94.1% (71.3%, 99.9%) 
16/17

91.0% (88.3%, 93.3%) 
496/545

24.6% (14.8%, 36.9%) 
16/65

99.8% (98.9%, 100.0%) 
496/497

V2 (0.43) 564/587 0.960  
(0.927, 0.993)

93.8% (69.8%, 99.8%) 
15/16

87.4% (84.3%, 90.1%) 
479/548

17.9% (10.4%, 27.7%) 
15/84

99.8% (98.8%, 100.0%) 
479/480

Handheld 
(0.43)

556/587 0.973  
(0.953, 0.994)

66.7% (38.4%, 88.2%) 
10/15

96.9% (95.0%, 98.2%) 
524/541

37.0% (19.4%, 57.6%) 
10/27

99.1% (97.8%, 99.7%) 
524/529

Max prediction 
(0.43)

580/587 0.983  
(0.971, 0.996)

100.0% (80.5%, 100.0%) 
17/17

81.3% (77.9%, 84.5%) 
458/563

13.9% (8.3%, 21.4%) 
17/122

100.0% (99.2%, 100.0%) 
458/458

Mayo 12-lead 
(0.256)

587/587 0.919  
(0.855, 0.983)

41.2% (18.4%, 67.1%)  
7/17

97.9% (96.4%, 98.9%) 
558/570

36.8% (16.3%, 61.6%) 
7/19

98.2% (96.8%, 99.2%) 
558/568

Revised 12-lead 
(0.56)

580/587 0.957  
(0.904, 1.000)

85.7% (57.2%, 98.2%) 
12/14

96.8% (95.0%, 98.1%) 
548/566

40.0% (22.7%, 59.4%) 
12/30

99.6% (98.7%, 100.0%) 
548/550

LVEF < 40%

Angled (0.43) 562/587 0.976  
(0.949, 1.000)

95.0% (75.1%, 99.9%) 
19/20

91.5% (88.8%, 93.7%) 
496/542

29.2% (18.6%, 41.8%) 
19/65

99.8% (98.9%, 100.0%) 
496/497

V2 (0.43) 564/587 0.962  
(0.934, 0.990)

94.7% (74.0%, 99.9%) 
18/19

87.9% (84.9%, 90.5%) 
479/545

21.4% (13.2%, 31.7%) 
18/84

99.8% (98.8%, 100.0%) 
479/480

Handheld 
(0.43)

556/587 0.972  
(0.952, 0.992)

64.7% (38.3%, 85.8%) 
11/17

97.0% (95.2%, 98.3%) 
523/539

40.7% (22.4%, 61.2%) 
11/27

98.9% (97.5%, 99.6%) 
523/529

Max prediction 
(0.43)

580/587 0.985  
(0.974, 0.996)

100.0% (83.2%, 100.0%) 
20/20

81.8% (78.3%, 84.9%) 
458/560

16.4% (10.3%, 24.2%) 
20/122

100.0% (99.2%, 100.0%) 
458/458

Mayo 12-lead 
(0.256)

587/587 0.921  
(0.864, 0.979)

45.0% (23.1%, 68.5%) 
9/20

98.2% (96.8%, 99.2%) 
557/567

47.4% (24.4%, 71.1%) 
9/19

98.1% (96.6%, 99.0%) 
557/568

Revised 12-lead 
(0.56)

580/587 0.928  
(0.865, 0.990)

76.5% (50.1%, 93.2%) 
13/17

97.0% (95.2%, 98.2%) 
546/563

43.3% (25.5%, 62.6%) 
13/30

99.3% (98.1%, 99.8%) 
546/550

LVEF < 45%

Angled (0.43) 562/587 0.963  
(0.932, 0.995)

87.0% (66.4%, 97.2%) 
20/23

91.7% (89.0%, 93.8%) 
494/539

30.8% (19.9%, 43.4%) 
20/65

99.4% (98.2%, 99.9%) 
494/497

V2 (0.43) 564/587 0.960  
(0.933, 0.987)

90.9% (70.8%, 98.9%) 
20/22

88.2% (85.2%, 90.8%) 
478/542

23.8% (15.2%, 34.3%) 
20/84

99.6% (98.5%, 99.9%) 
478/480

Handheld 
(0.43)

556/587 0.943  
(0.905, 0.982)

55.0% (31.5%, 76.9%) 
11/20

97.0% (95.2%, 98.3%) 
520/536

40.7% (22.4%, 61.2%) 
11/27

98.3% (96.8%, 99.2%) 
520/529

Max prediction 
(0.43)

580/587 0.976  
(0.953, 0.998)

95.7% (78.1%, 99.9%) 
22/23

82.0% (78.6%, 85.1%) 
457/557

18.0% (11.7%, 26.0%) 
22/122

99.8% (98.8%, 100.0%) 
457/458

Mayo 12-lead 
(0.256)

587/587 0.892  
(0.825, 0.960)

43.5% (23.2%, 65.5%) 
10/23

98.4% (97.0%, 99.3%) 
555/564

52.6% (28.9%, 75.6%) 
10/19

97.7% (96.1%, 98.8%) 
555/568

Revised 12-lead 
(0.56)

580/587 0.928  
(0.875, 0.981)

70.0% (45.7%, 88.1%) 
14/20

97.1% (95.4%, 98.4%) 
544/560

46.7% (28.3%, 65.7%) 
14/30

98.9% (97.6%, 99.6%) 
544/550

LVEF < 50%

Angled (0.43) 562/587 0.963  
(0.932, 0.995)

87.0% (66.4%, 97.2%) 
20/23

91.7% (89.0%, 93.8%) 
494/539

30.8% (19.9%, 43.4%) 
20/65

99.4% (98.2%, 99.9%) 
494/497

V2 (0.43) 564/587 0.960  
(0.933, 0.987)

90.9% (70.8%, 98.9%) 
20/22

88.2% (85.2%, 90.8%) 
478/542

23.8% (15.2%, 34.3%) 
20/84

99.6% (98.5%, 99.9%) 
478/480

Handheld 
(0.43)

556/587 0.943  
(0.905, 0.982)

55.0% (31.5%, 76.9%) 
11/20

97.0% (95.2%, 98.3%) 
520/536

40.7% (22.4%, 61.2%) 
11/27

98.3% (96.8%, 99.2%) 
520/529

Max prediction 
(0.43)

580/587 0.976  
(0.953, 0.998)

95.7% (78.1%, 99.9%) 
22/23

82.0% (78.6%, 85.1%) 
457/557

18.0% (11.7%, 26.0%) 
22/122

99.8% (98.8%, 100.0%) 
457/458

Mayo 12-lead 
(0.256)

587/587 0.892  
(0.825, 0.960)

43.5% (23.2%, 65.5%) 
10/23

98.4% (97.0%, 99.3%) 
555/564

52.6% (28.9%, 75.6%) 
10/19

97.7% (96.1%, 98.8%) 
555/568

Revised 12-lead 
(0.56)

580/587 0.928  
(0.875, 0.981)

70.0% (45.7%, 88.1%) 
14/20

97.1% (95.4%, 98.4%) 
544/560

46.7% (28.3%, 65.7%) 
14/30

98.9% (97.6%, 99.6%) 
544/550

The results provided in this table are based on baseline assessments only where all participants in the intervention arm had a confirmatory echocardiogram carried out for validation of AI 
model performance. All results include ECGs/digital stethoscope recordings acquired on the same day as the echocardiogram. The angled, V2 and handheld models are based on the digital 
stethoscope recordings. The max prediction is derived as the maximum model output across the three recording positions (any positive prediction). The model and operating cutoff point 
of 0.43 were developed to detect an LVEF < 40%. If a specific recording position was not captured or was of insufficient quality to be analyzed, the corresponding AI prediction value was not 
included, resulting in a different effective sample size for each digital stethoscope recording location. The Mayo 12-lead model is the original Mayo Clinic LVEF model as reported in ref. 13. This 
model and operating point was trained to detect LVEF ≤ 35% at an operating cutoff point of 0.256. This model does not include any quality checks on the algorithm and provides a result for all 
available ECGs (n = 587). The revised 12-lead model is based on a modified version of original Mayo Clinic LVEF model (US FDA-cleared version), trained to detect an LVEF < 40% at an operating 
cutoff point of 0.56. This model had an in-built ECG data quality check. ECGs deemed to be of insufficient quality were thus not analyzed and a corresponding AI prediction was not generated 
resulting in an effective sample size of n = 580.
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infections or other unknown causes) in the screening arm compared to 
the control arm. Cardiovascular mortality was also numerically higher 
(5 versus 3) in the intervention arm but this did not reach statistical 
significance. The screening intervention was not tailored to influence 
physician practice or clinical care plans and treatment recommenda-
tions were at the discretion of the managing physician. As such, the 
direct impact of AI screening on treatment interventions, healthcare 
costs and utilization, mortality and other clinical outcomes will require 
further exploration and additional studies. Potential explanations or 
hypothesis for the observed higher mortality in the intervention arm 
include (1) a differential observation of mortality in the intervention 
arm due to increased contact with healthcare services, particularly 
among those diagnosed with cardiomyopathy who were referred for 
cardiovascular care. (2) Mortality ascertainment in this study may 
be prone to error as there are no national death registries and so this 
involved medical record review for in-hospital mortality (6 out of 15, 
40% of reported deaths; 4 in the intervention arm and 2 in the control 
arm) and contacting patients and relatives via phone (9 out of 15, 60% 
of reported deaths). Cultural norms and practices related to providing 
news of death to unknown or unfamiliar parties may have impacted 
the reporting of death status by relatives to the study staff. Although 
the rates of attrition in the study were similar across study groups, 
the differential reporting of mortality status may be different in the 
control arm, which may not have had as much of a relationship with 
the study teams due to limited interactions and study-related testing, 
whereas those in the intervention arm likely developed a closer rela-
tionship with members of the study teams due to additional testing 
as well as increased interactions with the cardiology teams following 
the detection of LVSD.

Nevertheless, the use of AI-guided screening as an initial step has 
the potential not only to improve cardio-obstetric clinical care but 
also provides a huge opportunity for large population-based studies 
to assess the incidence and prevalence of cardiac dysfunction in the 
peripartum period in a safe manner.

The key strengths of this study include a large sample size and the 
enrollment of a predominantly Black, ethnically and regionally diverse 
obstetric population in Nigeria. The study results are based on the mITT 
analysis as specified in the statistical analysis plan. This approach was 
deemed reasonable as not obtaining the testing required to generate 
the associated AI prediction limits the ability to obtain or interpret a 
confirmatory echocardiogram in the intervention arm. In addition, we 
evaluated an ITT approach for the primary end point analysis using the 
digital stethoscope and demonstrated that an ITT analysis would not 
alter the study results and conclusions.

The key limitations of this study were introduced by the pragmatic 
clinical trial design and enrolling study participants at teaching hos-
pitals with a licensed cardiologist and echocardiography capabilities. 
Two-thirds of study participants (66%) were either in the third trimester 
or postpartum at the time of study entry. While this represents the 
time frame at which peripartum cardiomyopathy is likely to develop, 
it limits the number of follow-up visits that the participants would be 
expected to receive as part of their routine clinical care. Only 61% of 
participants completed a second study visit, with rapidly decreasing 
percentages through the seventh visit. This attrition is due to a combi-
nation of factors, including variation in pregnancy time point at study 
entry, frequency of scheduled routine care visits postpartum and loss 
to follow-up. The trial was also designed to allow for up to seven visits 
and as such, it did not require completion of all seven visits to be com-
pliant as would be expected in a standard explanatory clinical trial34. 
The limited follow-up resulted in similarity in the primary end point 
(detection over 18 months) compared to the baseline detection rates, 
as shown in the results.

Regarding the limitation of potential referral bias due to inclusion 
of hospital systems that had echocardiography capabilities, LVSD prev-
alence seen at these tertiary centers may not be reflective of the general 

obstetric patient population in Nigeria. Also, the actual frequency of 
LVSD in the control arm remains unknown, as echocardiograms were 
only performed in this group at the discretion of the managing physi-
cian. Although it is assumed that the distribution of LVSD is likely to be 
similar due to randomization, this was supported by a similar distribu-
tion of positive 12-lead AI-ECG predictions for LVSD, based on the US 
FDA-cleared algorithm, in the intervention and control arm (analyzed 
following study completion), 5.2% versus 7.3% respectively (P = 0.136); 
however, this cannot be confirmed as echocardiograms were not man-
dated among all participants in the control arm but only performed at 
the discretion of the managing physician (a disadvantage of the trial 
design). In addition, we are unable to estimate the potential impact of 
out-of-pocket costs on obtaining an echocardiogram in the control arm 
and the socioeconomic status of individual study participants was not 
assessed as part of the study. As such, not receiving an echocardiogram 
in the control arm may be influenced by a combination of (1) not being 
considered clinically necessary by the managing physician; (2) LVSD 
was suspected but an echocardiogram was not performed due to an 
out-of-pocket cost to the patient; or (3) the need to return to the clinic 
for an echocardiogram if it was recommended.

Finally, an important limitation in the design of this study was the 
selected cutoff for determination of the primary outcome, where LVSD 
was defined as LVEF < 50%. This did not exactly match categorizations 
used during model derivation. In particular, the original 12-lead model 
developed by the Mayo Clinic was trained to detect LVEF ≤ 35% (ref. 13) 
and this model was retrained to detect LVEF < 40% (US FDA-cleared ver-
sion)35 and again retrained using single leads to detect LVEF < 40% for 
use with the Eko digital stethoscope36. Table 3 shows a general pattern of 
results that model performance was improved with closer alignment of 
the study’s LVSD categorization with the original model specifications.

We demonstrate in this study, the differential impact of the different  
AI algorithms used on LVSD detection rates in an obstetric patient 
population. Although all AI models had very good AUC values (values 
of 0.872 for the original Mayo Clinic 12-lead AI-ECG model, 0.923 for the 
US FDA-cleared 12-lead AI-ECG model, and 0.975 for the digital stetho-
scope model for detection of LVEF < 50%), we see variations in specific 
diagnostic performance metrics based on the preselected thresholds 
at model derivation, particularly sensitivity. These findings suggest 
that it might be important to carefully evaluate AI models in specific 
patient populations before deployment and considerations made for 
possible fine-tuning of the predetermined thresholds to suit specific 
patient populations and clinical environments.

In conclusion, among pregnant and postpartum women, AI-guided 
screening with the use of a digital stethoscope was associated with 
an increase in the diagnosis of cardiomyopathy associated with 
LVSD compared to usual care. This intervention has the potential to 
improve cardio-obstetric care by reducing delays in the diagnosis of a 
life-threatening but treatable condition.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41591-024-03243-9.
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Methods
Trial design and oversight
The Screening for PEripartum Cardiomyopathies with Artificial Intel-
ligence in Nigeria (SPEC-AI Nigeria) trial was an investigator-initiated, 
pragmatic, multicenter, open label, randomized clinical trial in Nigeria 
designed to evaluate AI-guided ECG-based screening compared to clini-
cal ECGs alone (control) in identifying cardiomyopathy associated with 
LVSD among pregnant and postpartum women receiving obstetric care. 
The study was approved by the Mayo Clinic institutional review board 
as well as local ethics research committees at all participating sites in 
Nigeria. The trial was registered before study start (ClinicalTrials.gov 
registration number NCT05438576). Details of the trial design and 
methods have been previously published37 and the study protocol is 
provided in the Supplementary Information. The CONSORT-AI Exten-
sion38 guideline was utilized in reporting study design and results.

This trial was funded by the Mayo Clinic (Centers for Digital Health 
and Community Health and Engagement Research) and in part by the 
Mayo Clinic Building Interdisciplinary Research Careers in Women’s 
Health (BIRCWH) Program funded by the National Institutes of Health 
(NIH) (grant no. K12 AR084222) and the Mayo Clinic’s Center for Clinical 
and Translational Sciences (grant no. UL1 TR002377). Portable ECGs, 
phonocardiogram recordings and AI predictions using the Eko DUO 
digital stethoscope were extracted by the Eko Health team and sent to 
the coordinating center for analysis. The 12-lead ECGs were analyzed 
using proprietary low ejection fraction AI-ECG algorithms13,35. The US 
FDA-cleared 12-lead AI-ECG algorithm and digital stethoscope AI algo-
rithm had in-built ECG data quality checks35,36. All authors participated 
in data interpretation and paper review for intellectual content.

Study participants
Inclusion criteria were female, aged 18–49 years, pregnant or within 
12 months postpartum, and currently receiving obstetric care (pre-
natal and postpartum) at six participating hospitals in Nigeria: Aminu 
Kano Teaching Hospital, Lagos University Teaching Hospital, Olabisi 
Onabanjo University Teaching Hospital, Rasheed Shekoni Specialist 
Hospital, University College Hospital Ibadan and University of Ilorin 
Teaching Hospital (Supplementary Fig. 4). Study participant age and 
sex were confirmed by self-report at the time of screening and enroll-
ment. All participating sites had a licensed cardiologist (at least two at 
each site) and echocardiography capabilities to ensure that access to 
a cardiovascular specialist and echocardiograms was available to all 
study participants at the discretion of the managing physician.

Exclusion criteria were complex congenital heart disease (single 
ventricle physiology or substantial intracardiac shunts with cardiac 
structural abnormalities), notable cardiac conduction abnormalities 
(including but not limited to complete heart block and or presence 
of a pacemaker) and inability to provide informed consent. All study 
participants provided written or oral informed consent in accordance 
with local ethics research committee approvals.

Randomization
Following informed consent, study participants were randomized in a 
1:1 fashion to either AI-guided screening for cardiomyopathy (interven-
tion arm) or a standard 12-lead clinical ECG in addition to usual care as 
dictated by the managing physician (control arm). Randomization was 
performed in real time using dynamic minimization with the study site 
as a stratification factor, through a web-based application (iMedidata).

Trial procedures
All study participants had a standard 12-lead ECG performed at the 
time of enrollment and AI predictions were generated for age and sex 
estimation and provided to the study teams following receipt of digital 
ECG files (asynchronously, and not at point of care). The control arm 
received standard 12-lead ECGs and AI predictions for age and sex39 
(attention control) to control for the potential benefit that getting a 

clinical ECG test might introduce to the study. Those assigned to the 
intervention arm received in addition, portable ECGs recorded with 
a digital stethoscope with binary AI predictions for LVSD (positive 
or negative), 12-lead AI-ECG binary prediction for LVSD (positive or 
negative), as well as a confirmatory echocardiogram at baseline for 
validation of AI model performance.

The digital stethoscope was used to record 15-s ECGs and pho-
nocardiograms in two locations on the chest: V2 (placed vertically at 
the left sternal border) and angled (across the left upper chest at an 
angle) (Supplementary Fig. 5), in addition to a 15-s ECG recording in 
the handheld position. AI predictions (positive or negative) for the 
presence of cardiomyopathy based on the digital stethoscope record-
ing were available to the study team in real time through a mobile app. 
The ‘maximum’ prediction (any positive prediction across all recording 
locations) was selected for determination of the primary end point 
based on its alignment with standard cardiac examination procedures 
using a stethoscope, which involves multiple auscultation points where 
abnormal findings in at least one location would be sufficient for a 
physician to consider additional testing. As such, this approach would 
mirror how this tool would be used if it was deployed in clinical practice.

The 12-lead ECGs were acquired in a standard fashion as with routine 
clinical care, in a supine or semi-recumbent position for 10 s on standard 
ECG paper, at a sampling rate of 500 Hz using a GE Marquette 2000 ECG 
machine (GE Healthcare). Raw 12-lead ECG files were extracted from 
the machines in .xml formats and uploaded to a secure cloud-based 
file share portal. This was downloaded by the coordinating center staff, 
analyzed and AI prediction results were provided to the study teams sub-
sequently, usually within 1 week or less following receipt of the ECG files.

Following the return of 12-lead AI predictions to the study teams, 
the site investigators were advised to obtain a repeat echocardiogram 
for newly positive AI results (based on the original Mayo Clinic AI Algo-
rithm) according to the study protocol; however, given the digital 
stethoscope AI prediction for low ejection fraction was made available 
to the study investigators in real time at the point of care, obtaining a 
repeat echocardiogram at any time point remained at the discretion 
of the managing physician.

AI algorithms
The digital stethoscope and the 12-lead ECG algorithms were based on 
a convolutional neural network, trained on over 100,000 adults13, and 
independent of all data collected in this study. The original Mayo Clinic 
12-lead AI-ECG algorithm was developed to detect LVEF ≤ 35% (ref. 13) and 
this model has been evaluated in a clinical trial among patients receiving 
primary care in the United States14. The US FDA-cleared 12-lead AI-ECG 
algorithm is a modification of the original Mayo Clinic 12-lead model 
and was retrained to detect an LVEF < 40% (ref. 35). The US FDA-cleared 
model had an in-built ECG data quality check. As such ECGs deemed to be 
of insufficient quality did not have AI predictions generated (algorithm 
version lvef_v2.2.0). To be conservative when AI predictions were not 
generated, this was assumed to be a negative screen.

The stethoscope modifications to the original Mayo Clinic 12-lead 
ECG algorithm were to allow for use with a single-lead ECG at an LVEF 
threshold of <40% (refs. 19,20); however, before the study start, the 
stethoscope’s AI model was further refined to incorporate data from a 
single-lead ECG in addition to phonocardiogram recordings for detec-
tion of LVEF < 40% and this model, previously evaluated in a pilot study 
among obstetric patients in the United States16, was used in this study 
(algorithm version ELEFT 7.2.0). ECG and phonocardiogram recording 
data quality checks were also built into the stethoscope device and 
poor-quality recordings with unreliable AI prediction results were 
assumed to be negative.

Variables and echocardiograms
Demographic and clinical variables were obtained from study par-
ticipants and medical charts and entered onto a secure online REDCap 
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database v.14.0.36. Echocardiogram images were acquired by sonog-
raphers, cardiology residents or consultant cardiologists according 
to each site’s standard clinical and/or research practices. Images were 
interpreted at each hospital site by a licensed cardiologist. All echocar-
diogram images with a reported low ejection fraction in addition to a 
sample of those with normal ejection fraction were uploaded to a secure 
file share portal and reviewed at the coordinating center by D.A.A. In 
cases where ejection fraction estimates by the local site and the coor-
dinating center were discordant or in cases where images were of poor 
quality to make an adequate assessment of left ventricular ejection, a 
repeat echocardiogram was performed at the site.

Outcomes
The primary outcome was identification of cardiomyopathy, defined 
as LVEF < 50% based on two-dimensional echocardiography. For the 
control arm, the number of participants with clinical recognition and 
documentation of LVSD (based on echocardiography) was used for the 
determination of the primary outcome, in keeping with current standard 
of care. The primary outcome in the intervention group was the number 
of participants with LVSD, as determined by a positive AI screen for LVSD 
(for the digital stethoscope, this was any positive prediction across all 
recording locations, ‘maximum prediction’ and for the 12-lead ECG, this 
was any positive prediction if more than one ECG of sufficient quality was 
performed at a unique study-related encounter), confirmed by echocar-
diography at the time of ECG acquisition. For the primary outcome in 
the intervention arm, a positive AI screen was required. In a few patients 
(n = 4 for the digital stethoscope and n = 5 for the US FDA-cleared 12-lead 
ECG model), either or a combination of the baseline echocardiogram 
and AI screening modality could not be completed on the same date as 
the initial study encounter, although these were subsequently acquired 
or repeated on a different date. To avoid bias that could result from 
repeated ECG/digital stethoscope acquisitions on different dates, the 
first ECG/digital stethoscope recording acquired for the participant 
were used to determine results comparing the two treatment groups. 
Any incomplete ‘first’ AI screening test or those deemed to be of poor 
diagnostic quality were considered negative for determination of the 
primary end point. As such, if the AI screen was negative, not computed 
due to incomplete testing on the date of the initial encounter or of insuf-
ficient quality and the protocolized echocardiogram showed LVEF < 50%, 
the patient case was not counted as a positive detection of LVSD.

Secondary outcomes included AI model performance across 
prespecified subgroups (age group, ethnicity, region, presence of 
hypertensive disorders and pregnancy/postpartum status) and the 
effectiveness of the AI intervention in identifying LVEF < 45%, <40% 
and ≤35% within the intervention arm at baseline. For the analysis of 
the AI algorithms’ performances in the intervention group, ECGs/
digital stethoscope recordings of sufficient quality acquired on the 
same date as the baseline echocardiogram were used. ECGs/digital 
stethoscope recordings were repeated on the date of the echocar-
diogram if all study-related testing could not be completed on the 
same date as the initial study encounter. Other prespecified (explora-
tory) outcomes included composite adverse outcomes (including 
systolic heart failure, diastolic heart failure, gestational hypertension, 
pre-eclampsia, eclampsia, gestational diabetes, valvular heart disease, 
atrial arrhythmias, sustained ventricular arrhythmias and any other 
reported pregnancy-related complication), composite cardiovascular 
outcomes (including diastolic heart failure, gestational hypertension, 
pre-eclampsia, eclampsia, valvular heart disease, atrial arrhythmias and 
sustained ventricular arrhythmias) and all-cause mortality37.

Study participants were followed up through 12 months post-
partum or study end depending on which was earlier. As much as pos-
sible, follow-up visits were timed to correspond with subsequently 
scheduled clinic visits or hospital encounters, and home visits were 
also conducted at specific sites. Given that participants were allowed 
to enter the study at any time point between pregnancy and 12 months 

postpartum in addition to the pragmatic study design, the time con-
tributed to the study varied based on this, with a maximum of up to 
seven visits for participants enrolled in the first trimester of pregnancy 
(Fig. 2). Details of the proposed study follow-up visits at prespecified 
intervals have been published37 and the study protocol is available in 
the Supplementary Information. Due to the minimal risk nature of this 
study, a data safety monitoring board was not established.

Statistical analysis
We assumed that the prevalence of LVEF < 50% would be 4% in the 
intervention arm and 1% in the control group4,37, which yielded an 
estimate of 848 (424 per group) women to achieve 80% power at an α 
of 0.05. The estimates were rounded up to 500 per group to account 
for uncertainties in the calculations. In April 2023, an amendment to 
the protocol was submitted to increase the total study sample size to 
1,200 to allow for each of the six sites to enroll up to 200 participants. 
The decision to increase the sample size was made blinded to all clini-
cal data collected in the study at the time of the modification. The final 
analysis set excluded participants who did not complete the baseline 
visit (for the control arm, 12-lead ECG not obtained and for the interven-
tion arm, 12-lead ECG, at least one digital stethoscope recording and 
or echocardiogram was not obtained), died before baseline testing or 
declined to participate (withdrew consent) following randomization, 
resulting in the mITT analysis set.

Descriptive statistics were calculated by group for all variables to 
evaluate whether balance was achieved with randomization. The odds 
ratio and 95% large sample CI was estimated using a logistic regres-
sion model and statistical significance was assessed with a Pearson 
chi-squared test. Two unplanned analyses were added to the study 
during the peer review process. (1) A full ITT analysis was generated 
by assuming any excluded participants, regardless of the reason (see 
Fig. 1 for reasons) were negative for the detection of LVSD. Thus, the 
denominators were increased to n = 616 for each treatment arm, while 
the overall number of events remained the same as the mITT analysis. 
The ITT analysis was otherwise conducted identically to the mITT 
described above. (2) A logistic regression model was fit that included 
site as a factor in the model. For this, the Wald test for the treatment 
effect obtained from the logistic regression was used for assessing 
statistical significance of the site-adjusted models.

Within the intervention arm, patients had echocardiograms per-
formed at baseline to validate the performance of the AI algorithm as 
part of the study protocol. As such, standard measures of diagnostic 
performance along with their respective 95% CI were reported accord-
ing to the STARD criteria. Receiver operating characteristic curves 
were estimated. The threshold for binary classification of the AI results 
utilized the value determined at model development. Additional details 
on the statistical analysis are provided in the statistical analysis plan in 
the Supplementary Information.

Statistical analyses were performed using R v.4.1.2. All tests were 
two sided and P < 0.05 was considered statistically significant.

Inclusion and ethics statement
This study was jointly designed and conducted with investigators 
from Mayo Clinic ( Jacksonville, FL and Rochester, MN, USA) and all 
participating institutions in Nigeria. Members of the research team 
include physicians and researchers with expertise in adult cardiology, 
obstetrics and gynecology, maternal–fetal medicine, biostatistics and 
data science. Key team members are part of an international research 
consortium born out of mutual interest in investigating and designing 
interventions to address adverse cardio-obstetric outcomes among 
women in Nigeria. Enrollment and follow-up strategies were developed 
and modified by Nigerian investigators at each site to align with local 
contexts, preferences and participant convenience. All team members 
discussed and agreed on specific data types collected, data owner-
ship and publication authorship. Roles and responsibilities of team 
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members and all other study staff were defined and agreed upon by 
the team before study start. Before and during the study, education 
and training support was provided to local researchers in Nigeria. This 
included training and support for study-related devices and proce-
dures, presentation/lectures at national cardiovascular conferences/
meetings and educational symposiums in Nigeria. Given the results of 
the study may result in a new cardiovascular diagnosis, which may have 
been clinically unrecognized, plans were put in place to facilitate cardi-
ology referral for management as appropriate. This was carried out by 
ensuring that each study site was led by an obstetrician/gynecologist 
and cardiologist as co-principal investigators. Study participants also 
received the results of all testing carried out along with interpretation. 
Previous studies conducted by local investigators in Nigeria informed 
the study design and these are included as citations in this paper.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The underlying data supporting the findings of this study can be made 
available to clinical investigators and researchers upon request. Written 
requests for data sharing including an analysis plan will be required 
before approval. These requests will be individually assessed in consul-
tation with the study team leads and co-investigators as appropriate. If 
other investigators are interested in performing additional analyses, 
these requests can be made to the corresponding author (D.A.A.) 
and analyses will be performed in collaboration with the Mayo Clinic. 
In all cases, any data and materials to be shared will be released via a 
Material Transfer Agreement. Individual-level data will be available 
and data sharing will ensure that the rights and privacy of individuals 
participating in the research always remains protected. The anticipated 
time frame to respond to initial data requests is 1 month.

Code availability
The AI algorithms used in this paper have been previously published 
and have recently received US FDA clearance35,36. The code itself can-
not be shared because it is proprietary intellectual property that has 
been licensed to Anumana and Eko Health. The US FDA-cleared 12-lead 
AI-ECG algorithm can be accessed from Anumana and the digital stetho-
scope AI algorithm through Eko Health.
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