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AI-based differential diagnosis of dementia 
etiologies on multimodal data

Differential diagnosis of dementia remains a challenge in neurology due 
to symptom overlap across etiologies, yet it is crucial for formulating 
early, personalized management strategies. Here, we present an artificial 
intelligence (AI) model that harnesses a broad array of data, including 
demographics, individual and family medical history, medication use, 
neuropsychological assessments, functional evaluations and multimodal 
neuroimaging, to identify the etiologies contributing to dementia in 
individuals. The study, drawing on 51,269 participants across 9 independent, 
geographically diverse datasets, facilitated the identification of 10 distinct 
dementia etiologies. It aligns diagnoses with similar management strategies, 
ensuring robust predictions even with incomplete data. Our model achieved 
a microaveraged area under the receiver operating characteristic curve 
(AUROC) of 0.94 in classifying individuals with normal cognition, mild 
cognitive impairment and dementia. Also, the microaveraged AUROC was 
0.96 in differentiating the dementia etiologies. Our model demonstrated 
proficiency in addressing mixed dementia cases, with a mean AUROC of 
0.78 for two co-occurring pathologies. In a randomly selected subset of 100 
cases, the AUROC of neurologist assessments augmented by our AI model 
exceeded neurologist-only evaluations by 26.25%. Furthermore, our model 
predictions aligned with biomarker evidence and its associations with 
different proteinopathies were substantiated through postmortem findings. 
Our framework has the potential to be integrated as a screening tool for 
dementia in clinical settings and drug trials. Further prospective studies are 
needed to confirm its ability to improve patient care.

Dementia is one of the most pressing health challenges of our time. 
With nearly 10 million new cases reported annually, this syndrome, 
characterized by a progressive decline in cognitive function severe 
enough to impede daily life activities, continues to present consider-
able clinical and socioeconomic challenges. In 2017, the World Health 
Organization’s global action plan highlighted the need for prompt 
and precise diagnosis of dementia as a pivotal strategic objective in 
response to the growing number of dementia cases worldwide1,2. As 
such, diagnostic precision in the varied landscape of dementia remains 
a critical, yet unmet need, particularly as the global population ages 
and the demand for more accurate participant screening in drug trials 
increases3. This challenge primarily stems from the overlapping clinical 

presentation of different dementia types, which is further complicated 
by the heterogeneity in findings on magnetic resonance imaging (MRI) 
scans4,5. The necessity for improvements in the field becomes ever more 
pressing considering the projected shortage of specialists, includ-
ing neurologists, neuropsychologists and geriatric care providers6–8, 
emphasizing the urgency to innovate and evolve our diagnostic tools.

Accurate differential diagnosis of dementia is pivotal for prescrib-
ing targeted therapeutic interventions, enhancing treatment efficacy 
and slowing symptom progression. Although Alzheimer’s disease (AD) 
is a leading cause, other forms such as vascular dementia (VD), Lewy 
body dementia (LBD) and frontotemporal dementia (FTD) are also 
prevalent9–11. These etiologies can often coexist, as marked by symptom 

Received: 29 December 2023

Accepted: 6 June 2024

Published online: 4 July 2024

 Check for updates

 e-mail: vkola@bu.edu

A list of authors and their affiliations appears at the end of the paper

http://www.nature.com/naturemedicine
https://doi.org/10.1038/s41591-024-03118-z
http://crossmark.crossref.org/dialog/?doi=10.1038/s41591-024-03118-z&domain=pdf
mailto:vkola@bu.edu


Nature Medicine | Volume 30 | October 2024 | 2977–2989 2978

Article https://doi.org/10.1038/s41591-024-03118-z

in dementia screening and treatment planning. The model’s robustness 
is demonstrated through validation on independent, geographically 
diverse datasets. In comparative analyses, we found that AI-augmented 
clinician assessments achieved superior diagnostic accuracy com-
pared to clinician-only assessments. By validating our model against 
gold-standard biomarker and postmortem data for different etiologies, 
we further emphasize our model’s ability to align with the pathophysiol-
ogy underlying dementia. Our algorithmic framework has the potential 
to enhance dementia screening, but further studies are needed to 
evaluate its impact on healthcare outcomes.

Results

Glossary 1

Acronym Description

NC Normal cognition

MCI Mild cognitive impairment

DE Dementia

AD Alzheimer’s disease

LBD Lewy body dementia, including dementia with Lewy bodies and 
Parkinson’s disease dementia

VD Vascular dementia, vascular brain injury and vascular dementia, 
including stroke

PRD Prion disease including Creutzfeldt-Jakob disease

FTD Frontotemporal lobar degeneration and its variants, including 
primary progressive aphasia, corticobasal degeneration and 
progressive supranuclear palsy, and with or without amyotrophic 
lateral sclerosis

NPH Normal pressure hydrocephalus

SEF Systemic and environmental factors including infectious 
diseases (HIV included), metabolic, substance abuse / alcohol, 
medications, systemic disease and delirium

PSY Psychiatric conditions including schizophrenia, depression, 
bipolar disorder, anxiety and posttraumatic stress disorder

TBI Moderate/severe traumatic brain injury, repetitive head injury and 
chronic traumatic encephalopathy

ODE Other dementia conditions, including neoplasms, Down 
syndrome, multiple systems atrophy, Huntington’s disease and 
seizures

Leveraging the power of multimodal data obtained from various 
cohorts41–49 (Tables 1 and S1–S6), our model adopts a rigorous approach 
to differential dementia diagnosis (Fig. 1). It assigns individuals to one 
or more of thirteen diagnostic categories (Glossary 1), which were 
defined through consensus among a team of neurologists. This practi-
cal categorization is designed with clinical management pathways in 
mind, thereby echoing real-world scenarios. For instance, we grouped 
dementia with LBD and Parkinson’s disease (PD) dementia under the 
comprehensive category of LBD. This classification stems from an 
understanding that the care for these conditions often follows a simi-
lar path, typically overseen by a multidisciplinary team of movement 
disorder specialists. In the context of VD, we included persons who 
exhibited symptoms of a stroke, possible or probable VD or vascular 
brain injury. This design encompassed cases with symptomatic stroke, 
cystic infarct in cognitive networks, extensive white matter hyperinten-
sity and/or executive dysfunction as the primary contributors to the 
observed cognitive impairment. The inclusion criteria were based on 
the expectation that such persons would typically receive care from 
clinicians specializing in stroke and vascular diseases. Likewise, we 
considered various psychiatric conditions, such as schizophrenia, 
depression, bipolar disorders, anxiety and posttraumatic stress disor-
der, under one category (PSY), acknowledging that their management 
predominantly falls within the expertise of psychiatric care providers. 

overlap and variable symptom intensity, which further complicate 
the diagnostic process12. Importantly, diagnostic errors are prevalent 
among older adults, particularly those with comorbid conditions13. 
These misdiagnoses can translate into inappropriate medication 
use and adverse health outcomes14. For example, although patients 
with early-stage AD may be candidates for anti-amyloid therapies15–17, 
the coexistence of pathology from other etiologies, such as VD, can 
increase the risk of amyloid-related imaging abnormalities18. This risk 
highlights the critical need for accurately assessing the full spectrum 
of etiological factors contributing to dementia to inform appropriate 
therapeutic strategies and optimize patient care19.

The imperative for scalable diagnostic tools in AD and related 
dementias is becoming increasingly urgent, given the challenges in 
accessing gold-standard testing. Recent regulatory approvals have 
facilitated the transition of cerebrospinal fluid (CSF) and positron 
emission tomography (PET) biomarkers from research environments 
to clinical settings. Although promising, the clinical integration of accu-
rate blood-based biomarkers remains an area of active research20–22. 
Despite these advancements, accessibility to these diagnostic tools 
is still constrained, not only in remote and economically developing 
regions but also in urban healthcare centers, as exemplified by pro-
longed waiting periods for specialist consultations23. This challenge 
is compounded by a global shortage of specialists, such as behavioral 
neurologists and neuropsychologists, leading to an overreliance on 
cognitive assessments that may not be culturally appropriate due to the 
lack of formal training programs in neuropsychology in many parts of 
the world24,25. Although conventional methods like clinical evaluations, 
neuropsychological testing and MRI remain central to antemortem 
differential dementia diagnosis, their effectiveness relies on a diminish-
ing pool of specialist clinicians. This limitation underscores an urgent 
need for healthcare systems to evolve and adapt to the rapidly changing 
dynamics of dementia diagnosis and treatment.

Machine learning (ML) has the potential to enhance the accuracy 
and efficiency of dementia diagnosis26–28. Previous ML methods have 
largely focused on leveraging neuroimaging data to distinguish indi-
viduals with normal cognition (NC) from those with mild cognitive 
impairment (MCI) and dementia, with AD being the main etiology given 
its ubiquity in dementia diagnosis29,30. A few studies have attempted to 
discern neuroimaging signatures unique to AD by contrasting them 
with other dementia types31–40. However, this primary emphasis on 
AD can have limited practical implications given the prevalence and 
co-occurrence of other etiologies. In addition, a focus on imaging 
data alone can be insufficient in providing a holistic understanding 
of an individual’s neurological condition. Recently, we proposed a 
computational approach to stratify individuals based on cognitive 
status and discern likely AD cases from non-AD dementia types by 
incorporating imaging with non-imaging data such as demograph-
ics, medical histories and neuropsychological assessments39. These 
investigations have begun to illuminate the complex matrix of factors 
contributing to dementia. However, for ML models to be adopted into 
clinical practice, they must be able to accommodate the intricacies of 
mixed etiologies, as well as the inclusion or exclusion of different data 
modalities that may or may not be available. Therefore, the develop-
ment of AI methodologies capable of harnessing multimodal data 
facilitates the accurate quantification of diverse dementia etiologies, 
irrespective of clinical resources, thereby aligning treatment strategies 
with individual patient profiles.

In this study, we propose a multimodal ML framework that har-
nesses a diverse array of data, including demographics, personal and 
family medical history, medication use, neuropsychological assess-
ments, functional evaluations and multimodal neuroimaging, to 
perform differential dementia diagnosis. Our model, designed to 
mirror real-world scenarios, aligns diagnoses with similar manage-
ment strategies and outputs probabilities for each etiology. This 
approach is intended to mimic clinical reasoning and aid practitioners 
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Table 1 | Study population

Dataset (group) Age (y), mean ± s.d. Male, n (%) Education (y), mean ± s.d. Race (White, Black, Asian, American 
Indian, Pacific, multirace), n

CDR, mean ± s.d.

NACC

NC [n = 17,242] 71.25 ± 11.16 6,009, 34.85% 15.83 ± 2.98^ (13,266, 2541, 528, 109, 10, 575)^ 0.05 ± 0.15

MCI [n = 7,582] 73.72 ± 9.81 3,615, 47.68% 15.16 ± 3.45^ (5,708, 1185, 231, 53, 5, 276)^ 0.45 ± 0.18

AD [n = 16,131] 76.0 ± 10.31 7,234, 44.85% 14.52 ± 3.74^ (13,161, 1702, 354, 92, 10, 458)^ 1.2 ± 0.73

LBD [n = 1,913] 75.01 ± 8.55 1,365, 71.35% 15.12 ± 3.63^ (1,659, 128, 39, 17, 0, 37)^ 1.29 ± 0.78

VD [n = 1,919] 80.32 ± 8.76 947, 49.35% 14.15 ± 4.22^ (1,394, 332, 67, 2, 1, 68)^ 1.22 ± 0.74

PRD [n = 114] 60.07 ± 10.36 62, 54.39% 14.8 ± 3.33^ (93, 5, 5, 0, 1, 1)^ 1.95 ± 0.95

FTD [n = 2,898] 65.86 ± 9.36 1,603, 55.31% 15.45 ± 3.09^ (2,664, 69, 73, 4, 5, 39)^ 1.2 ± 0.83

NPH [n = 138] 79.1 ± 9.24 69, 50.0% 15.0 ± 3.28^ (119, 10, 4, 0, 0, 4)^ 1.18 ± 0.71

SEF [n = 808] 76.3 ± 11.15 413, 51.11% 14.6 ± 3.77^ (646, 95, 15, 5, 2, 31)^ 1.11 ± 0.7

PSY [n = 2,700] 73.74 ± 10.78 1,102, 40.81% 14.13 ± 4.12^ (2,163, 238, 59, 14, 5, 87)^ 1.1 ± 0.64

TBI [n = 265] 72.87 ± 11.23 192, 72.45% 14.42 ± 4.13^ (212, 27, 3, 2, 1, 11)^ 1.11 ± 0.69

ODE [n = 1,234] 72.94 ± 12.14 654, 53.0% 14.5 ± 3.78^ (1,046, 93, 28, 5, 4, 36)^ 1.2 ± 0.76

P value < 1.0 × 10−200 <1.0 × 10−200 < 1.0 × 10−200 8.341 × 10−145 <1.0 × 10−200

NIFD

NC [n = 124] 63.21 ± 7.27 56, 45.16% 17.48 ± 1.87^ (89, 0, 0, 0, 0, 3)^ 0.03 ± 0.12^

FTD [n = 129] 63.66 ± 7.33 75, 58.14% 16.18 ± 3.29^ (109, 1, 1, 0, 0, 4)^ 0.82 ± 0.54^

P value 6.266 × 10−1 5.246 × 10−2 2.606 × 10−4 6.531 × 10−1 4.333 × 10−28

PPMI

NC [n = 171] 62.74 ± 10.12 109, 63.74% 15.82 ± 2.93 (163, 3, 2, 0, 0, 1)^ NA

MCI [n = 27] 68.04 ± 7.32 22, 81.48% 15.52 ± 3.08 (24, 1, 1, 0, 0, 1) NA

P value 1.006 × 10−2 1.115 × 10−1 6.194 × 10−1 2.910 × 10−1 NA

AIBL

NC [n = 480] 72.45 ± 6.22 203, 42.29% NA NA 0.03 ± 0.12

MCI [n = 102] 74.73 ± 7.11 53, 51.96% NA NA 0.47 ± 0.14

AD [n = 79] 73.34 ± 7.77 33, 41.77% NA NA 0.93 ± 0.54

P value 5.521 × 10−3 1.887 × 10−1 NA NA 4.542 × 10−158

OASIS

NC [n = 424] 71.34 ± 9.43 164, 38.68% 15.79 ± 2.62^ (53, 18, 1, 0, 0, 0)^ 0.0 ± 0.02

MCI [n = 27] 75.04 ± 7.25 14, 51.85% 15.19 ± 2.76 (4, 1, 0, 0, 0, 0)^ 0.52 ± 0.09

AD [n = 32] 77.44 ± 7.42 20, 62.5% 15.19 ± 2.8 (8, 1, 0, 0, 0, 0)^ 0.86 ± 0.44

LBD [n = 4] 74.75 ± 5.67 4, 100.0% 16.0 ± 2.83 NA 1.0 ± 0.0

FTD [n = 4] 64.25 ± 8.61 3, 75.0% 16.5 ± 2.96 (4, 0, 0, 0, 0, 0) 1.25 ± 0.75

P value 7.789 × 10−4 3.239 × 10−3 5.507 × 10−1 8.735 × 10−1 2.855 × 10−169

LBDSU

NC [n = 134] 68.77 ± 7.62 61, 45.52% 17.27 ± 2.47^ NA NA

MCI [n = 35] 70.16 ± 8.41 26, 74.29% 16.6 ± 2.58 NA NA

LBD [n = 13] 73.42 ± 7.81 8, 61.54% 16.77 ± 2.15 NA NA

P value 1.033 × 10−1 7.863 × 10−3 3.243 × 10−1 NA NA

4RTNI

NC [n = 12] 68.08 ± 4.92 5, 41.67% 15.45 ± 2.57^ (12, 0, 0, 0, 0, 0) 0.0 ± 0.0

MCI [n = 31] 67.61 ± 7.0 11, 35.48% 16.68 ± 4.02 (25, 1, 2, 0, 1, 1)^ 0.55 ± 0.15

FTD [n = 37] 69.14 ± 7.43 20, 54.05% 16.46 ± 4.21 (31, 1, 0, 0, 1, 2)^ 1.27 ± 0.55

P value 6.691 × 10−1 2.992 × 10−1 6.843 × 10−1 7.620 × 10−1 5.700 × 10−16

ADNI

NC [n = 868] 72.7 ± 6.57 383, 44.12% 16.51 ± 2.52 (730, 92, 28, 2, 0, 12)^ 0.0 ± 0.04^

MCI [n = 1119] 72.77 ± 7.65 648, 57.91% 15.97 ± 2.75 (1,023, 56, 17, 2, 2, 13)^ 0.5 ± 0.06
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By aligning diagnostic categories with clinical care pathways, our model 
serves not only to classify an individual’s condition but also to direct 
appropriate management strategies.

Model performance on NC, MCI and dementia
We first sought to evaluate the performance of the model on test 
cases comprising individuals along the cognitive spectrum of NC, 
MCI and dementia. The receiver operating characteristic (ROC) and 
precision-recall (PR) curves reflected strong model performance across 
different averaging methods (Fig. 2a,b). In the test set, comprising 
the NACC data unused in training, the Alzheimer’s Disease Neuroim-
aging Initiative (ADNI) and the Framingham Heart Study (FHS) data, 
our model demonstrated robust classification abilities for NC, MCI 
and dementia, achieving a microaveraged area under the ROC curve 
(AUROC) of 0.94 and a microaveraged area under the PR curve (AUPR) 
of 0.90. Additionally, the macroaveraged metrics showed an AUROC of 
0.93 and an AUPR value of 0.84. The weighted-average AUROC and AUPR 
values further demonstrated the model’s efficacy, standing at 0.94 
and 0.87, respectively. Also, model performance across different age, 
gender and race subgroups was consistent for NC, MCI and dementia 
predictions. Microaveraged AUC exceeded 0.88 and microaveraged 
AUPR exceeded 0.82 across the different subgroups. Additional model 
performance metrics across the test cohorts and various demographic 
subgroups are provided in Table S7 and Figs. S1, S3 and S5, respec-
tively. We also evaluated our model’s effectiveness by benchmarking it 
against a baseline ML algorithm, CatBoost50, using identical case sets. 
This comparison was executed over two feature subsets, revealing 
that our model and CatBoost exhibited similar performances on the 
NACC dataset. Conversely, on the ADNI and FHS datasets, our model 
surpassed CatBoost, achieving higher AUROC and AUPR scores across 
all diagnostic categories with improvements ranging from 0.02 to 
0.21 for AUROC and 0.03 to 0.17 for AUPR, as detailed in Table S8. This 
comparison highlights the improved generalizability of our model 
over traditional ML approaches in diagnostic tasks.

Shapley analysis51 was used on the NACC test set to determine 
which features most influenced the model’s diagnostic decisions 
(Extended Data Fig. 1). For NC predictions, key features included cog-
nitive status based on the neuropsychological exam, higher scores on 
the Montreal Cognitive Assessment (MoCA) and better performance 
on memory tasks. For MCI predictions, similar memory-related fea-
tures were found to be important in addition to functional impair-
ment and the T1-weighted (T1w) MRI. Finally, for dementia predictions, 

the most influential features related to functional impairment, lower 
Mini-Mental State Examination (MMSE) orientation to time and place 
subscores and the presence of APOE4 alleles. Overall, Shapley values 
offered insight into how each feature contributed to the model’s pre-
dictions, which is crucial for understanding and improving the model’s 
interpretability and accuracy.

Model performance on incomplete data
To evaluate the model’s resilience to incomplete data, we artificially 
introduced varying levels of data missingness in the NACC cohort 
and assessed the impact on its predictive performance by selectively 
removing portions of the data to simulate different constraints. As 
depicted in the chord diagram (Fig. 2c), even when confronted with 
missing features, whether it be MRIs, the Unified Parkinson’s Disease 
Rating Scale, the Geriatric Depression Scale (GDS), the Neuropsychi-
atric Inventory Questionnaire, the Functional Activities Questionnaire 
(FAQ) NP tests or other parameters, our model consistently produced 
reliable scores. This reinforces not only its predictive stability but also 
its potential applicability in various clinical scenarios where complete 
datasets are generally unattainable. Examples of this are found in our 
results on ADNI and FHS, which we used as external testing datasets 
(Tables S4 and S5). The ADNI cohort exhibited approximately 69% 
missing data compared to NACC, yet model predictions achieved a 
weighted-average AUROC of 0.91 and AUPR of 0.86 for NC, MCI and 
dementia categories. Similarly, with 94% fewer features than NACC, the 
model’s performance on FHS data also resulted in weighted-average 
AUROC and AUPR scores of 0.68 and 0.53 for NC, MCI and dementia 
categories, respectively.

Model alignment with prodromal AD
We sought to assess our model’s ability to distinguish MCI individu-
als based on whether AD was the etiological factor for their cognitive 
impairment by comparing the predicted probabilities of AD (P(AD)) 
between MCI cases with and without AD. For comparison, we also evalu-
ated the model’s ability to differentiate individuals with dementia based 
on AD’s role in their cognitive impairment. Although our model was 
primarily trained to identify AD dementia rather than its prodromal 
stages, it consistently attributed higher P(AD) to MCI cases associated 
with AD compared to those arising from other causes, as evidenced in 
Fig. 2d and Table S9. In DE cases, the model generally assigned higher 
P(AD) to those where AD was the primary etiology. This pattern rein-
forces the model’s utility in early disease detection and in supporting 

Dataset (group) Age (y), mean ± s.d. Male, n (%) Education (y), mean ± s.d. Race (White, Black, Asian, American 
Indian, Pacific, multirace), n

CDR, mean ± s.d.

AD [n = 417] 74.99 ± 7.78 232, 55.64% 15.25 ± 2.92 (383, 20, 10, 0, 0, 4) 0.77 ± 0.27

P value 8.911 × 10−8 3.090 × 10-09 2.869 × 10−14 2.828 × 10−5 <1.0 × 10−200

FHS *

NC [n = 394] 74.9 ± 10.22^ 206, 52.28% NA (394, 0, 0, 0, 0, 0) 0.0 ± 0.0

MCI [n = 434] 79.92 ± 8.8^ 203, 46.77% NA (434, 0, 0, 0, 0, 0) 0.49 ± 0.07

AD [n = 687] 82.99 ± 7.87^ 211, 30.71% NA (687, 0, 0, 0, 0, 0) 2.04 ± 0.88

LBD [n = 73] 79.34 ± 9.37^ 46, 63.01% NA (73, 0, 0, 0, 0, 0) 1.84 ± 0.84

VD [n = 113] 81.74 ± 7.3^ 48, 42.48% NA (113, 0, 0, 0, 0, 0) 1.85 ± 0.8

FTD [n = 8] 85.67 ± 5.91^ 4, 50.0% NA (8, 0, 0, 0, 0, 0) 2.0 ± 0.87

P value 1.316 × 10−31 7.905 × 10−14 NA 1.0 <1.0 × 10−200

Nine independent datasets were used for this study, including ADNI, NACC, NIFD, PPMI, OASIS, LBDSU, 4RTNI and FHS. Data from NACC, NIFD, PPMI, OASIS, LBDSU and 4RTNI were used for 
model training. Data from ADNI, FHS and a held-out set from NACC were used for model testing. The P value for each dataset indicates the statistical significance of intergroup differences 
per column. We used one-way analysis of variance (ANOVA) and two-sided χ2 tests for continuous and categorical variables, respectively. Please refer to Glossary 1 for more information on 
the acronyms. NA, not available. Due to the absence of CDR scores in the FHS dataset, we used the following definition: 0.0, NC; 0.5, cognitive impairment; 1.0, mild dementia; 2.0, moderate 
dementia; 3.0, severe dementia. The symbol ̂  indicates that data was not available for some subjects.

Table 1 (continued) | Study population
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clinicians to make informed decisions based on the specific etiology 
of cognitive impairment. Our observations advocate for a preemptive 
intervention approach in managing the AD continuum, underlining 
the model’s clinical significance.

Model alignment with CDR scores
We conducted a comparison between the model’s predicted DE prob-
ability scores, P(DE), and the Clinical Dementia Ratings (CDR) scores 
available for all participants in the NACC testing and ADNI cohorts 
(Fig. 2e,f and Table S10). Despite not incorporating CDR as input dur-
ing model training, our predictions exhibited a strong correlation 
with CDR scores. In our analysis of the NACC dataset, we observed that 
P(DE) progressively increased with higher CDR scores, with statisti-
cally significant differences manifest across the spectrum of cognitive 
impairment (P < 0.0001). However, this pattern did not hold between 
CDR scores of 2.0 and 3.0, where no significant statistical difference 
was discerned. In the ADNI dataset, we found a statistically significant 
demarcation (P < 0.0001) in P(DE) between the baseline CDR rating 
and higher gradations. This finding points to the model’s sensitivity to 
incremental impairment in clinical dementia assessments. In the FHS 
dataset (Fig. 2g), which substitutes a consensus panel’s diagnostic cat-
egorization (normal, impaired, and dementia) for CDR scores, a marked 
statistical significance (P < 0.0001) was evident in P(DE) across these 
diagnostic strata, with the exception of normal versus impaired. This 
finding indicates a challenge for the model in distinguishing the early 
stages of cognitive decline when relying on a limited set of features. Such 
limitations are likely due to the community-based nature of the FHS 
cohort and the specificities of consensus panel ratings at FHS (Table S4). 
Collectively, these findings illuminate the model’s robust capacity to 
delineate differential cognitive states, showcasing its potential as a tool 
for identifying levels of cognitive impairment across datasets.

Evaluation of single and co-occurring dementias
We evaluated our model’s diagnostic ability across ten distinct demen-
tia etiologies. The ROC and PR curves in (Fig. 3a,b) reflect strong model 
performance on the model’s overall assessment of identifying demen-
tia etiologies across different averaging methods, attaining micro-
averaged AUROC and AUPR values of 0.96 and 0.70, respectively. In 
macroaveraged terms, the AUROC and AUPR stood at 0.91 and 0.36. 
Moreover, the weighted-average values for AUROC and AUPR were 
0.94 and 0.73, respectively. The model’s performance, characterized 
by high microaveraged and weighted-average AUROC and AUPR scores, 
underscores its diagnostic accuracy across a broad spectrum of demen-
tia etiologies. Although the lower macroaverage AUPR scores indicate 
that our model may perform better on certain diagnoses relative to 
others, the weighted-average scores, adjusting for the prevalence of 
each dementia type, support the model’s effectiveness in a real-world 
setting, where some dementia types are more common than others. 
The model exhibited stable performance across various demographic 
subgroups (that is, age, gender and race) with a microaveraged AUC 
consistently exceeding 0.94, and microaveraged AP exceeding 0.66. 
Additional model performance metrics across demographic subgroups 
are provided in Figs. S2, S4 and S6.

To further assess the model performance on co-occurring demen-
tias, we adopted a maximum variance threshold of 0.01 for AUROC 
calculations52. This selection aimed to balance the sensitivity and speci-
ficity of the model, enabling it to discern subtle diagnostic differences. 
This resulted in a minimum positive sample size of 25. In instances 
where two dementias co-occurred (Fig. 3c), the model’s AUROC scores 
varied from 0.63 to 0.97, reflecting a spectrum of diagnostic accuracy, 
with the LBD and PSY combination achieving the highest AUROC. 
AUPR scores ranged from 0.08 to 0.60, again with the conjunction 
of LBD and PSY recording the highest AUPR value. In the case of AD 
occurring with two other etiologies (VD and PSY), the AUROC score 
was 0.73 and the AUPR was 0.48. Although our model demonstrated 
robust diagnostic discrimination, as evidenced by high AUROC values, 
the variability in AUPR scores may reflect challenges in consistently 
identifying less prevalent or more complex dementia etiologies within 
the dataset. Importantly, a similar pattern was found in subsequent 
analyses of expert neurologists’ performance for conditions such as 
SEF and TBI (Tables S14 and S15). Additional performance metrics and 
visualizations that illustrate our model’s ability to assess single and 
co-occurring dementias are presented in the Supplement (Table S7 
and Extended Data Fig. 2).

Model validation with biomarkers
Model-predicted probabilities for AD, FTD and LBD were aligned with 
the presence of respective biomarkers, as demonstrated in the rain-
cloud plots in Fig. 4 and Table S11. For AD, P(AD) correlated with Aβ, tau 
and FDG PET biomarkers across the NACC and ADNI cohorts, indicating 
statistically significant differences between biomarker-negative and 
positive groups (P < 0.0001). Notably, P(AD) was consistently higher in 
Aβ, tau, and FDG PET positive groups, demonstrating that our frame-
work’s diagnostic process aligns well with the current amyloid, tau, 
and neurodegeneration (ATN) criteria for AD diagnosis53. Within the 
NACC cohort, FTD probabilities, P(FTD), were significantly associated 
with MRI and FDG PET biomarkers, with the biomarker positive groups 
having higher P(FTD). This result corroborates the capability of our 
model to detect FTD in alignment with observed patterns of fronto-
temporal hypometabolism and atrophy54. Finally, LBD probabilities, 
P(LBD), also displayed a clear differentiation when analyzed in relation 
to dopamine transporter scan (DaTscan) evidence for LBD55, with the 
DaTscan-positive group exhibiting higher probabilities of LBD. Taken 
together, these findings validate the model’s effectiveness in capturing 
the pathophysiological underpinnings of prevalent dementia types 
in addition to the clinical syndrome, offering etiology-specific prob-
ability scores that closely match respective biomarker profiles. This 
alignment not only substantiates the model’s predictive validity but 
also highlights its relevance to contemporary clinical practice as its 
mechanism for differential diagnosis of dementia reflects established 
biomarker criteria.

Model validation with neuropathological evidence
In cases with postmortem data (Table S12), we validated our model’s 
etiology-specific probability scores against neuropathological markers 
of common dementia types (Extended Data Fig. 3 and Table S13). The 

Fig. 1 | Data, model architecture and modeling strategy. a, Our model for 
differential dementia diagnosis was developed using diverse data modalities, 
including individual-level demographics, health history, neurological testing, 
physical/neurological exams and multisequence MRI scans. These data sources 
whenever available were aggregated from nine independent cohorts: 4RTNI, 
ADNI, AIBL, FHS, LBDSU, NACC, NIFD, OASIS and PPMI (Tables 1 and S1). For 
model training, we merged data from NACC, AIBL, PPMI, NIFD, LBDSU, OASIS 
and 4RTNI. We used a subset of the NACC dataset for internal testing. For 
external validation, we utilized the ADNI and FHS cohorts. b, A transformer 
served as the scaffold for the model. Each feature was processed into a fixed-
length vector using a modality-specific embedding (emb.) strategy and fed into 

the transformer as input. A linear layer was used to connect the transformer 
with the output prediction layer. c, A subset of the NACC testing dataset was 
randomly chosen to conduct a comparative analysis between neurologists' 
performance augmented with the AI model and their performance without AI 
assistance. Similarly, we carried out comparative evaluations with practicing 
neuroradiologists, who were provided with a randomly selected sample of 
confirmed dementia cases from the NACC testing cohort, to assess the impact of 
AI augmentation on their diagnostic performance. For both these evaluations, 
the model and clinicians had access to the same set of multimodal data. Finally, 
we assessed the model’s predictions by comparing them with biomarker profiles 
and pathology grades available from the NACC, ADNI and FHS cohorts.
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composite violin and boxplots indicate that, with increasing pathologi-
cal severity, there is a corresponding elevation in the model-predicted 
probabilities of the etiology. The first three plots (Extended Data 
Fig. 3a–c) compare AD probabilities against three key AD pathological 

markers with progressive stages: Thal phases of Aβ plaques, Braak 
stages of neurofibrillary degeneration, and Consortium to Establish a 
Registry for Alzheimer’s Disease (CERAD) density scores of neocortical 
neuritic plaques, denoted by A1-A3, B1-B3 and C1-C3, respectively. Each 
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demonstrated an upward shift in the median probability of AD and an 
expansion of the IQR as the stages advanced, with statistical signifi-
cance (p < 0.0001 for Thal, Braak and CERAD stages, respectively). We 
further evaluated our model’s predicted probabilities against cerebral 
amyloid angiopathy (CAA) and arteriolosclerosis, both of which are 
common pathological findings in AD confirmed postmortem cases. 
Similarly, we observed that our model predicted significantly higher 
AD probabilities in individuals with mild, moderate, or severe CAA 
relative to those without CAA (P < 0.05) (Extended Data Fig. 3d), and 

in individuals with arteriolosclerosis (P < 0.05) (Extended Data Fig. 3e), 
underscoring the role of vascular factors in AD progression. Collec-
tively, these plots illustrate a clear trend where advancing stages of 
AD-related pathology are associated with increased P(AD). Finally, 
significant differences were observed in P(VD) and P(FTD) based on 
their respective pathological markers; P(VD) varied between cases with 
and without arteriolosclerosis (P < 0.001) as well as old microinfarcts 
(P < 0.001), and P(FTD) differed significantly between cases with and 
without TDP-43 pathology (P < 0.001) (Extended Data Figs. 3f–h). The 
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Fig. 2 | Model performance on individuals along the cognitive spectrum. 
a,b, ROC and PR curves, with their respective microaverage, macroaverage and 
weighted-average calculations based on the labels for NC, MCI and dementia. 
These averaging techniques consolidated the model’s performance across the 
spectrum of cognitive states. Cases from the NACC testing, along with all the 
cases from ADNI and FHS cohorts, were used. c, Diagram indicating varied levels 
of model performance in the presence of missing data. The inner concentric 
circles represent various scenarios in which particular test information was 
either omitted (masked) or included (unmasked). The three outer concentric 
rings depict the model’s performance as measured by the AUROC for the NC, 
MCI and dementia labels. d, Raincloud plots are used to demonstrate the model’s 
predicted AD probabilities for individuals with MCI and dementia in the NACC 
cohort. Two-sample two-sided unadjusted Kolmogorov-Smirnov (KS) test for 
goodness of fit was used to compare the cases where AD was a factor in cognitive 
impairment to those with non-AD etiologies in MCI (n = 1,486, KS = 0.09, P = 4.29 

× 10−3) and dementia groups (n = 4,085, KS = 0.57, P < 1 × 10−200). e–g, Raincloud 
plots with violin and box diagrams are shown to denote the distribution of CDR 
scores (x axis) versus model-predicted probability of dementia (y axis), on the 
NACC, ADNI and FHS cohorts, respectively. We performed the Kruskal-Wallis 
H-test for independent samples in NACC (n = 8,895, H = 6,921.71, P < 1 × 10−200), 
ADNI (n = 2,400, H = 1,518.79, P < 1 × 10−200) and FHS (n = 1,651, H = 292.04, P = 3.84 
× 10−64). These were followed by post-hoc Dunn’s testing with Bonferroni 
correction for multiple comparisons, and detailed statistical results are 
provided in Table S10. For d–g, each boxplot includes a box presenting the 
median value and interquartile range (IQR), with whiskers extending from the 
box to the maxima and minima no further than a distance of 1.5 times the IQR. 
Significance levels are denoted as ns (not significant) for P ≥ 0.05; *P < 0.05, 
**P < 0.01, ***P < 0.001, ****P < 0.0001. In g, ‘Normal’ indicates cognitively normal 
individuals, ‘Imp’ indicates those with cognitive impairment and ‘Dem’ indicates 
persons with mild, moderate and severe dementia.
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results are consistent with the well-documented association between 
cerebrovascular pathologies and the incidence of VD. Additionally, the 
clear linkage between TDP-43 protein aggregation and its prevalence 
in FTD is reinforced by our data56,57. Overall, these findings highlight 
the capability of our AI-driven framework to align model-generated 
probability scores with a range of neuropathological states beyond 
AD, supporting its potential utility in the evaluation of broader neu-
rodegenerative diseases.

AI-augmented clinician assessments
We aimed to assess whether our AI framework can compare to and 
enhance differential diagnosis of dementia performed by expert cli-
nicians. To this end, we compared our model predicted probabilities 
with clinicians’ diagnoses, which were made in the form of confidence 
scores (0 to 100 scale). Neurologists reviewed 100 randomly selected 
cases, including various dementia subtypes, with comprehensive data 
including demographics, medical history, neuropsychological tests, 
and multisequence MRI scans. We observed that, in instances where the 
diagnosis was confirmed (true positives), the neurologists’ confidence 
scores across NC, MCI, dementia, AD, LBD, VD, FTD, NPH and PSY were 
higher in comparison to cases deemed non-diagnostic (true negatives) 
(P < 0.01) (Extended Data Fig. 4a and Table S17). In contrast, for the 
same 100 cases, our model’s predicted probabilities on true positive 
cases for all categories other than ODE were higher than the predicted 
probabilities for true negative cases (P < 0.01), indicating an enhanced 
ability for our model to detect true positives across more conditions 
(Extended Data Fig. 4a and Table S17). We then analyzed pairwise Pear-
son correlation coefficients to assess interrater agreement for each 

diagnostic category, both among neurologists’ confidence scores, and 
between the neurologists’ confidence scores and our model’s predicted 
probabilities (Extended Data Fig. 5a). Among clinicians’ assessments, 
we found the most robust, consistent associations within the NC and 
dementia groups, followed by modest associations between assess-
ments of MCI, AD, LBD, VD, FTD and PSY. In contrast, PRD, NPH, SEF, 
TBI and ODE demonstrated the least consistency between neurolo-
gists’ assessments. This analysis shed light on dementia types that are 
relatively more challenging to diagnose, as evidenced by the variability 
in diagnostic confidence among expert clinicians. When comparing 
neurologists’ confidence scores with our model’s predicted prob-
abilities, we found that the assessments provided by our model were 
generally consistent with those provided by the neurologists for NC, 
MCI, dementia, AD and LBD, as indicated by Pearson correlation coef-
ficients that exceeded 0.7 (Extended Data Fig. 5b). Associations were 
modest for VD, FTD, PSY, where mean Pearson correlation coefficients 
were approximately 0.5, whereas associations were less consistent for 
PRD, NPH, SEF, TBI and ODE. The lower correlations observed here 
reflect the complex nature of these conditions, compounded by a lack 
of necessary features to tease out their unique signatures.

To determine whether our model could augment the assessments 
provided by neurologists, we computed AI-assisted neurologist con-
fidence scores, which was defined as the mean of the neurologists’ 
confidence scores and our model’s predicted probabilities. We then 
compared the diagnostic performance of individual neurologist 
assessments with that of AI-augmented neurologist assessments 
(Fig. 5a,b and Tables S14 and S15). We consistently found notable 
increases in AUROC and AUPR for all etiologies (P < 0.05). There 
was a mean percent increase in AUROC of 26.25% and a mean per-
cent increase in AUPR of 73.23% across all categories. The great-
est improvement in diagnostic performance was for PRD and TBI, 
where there was a percent increase in mean AUROC of 73% and 72%, 
respectively, and a percent increase in mean AUPR of 242% and 257%, 
respectively. In a separate assessment, neuroradiologists evaluated 
a randomly selected set of 70 clinically diagnosed dementia cases 
and were provided with multisequence MRIs, as well as demographic 
information. For these 70 cases, we found that our model was able to 
provide higher confidence scores for true positive cases (P < 0.01) 
across 4 of the 10 dementia etiologies (Extended Data Fig. 4b and 
Table S18). We also assessed the diagnostic performance of radiolo-
gists and AI-augmented radiologists, which was defined as the mean 
of the radiologists’ confidence scores and our model’s probabilities 
(Fig. 5c,d and Tables S14 and S15). Across various dementia etiolo-
gies, we observed an average increase of 16.19% in AUROC and 41.79% 
in AUPR. A significant enhancement in AUROC (P < 0.05) was noted 
across all etiologies other than TBI and ODE, with PRD showing the 
highest mean AUROC improvement of 69%. AUPR also displayed 
improvements across all etiologies, most markedly in PRD, where the 
mean AUPR surged by 200%.

Discussion
We present an AI model designed for differential dementia diagnosis 
by processing a range of multimodal data. Unlike our previous work39,58, 
our model addresses the clinical challenge of distinguishing between 
various dementia etiologies, including but not limited to AD, VD and 
LBD. Such differentiation is crucial for the precise identification of the 
multifactorial nature of dementia, which is linked to the optimization 
of personalized therapeutic interventions and patient management 
strategies. The model’s robustness was established through its training 
and validation across a diverse set of independent cohorts. Addition-
ally, our model predictions on various etiologies were corroborated 
by their validation on cases for which biomarker and postmortem data 
were available. In a randomly selected subset of cases, our model’s 
predictions, when combined with neurologist assessments, outper-
formed the assessments conducted by neurologists alone. These results 
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Fig. 3 | Model assessment on single and co-occurring dementias. a,b, ROC 
and PR curves are provided, using microaverage, macroaverage and weighted-
average methods across all the dementia diagnostic labels. These averages 
were computed to synthesize the performance metrics across all dementia 
etiologies. Only cases from the NACC testing were used. c, Heatmaps are used to 
depict the model’s performance on co-occurring dementias. We considered all 
combinations where two or more etiologies co-occurred from the NACC testing 
cohort, provided there were at least 25 positive samples. This ensured that 
the maximum variance of the AUROC calculation over all possible continuous 
distributions was upper bounded by 0.01. The first row shows the AUROC values, 
and the second row shows the AUPR values. The table also displays the sample 
sizes for each case, with 1 representing a positive case and 0 indicating a negative 
sample. Only cases from the NACC testing were used.
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underscore our model’s potential in enhancing the efficacy of diagnos-
ing dementia-related disorders.

Our model is designed to address the complex nature of mixed 
dementias by providing probability scores for each contributing 
etiology. This approach is important as it enables clinicians to sys-
tematically prioritize possible drivers of cognitive impairment based 
on available data. The model effectively captures the multifactorial 
and overlapping characteristics of various dementia types, offering a 
clear framework to guide clinical decision-making. For example, mis-
diagnoses in the initial stages of dementia are frequent, often due to 
symptom misattribution to psychiatric disorders, a situation further 
complicated by the presence of multiple co-pathologies59,60. Although 
such misdiagnoses could also be present in the training data, our 
validated model can act as a tool to help standardize practice, poten-
tially reducing variability in clinical assessments. Specifically, LBD 
has historically been difficult to diagnose as early symptoms often 
resemble those of AD and PSY. The co-occurrence of LBD and AD 
further complicates diagnosis and tends to be missed entirely until 
postmortem evaluation61. Our model demonstrated notable perfor-
mance, particularly in identifying the AD and LBD combination, high-
lighting its capability to detect mixed dementias that are commonly 
recognized only through postmortem analysis4,62,63. This capability is 
crucial, given that a considerable portion of dementia cases are linked 
to modifiable risk factors64. The insights provided by our model could 
therefore inform early intervention strategies, potentially altering 
the disease course and enhancing patient outcomes. Notably, our 
model represents a step forward in the field by tackling the detec-
tion of mixed dementias, thereby offering a valuable tool for refining 
diagnostic accuracy in clinical practice.

Powered by a transformer architecture as the backbone, the util-
ity of our modeling framework is founded on its robust processing 
of diverse input types and its adept handling of incomplete datasets 
through random feature masking. These properties are essential for 
clinicians requiring immediate and accurate diagnostic information 
in environments with variable data availability. For example, when a 
general practitioner records clinical observations and cognitive test 
results for an elderly person with possible cognitive decline, our model 
can calculate a probability score indicative of MCI or dementia. This 
function facilitates early medical intervention and more informed 
decisions regarding specialist referrals. At a specialized memory clinic, 
the addition of extensive neuroimaging data and in-depth neuropsy-
chological battery to the model may increase the precision of the 
diagnosis, which, in turn, enhances the formulation of individual man-
agement strategies with a revised probability score. Such capacity to 
tailor its output to the scope of input data exemplifies our modeling 
framework’s role in different healthcare settings, including those where 
swift and resource-efficient diagnosis is paramount. The generation 
of specific, quantifiable probability scores by the model augments its 
utility, establishing it as a useful component in the healthcare delivery 
process. Displaying diagnostic accuracy using varied training data, 
ranging from demographic information to clinical signs, neuroimaging 
findings and neurological test results, the model’s versatility facilitates 
its adaptation to varied clinical operations without necessitating a 
fundamental overhaul of existing workflows. To further increase the 
robustness of our results and test the efficacy of the tool for dementia 
care, prospective studies and clinical trials are necessary. These steps 
will help validate the model’s potential and ensure it meets the needs 
of general practitioners and specialists across healthcare settings. 
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Fig. 4 | Biomarker-level validation. Raincloud plots representing model 
probabilities for dementia etiologies across their respective biomarker-negative 
(blue) and positive groups (pink). a, Model-predicted probabilities for AD, P(AD), 
were analyzed in relation to amyloid β (Aβ) positivity status using a one-sided 
Mann-Whitney U test for the NACC cohort (n = 440, U = 10,303.50, P = 2.04 × 10−25) 
and a one-sided t-test for ADNI (n = 1,108, t = −12.06, P = 9.74 × 10−31). b, Differences 
in P(AD) between tau PET negative and positive biomarker groups were analyzed 
using the one-sided Mann-Whitney U tests for NACC (n = 132, U = 935.50, P = 6.48 
× 10−8) and ADNI (n = 475, U = 5,857.50, P = 4.10 × 10−27). c, Similar analyses 
were run to differentiate P(AD) between fluorodeoxyglucose (FDG) PET 
biomarker groups in NACC (n = 261, U = 3,730.00, P = 3.00 × 10−15), and ADNI 

(n = 760, U = 14,924.00, P = 5.66 × 10−43). d, e, In the NACC cohort, model-
predicted probabilities for frontotemporal lobar degeneration, P(FTD), 
were assessed across MRI (n = 1,494, 30,935.50, P = 1.52 × 10−51) and FDG PET 
biomarker groups (n = 233, U = 1,599.50, P = 2.08 × 10−13) using a one-sided 
Mann-Whitney U test. f, In NACC, LBD probabilities, P(LBD), were analyzed 
between DaTscan negative and positive groups using a one-sided Mann-Whitney 
U test (n = 91, U = 318.50, P = 6.26 × 10−6). All boxplots presented include a box 
presenting the median value and IQR, with whiskers extending from the box 
to the maxima and minima no further than a distance of 1.5 times the IQR. In all 
plots, ****P < 0.0001, and results were not corrected for multiple comparisons.
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Consequently, our model can foster a seamless transition across the 
different levels of dementia care, enabling general practitioners to 
perform preliminary cognitive screenings and specialists to conduct 
thorough examinations. Its inclusive functionality assures an accessible 
and comprehensive tool ensuring fail-safe operation in early detection, 
continuous monitoring and the fine-tuning of differential diagnoses, 
thereby elevating the standard of dementia care.

Although our study has the potential to advance the field of dif-
ferential dementia diagnosis, it does have some limitations. Our model 
was developed and validated on 9 distinct cohorts, but its full generaliz-
ability across diverse populations and clinical settings remains to be 

determined as the dataset comprised a predominantly White popula-
tion. Although our model is adept at handling missing data, the current 
results suggest that its performance may vary when applied to cohorts 
beyond NACC, such as ADNI and FHS, highlighting the need for further 
research to enhance its generalizability across diverse populations. 
Moving forward, we see potential in evaluating the model’s efficacy 
across the care continuum, encompassing primary care facilities, 
geriatric and general neurology practices, family medicine, and spe-
cialized clinics in tertiary medical centers. Furthermore, AI models like 
ours possess the capability to enhance patient screening procedures 
for clinical trial recruitment65. Our study’s datasets primarily consist 
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Fig. 5 | AI-augmented clinician assessments. Comparison between the 
performance of the assessments provided by practicing clinicians versus model-
assisted clinicians is shown. a,b, For the analysis, neurologists (n = 12) were given 
100 randomly selected cases encompassing individual-level demographics, 
health history, neurological tests, physical as well as neurological examinations, 
and multisequence MRI scans. The neurologists were then tasked with assigning 
confidence scores for NC, MCI, dementia and the 10 dementia etiologies: 
AD, LBD, VD, PRD, FTD, NPH, SEF, PSY, TBI and ODE (Glossary 1). The boxplots 
show AUROC in a and AUPR in b for individual neurologist and model-assisted 
neurologist performance (defined as the mean between model and neurologist 
confidence scores). Pairwise statistical comparisons were conducted using the 
one-tailed Wilcoxon signed-rank test without corrections made for multiple 
comparisons, with significance levels denoted as: ns (not significant) for P ≥ 0.05; 
*P < 0.05, **P < 0.01, ***P < 0.001 ****P < 0.0001. Detailed statistics and P values 

can be found in Table S14. The percent increase in mean performance for each 
etiology is also presented above each statistical annotation. c,d, Similarly, in a 
separate analysis, radiologists (n = 7) were given 70 randomly selected cases with 
a confirmed dementia diagnosis encompassing individual-level demographics 
and multisequence MRI scans. The radiologists were tasked with assigning 
confidence scores for the 10 dementia etiologies, and the boxplots show AUROC 
in c and AUPR in d for the individual radiologist and model-assisted radiologist 
performance for the 10 etiologies. Statistical annotations and percent increase in 
mean performance with respect to each etiology are shown in a similar fashion, 
with significance levels corresponding to the results of unadjusted one-tailed 
Wilcoxon signed-rank tests denoted as *, **, *** and ****. Detailed statistics and 
P values can be found in Table S15. Each boxplot includes a box presenting the 
median value and IQR, with whiskers extending from the box to the maxima and 
minima no further than a distance of 1.5 times the IQR.
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of AD cases, and although AD is the most common type of dementia, 
this could potentially skew our model towards improved recognition 
of this specific subtype, introducing a bias. Although we incorpo-
rated various dementia etiologies, the imbalanced representation 
might affect the model’s generalizability and sensitivity towards less 
frequent types. It is important to note that, beyond data imbalance, 
certain conditions were inherently more challenging to assess given 
the available feature set, as exemplified by the lower performance of 
expert neurologists in diagnosing conditions such as SEF and TBI. This 
challenge is compounded by the fact that annotations used for model 
training can be uncertain or inconsistent as diagnostic decisions can 
vary among clinicians due to subjective interpretations of symptoms 
and variability in available information. Our training data might reflect 
these uncertainties, potentially affecting the model’s accuracy. How-
ever, the use of AI models in this context also presents an opportunity. 
By systematically analyzing large datasets, AI can help identify patterns 
that may be less apparent in individual cases, which can reduce vari-
ability in clinical assessments. Models trained on uncertain annotations 
can also be refined and improved over time as more accurate and 
comprehensive data become available. This iterative learning process 
can enhance the model’s reliability and utility in diagnosing complex 
conditions. Additionally, we chose to amalgamate mild, moderate, and 
severe dementia cases into a single category. We acknowledge that this 
categorization method might not completely reflect the nuanced indi-
vidual staging practiced in specific healthcare settings, where varying 
degrees of dementia severity carry distinct implications for treatment 
and management strategies. Our focus was primarily on differential 
diagnosis rather than disease staging, which motivated this decision. 
Future enhancements to our model could potentially include disease 
staging as an additional dimension, thereby augmenting its granularity 
and relevance. Finally, our study does not fully address the consider-
able heterogeneity inherent in AD, which is characterized by diverse 
clinical presentations and pathological features66,67. Future studies 
are needed to rigorously evaluate AD heterogeneity by conducting 
stratified analyses based on specific clinical and pathological subtypes 
to understand how the model performs across different AD variants.

The evidence collected from this study signals a convergence 
between advanced computational methods and the task of differential 
dementia diagnosis, crucial for scenarios with scarce resources and 
the complex challenge of mixed dementia, a condition frequently 
encountered yet diagnostically complex. Our model efficiently inte-
grates multimodal data, showing strong performance across diverse 
settings. Future validations, such as large-scale prospective cohort 
studies and multi-center clinical trials, encompassing a wider demo-
graphic and geographical expanse, will be pivotal to substantiate the 
model’s robustness and enhance its diagnostic utility in dementia care. 
Additionally, longitudinal studies tracking patient outcomes and com-
parative effectiveness research against current standard practices are 
essential to confirm the clinical usefulness of our tool. Our pragmatic 
investigation accentuates the potential of neural networks to refine 
the granularity of diagnostic evaluations in neurocognitive disorders.
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maries, source data, extended data, supplementary information, 
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tributions and competing interests; and statements of data and code 
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Methods
Study population
We collected demographics, personal and family history, laboratory 
results, findings from the physical/neurological exams, medications, 
neuropsychological tests, and functional assessments as well as mul-
tisequence magnetic resonance imaging (MRI) scans from 9 distinct 
cohorts, totaling 51,269 participants. All participants or their desig-
nated informants provided written informed consents. All protocols 
received approval from the respective institutional ethical review 
boards of each cohort. There were 19,849 participants with NC, 9,357 
participants with MCI and 22,063 participants with dementia. We 
further identified 10 primary and contributing causes of dementia: 
17,346 participants with AD; 2,003 participants with dementia with 
LBD and PD (LBD); 2,032 participants with vascular brain injury or VD 
including stroke (VD); 114 participants with Prion disease including 
Creutzfeldt-Jakob disease (PRD); 3,076 participants with frontotempo-
ral lobar degeneration (FTD) and its variants, which includes corticoba-
sal degeneration (CBD) and progressive supranuclear palsy (PSP), and 
with or without amyotrophic lateral sclerosis (FTD); 138 participants 
with normal pressure hydrocephalus (NPH); 808 participants with 
dementia due to infections, metabolic disorders, substance abuse 
(including alcohol, medications), delirium and systemic disease, a 
category termed as systemic and external factors (SEF); 2,700 partici-
pants with psychiatric diseases, including schizophrenia, depression, 
bipolar disorder, anxiety and posttraumatic stress disorder (PSY); 265 
participants with dementia due to traumatic brain injury (TBI); and 
1,234 participants with dementia due to other causes, which include 
neoplasms, multiple systems atrophy, essential tremor, Huntington’s 
disease, Down syndrome and seizures (ODE).

The cohorts include the National Alzheimer’s Coordinating Center 
(NACC) dataset (n = 45,349)41, the ADNI dataset (n = 2,404)48, the FTD 
neuroimaging initiative (NIFD) dataset (n = 253)46, the Parkinson’s 
Progression Marker Initiative (PPMI) dataset (n = 198)45, the Austral-
ian Imaging, Biomarker and Lifestyle Flagship Study of Ageing (AIBL) 
dataset (n = 661)43, the Open Access Series of Imaging Studies-3 (OASIS) 
dataset (n = 491)42, the 4 Repeat Tauopathy Neuroimaging Initiative 
(4RTNI) dataset (n = 80)44 and three in-house datasets maintained by 
the Lewy Body Dementia Center for Excellence at Stanford University 
(LBDSU) (n = 182)47 and the FHS (n = 1,651)49. Since its inception in 1948, 
FHS has been dedicated to identifying factors contributing to cardio-
vascular disease, monitoring multiple generations from Framingham, 
Massachusetts. Over time, the study has pinpointed major cardiovas-
cular disease risk factors and explored their effects while also inves-
tigating risk factors for conditions like dementia and analyzing the 
relationship between physical traits and genetics. Additional details 
on the study population are presented in Tables 1 and S1.

Inclusion and exclusion criterion
Individuals from each cohort were eligible for study inclusion if they 
were diagnosed with NC, MCI or dementia. We used the NACC dataset41, 
which is based on the Uniform Data Set (UDS) 3.0 dictionary68, as the 
baseline for our study. To ensure data consistency, we organized the 
data from the other cohorts according to the UDS dictionary. For indi-
viduals from the NACC cohort who had multiple clinical visits, we ini-
tially prioritized the visits at which the person received the diagnostic 
label of dementia. We then selected the visit with the most data features 
available prioritizing the availability of neuroimaging information. If 
multiple visits met all the above criteria, we chose the most recent visit 
among them. This approach maximized the sample sizes of dementia 
cases and ensured that each individual had the latest record included 
in the study while maximizing the utilization of available neuroimag-
ing and non-imaging data. We included participants from the 4RTNI 
dataset44 with FTD-related disorders like PSP or CBS. For other cohorts 
(NIFD46, PPMI45, LBDSU47, AIBL43, ADNI48 and OASIS42), participants 
were included if they had at least one MRI scan within 6 months of an 

officially documented diagnosis. From the FHS49, we used data from 
the Original Cohort (Gen 1) enrolled in 1948 and the Offspring Cohort 
(Gen 2) enrolled in 1971. For these participants, we selected available 
data including demographics, history, clinical exam scores, neuropsy-
chological test scores and MRI within 6 months of the date of diagnosis. 
We did not exclude cases based on the absence of features (including 
imaging) or diagnostic labels. Instead, we used our innovative model 
training approach to address missing features or labels (see below).

Data processing and training strategy
Various non-imaging features (n = 391) corresponding to subject demo-
graphics, medical history, laboratory results, medications, neuropsy-
chological tests and functional assessments were included in our study. 
We combined data from 4RTNI, AIBL, LBDSU, NACC, NIFD, OASIS and 
PPMI to train the model. We used a portion of the NACC dataset for 
internal testing, whereas the ADNI and FHS cohorts served for exter-
nal validation (Tables 1 and S1–S5). We used a series of steps such as 
standardizing the data across all cohorts and formatting the features 
into numerical or categorical variables before using them for model 
training. We used stratified sampling at the person-level to create the 
training, validation and testing splits. As we pooled the data from multi-
ple cohorts, we encountered challenges related to missing features and 
labels. To address these issues and enhance the robustness of our model 
against data unavailability, we incorporated several strategies such as 
random feature masking and masking of missing labels (see below).

MRI processing
Our investigation harnessed the potential of multisequence mag-
netic resonance imaging (MRI) volumetric scans sourced from diverse 
cohorts (Table S6). Most of these scans encompassed T1-weighted 
(T1w), T2-weighted (T2w), diffusion-weighted imaging (DWI), 
susceptibility-weighted imaging (SWI) and fluid-attenuated inver-
sion recovery (FLAIR) sequences. The collected imaging data were 
stored in the NIFTI file format, categorized by participant and the 
date of their visit. The MRI scans underwent a series of pre-processing 
steps involving skull stripping, linear registration to the MNI space and 
intensity normalization. Skull stripping was performed using Synth-
Strip69, a computational tool designed for extracting brain voxels from 
various image types. Then, the MRI scans were registered using FSL’s 
‘flirt’ tool for linear registration of whole brain images70, based on the 
MNI152 atlas71. Before linear registration to the MNI space, we used 
the ‘fslorient2std’ function within FSL to standardize the orientation 
across all scans to match the MNI template’s axis order. As a result, the 
registered scans followed the dimensions of the MNI152 template, 
which are 182 × 218 × 182. Finally, all MRI scans underwent intensity 
normalization to the range [0,1] to increase the homogeneity of the 
data. To ensure the purity of the dataset, we excluded calibration, 
localizer and 2D scans from the downloaded data before initiating 
model training. Consequently, as our DWI sequences were acquired 
in 2D, they were not considered for model training.

Backbone architecture
Our modeling framework harnesses the power of the transformer archi-
tecture to interpret and process a vast array of diagnostic parameters, 
including person-level demographics, medical history, neuroimaging, 
functional assessments and neuropsychological test scores. Each of 
these distinct features is initially transformed into a fixed-length vector 
using a modality-specific strategy, forming the initial layer of input for 
the transformer model. Following this, the transformer acts to aggre-
gate these vector inputs, decoding them into a series of predictions. A 
distinguishing strength of this framework lies in its integration of the 
transformer’s masking mechanism72,73, strategically deployed to emu-
late missing features. This capability enhances the model’s robustness 
and predictive power, allowing it to adeptly handle real-world scenarios 
characterized by incomplete data.
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Multimodal data embeddings
Transformers use a uniform representation for all input tokens, typi-
cally in the form of fixed-length vectors. However, the inherent com-
plexity of medical data, with its variety of modalities, poses a challenge 
to this requirement. Therefore, medical data needs to be adapted into 
a unified embedding that our transformer model can process. The 
data we accessed fall into three primary categories: numerical data, 
categorical data and imaging data. Each category requires a specific 
method of embedding. Numerical data typically encompass those data 
types where values are defined in an ordinal manner that holds distinct 
real-world implications. For instance, chronological age fits into this 
category, as it serves as an indicator of the aging process. To project 
numerical data into the input space of the transformer, we used a single 
linear layer to ensure appropriate preservation of the structure inher-
ent to the original data space. Categorical data encompass those inputs 
that can be divided into distinct categories yet lack any implicit order 
or priority. An example of this is gender, which can be categorized as 
‘male’ or ‘female’. We used a lookup table to translate categorical inputs 
into corresponding embeddings. It is noteworthy that this approach 
is akin to a linear transformation when the data is one-hot vector-
ized but is computationally efficient, particularly when dealing with a 
vast number of categories. Imaging data, which includes MRI scans in 
medical applications, can be seen as a special case of numerical data. 
However, due to their high dimensionality and complexity, it is diffi-
cult to compress raw imaging data into a lower-dimensionality vector 
using a linear transformation while still retaining essential informa-
tion. We leveraged the advanced capabilities of modern deep learning 
architectures to extract meaningful imaging embeddings (see below). 
Once these embeddings were generated, they were treated as numeri-
cal data, undergoing linear projection into vectors of suitable length, 
thus enabling their integration with other inputs to the transformer.

Imaging feature extraction
We harnessed the Swin UNETR (Extended Data Fig. 6)74,75, a 
three-dimensional (3D) transformer-based architecture, to extract 
embeddings from a multitude of brain MRI scans, encompassing vari-
ous sequences including T1w, T2w, SWI and FLAIR imaging sequences. 
The Swin UNETR model consists of a Swin Transformer encoder, 
designed to operate on 3D patches, seamlessly connected to a convo-
lutional neural network-based decoder through multi-resolution skip 
connections. Commencing with an input volume X ∈ ℝH×W×D , the 
encoder segmented X into a sequence of 3D tokens with dimensions 
H
H′
× W

W′
× D

D′
, and projected them into a C-dimensional space via an 

embedding layer. It employed a patch size of 2 × 2 × 2 with a feature 
dimension of 2 × 2 × 2 × 1 and an embedding space dimension of C = 48. 
The Swin UNETR encoder was subsequently interconnected with a 
convolutional neural network-based decoder at various resolutions 
through skip connections, collectively forming a ‘U-shaped’ network. 
This decoder amalgamated the encoder’s outputs at different resolu-
tions, conducted upsampling via deconvolutions, ultimately generat-
ing a reconstruction of the initial input volume. The pre-trained weights 
were the product of self-supervised pre-training of the Swin UNETR 
encoder, primarily conducted on 3D volumes encompassing the chest, 
abdomen and head/neck74,75.

The process of obtaining imaging embeddings began with several 
transformations applied to the MRI scans. These transformations 
included resampling the scans to standardized pixel dimensions, 
foreground cropping, and spatial resizing, resulting in the creation of 
subvolumes with dimensions of 128 × 128 × 128. Subsequently, these 
subvolumes were input into the Swin UNETR model, which in turn 
extracted encoder outputs sized at 768 × 4 × 4 × 4. These extracted 
embeddings underwent downsampling via a learnable embedding 
module, consisting of four convolutional blocks, to align with the input 
token size of the downstream transformer. As a result, the MRI scans 
were effectively embedded into one-dimensional vectors, each of size 

256. These vectors were then combined with non-imaging features and 
directed into the downstream transformer for further processing. The 
entire process used a dataset comprising 8,155 MRI volumes, which 
were allocated for model training, validation and testing (Table S6).

Random feature masking
To enhance the robustness of the backbone transformer in handling 
data incompleteness, we leveraged the masking mechanism72,73 to 
emulate arbitrary missing features during training. The masking mech-
anism, when paired with the attention mechanism, effectively halts the 
information flow from a given set of input tokens, ensuring that certain 
features are concealed during prediction. A practical challenge arises 
when considering the potential combinations of input features, which 
increase exponentially. With hundreds of features in play, capturing 
every potential combination is intractable. Inspired by the definition 
of Shapley values, we deployed an efficient strategy for feature drop-
out. Given a sample with a feature set S, S is randomly permuted as σ; 
simultaneously, an integer i is selected independently from the range 
[1, |S|]. Subsequent to this, the features σi+1, σi+2, …, σ∣S∣ are masked out 
from the backbone transformer. It is noteworthy that the dropout 
process was applied afresh across different training batches or epochs 
to ensure that the model gets exposed to a diverse array of missing 
information even within a single sample.

Handling missing labels
The backbone transformer was trained by amalgamating data from 
multiple different cohorts, each focused on distinct etiologies, which 
introduced the challenge of missing labels in the dataset. While most 
conventional approaches involve discarding records with incomplete 
output labels during training, we chose a more inclusive strategy to 
maximize the utility of the available data. Our approach framed the 
task as a multilabel classification problem, introducing thirteen sepa-
rate binary heads, one for each target label. With this design, for every 
training sample, we generated a binary mask indicating the absence of 
each label. We then masked the loss associated with samples lacking 
specific labels before backpropagation. This method ensured optimal 
utilization of the dataset, irrespective of label availability. The primary 
advantage of this approach lies in its adaptability. By implementing this 
label-masking strategy, our model can be evaluated against datasets 
with varying degrees of label availability, granting us the flexibility to 
address a wide spectrum of real-world scenarios.

Loss function
Our backbone model was trained by minimizing the loss function (ℒ) 
composed of two loss terms: ‘focal loss (FL)’76 (ℒFL) and ‘ranking loss 
(RL)’ (ℒRL), along with the standard L2 regularization term. FL is a vari-
ant of standard cross-entropy loss that addresses the issue of class 
imbalance; it assigns low weight to easy (well-classified) instances and 
employs a balance parameter. This loss function was used for each of 
the diagnostic categories (a total of 13; Glossary 1). Therefore, our ℒFL 
term was:

ℒFL =
1
N

N
∑
k=1

13
∑
i=1

−yk,iαi(1 − pk,i)
γ log(pk,i) − (1 − yk,i)(1 − αi)(pk,i)

γ log(1 − pk,i),

where N was the batch size (that is, N = 128), and other parameters 
and variables were as defined. The focusing parameter γ was set to 2, 
which had been reported to work well in most of the experiments in the 
original paper76. Moreover, αi ∈ [0, 1] was the balancing parameter that 
influenced the weights of positive and negative instances. It was set as 
the square of the complement of the fraction of samples labeled as 1, 
varying for each i due to the differing level of class imbalance across 
diagnostic categories (Table 1). The FL term did not take inter-class 
relationships into account. To address these relationships in our overall 
loss function, we also incorporated the RL term that induced loss if the 
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sigmoid outputs for diagnostic categories labeled as 0 were not lower 
than those labeled as 1 by a predefined margin of ϵ, for any training 
sample k. We defined the RL term for any pair of diagnostic categories 
i and j, as follows:

ℒ(i, j)
RL (pk,yk) = max(0, (pk,i − pk, j)( yk, j − yk,i) + ϵ),

Overall, the RL term was:

ℒRL =
1
N

N
∑
k=1

13
∑
i=1

13
∑
j=i+1

ℒ(i, j)
RL (pk,yk).

Combining all terms, our overall loss function (ℒ) was:

ℒ = ℒFL + λℒRL + β ∥ w∥2,

where λ and β were the weights that controlled the importance of ℒRL 
and the L2 regularization terms, respectively. The training was done 
using the mini-batch strategy with the AdamW optimizer77, an improved 
version of the Adam optimizer78, with a learning rate of 0.001 for a total 
of 256 epochs. Additionally, we utilized a cosine learning rate scheduler 
with warm restarts79, initiating the first restart after 64 epochs and 
extending the restart period by a factor of 2 for each subsequent restart. 
The values of ϵ, λ, and β were determined to be ϵ = 0.25, λ = 0.005, and 
β = 0.0005, respectively, based on an evaluation of the overall model 
performance on the validation set. During training, the model perfor-
mance was evaluated on the validation set at the end of each epoch, 
and the model with the highest performance was selected. To demon-
strate the effectiveness of the focal loss in compensating for the high 
class imbalance, the performance of our baseline model was compared 
against that of a model trained without the focal loss term across all 
the 13 diagnostic categories (Table S16).

Interpretability analysis
The primary goal of interpretability analysis is to demystify ML models 
by providing clear insights into how various features influence predic-
tions. Central to this field lies the Shapley value51, originally a game 
theory concept, now repurposed to evaluate feature significance in 
ML models. In this context, each instance is considered a unique ‘game’, 
where features act as players contributing to the outcome. The model’s 
output is analogous to the game’s payoff, with the Shapley value quan-
tifying each feature’s contribution towards this outcome. However, 
calculating Shapley values for all possible feature combinations is 
often computationally infeasible due to the sheer number of features. 
To overcome this, we applied permutation sampling to approximate 
Shapley values80, which simplifies computations while maintaining 
accuracy in estimating feature contributions. We performed Shapley 
analysis on the NC, MCI and dementia predictions within the NACC test 
set. We first identified cases for which the model yielded logit values 
greater than 0. We then selected a subset of 500 cases with the most 
features available per diagnostic group. Features were subsequently 
ranked based on their mean Shapley values. To account for data miss-
ingness, features that were absent for a case were assigned a zero 
Shapley value, ensuring their influence was accurately represented. 
The resulting distribution of Shapley values across features provided 
insight into their relative importance, with higher values indicating 
more influence.

Traditional ML models
To assess our model’s ability to classify NC, MCI and dementia cases, 
we compared its performance with that of the CatBoost model, a 
tree-based classification framework39,50. Given the variable availability 
of features across the test cohorts (Tables S2, S4 and S5), we divided the 
data into two feature subsets. This stratification enabled a comparison 
with CatBoost, offering insights into our model’s performance using 

a range of parameters. The first feature subset consisted of variables 
common across all cohorts, including demographics, MMSE and Bos-
ton Naming Test scores. The second subset expanded on this by incor-
porating additional neuropsychological measures found in the NACC 
and ADNI cohorts, such as trail making tests A and B, logical memory 
IIA delayed recall, MoCA scores, and digit span forward and backward 
tests. We trained separate CatBoost models for each feature set but 
applied our model to both subsets without retraining, allowing for a 
consistent evaluation across different feature configurations.

Biomarker validation
The predicted probabilities of the model for various etiologies were 
cross-validated with established gold-standard biomarkers pertinent 
to each respective etiology. Both the NACC and ADNI test cohorts were 
used in AD biomarker analyses, whereas only NACC testing data were 
used for FTD and LBD analyses due to biomarker availability. In the 
NACC dataset, binary UDS variables were used to define positivity for 
amyloid β (Aβ), tau and fluorodeoxyglucose F18 (FDG) PET biomarkers 
for AD due to varying PET processing methods across centers. Binary 
UDS variables were also used to define FDG and MRI evidence for FTD, 
and DaTscan as evidence for LBD. In ADNI, the University of California, 
Berkeley (UCB) Aβ PET processing pipeline yields Freesurfer-defined 
cortical summary and reference regions, as well as centiloids (CL). A 
cutoff value of 20 CL was chosen to define positivity81. For tau, the UCB 
processing pipeline yields standardized uptake value ratios (SUVr) 
in Freesurfer-defined regions. A meta-temporal region of interest 
was constructed following established standards82. A Gaussian mix-
ture model with two components identified 1.74 SUVr as the optimal 
threshold to separate the two distributions, where values greater than 
1.74 indicated tau PET positivity. Finally, the UCB FDG PET processing 
pipeline yields a meta-region of interest, on which a Gaussian mixture 
model with two components identified 1.21 SUVr as the best threshold, 
with values smaller than 1.21 indicating positivity for neurodegenera-
tion. Information regarding the PET processing protocols can be found 
in the summaries of UCB amyloid, tau, and FDG PET methods available 
on the LONI Image Data Archive website83.

Neuropathologic validation
The model’s predictive capacity for various dementia etiologies was 
substantiated through alignment with neuropathological evaluations 
sourced from the NACC, FHS and ADNI cohorts (Table S12). We included 
participants who conformed to the study’s inclusion criteria, had a diag-
nosis close to 3 years before death, and for whom neuropathological 
data were available. Standardization of data was conducted in accord-
ance with the Neuropathology Data Form Version 10 protocols from 
the National Institute on Aging84. We pinpointed neuropathological 
indicators that influence the pathological signature of some dementia 
etiologies, such as arteriolosclerosis, the presence of neurofibrillary 
tangles and amyloid plaques, and CAA. These indicators were chosen 
to reflect the complex pathological terrain that defines each form of 
dementia. To examine the Thal phase for amyloid plaques (A score), 
subjects were categorized into two groups: one encompassing Phase 
0, indicative of no amyloid plaque presence, and a composite group 
merging Phases 1-5, reflecting varying degrees of amyloid pathology. 
The model’s predictive performance was then compared across these 
groupings. For the Braak stage of neurofibrillary degeneration (B 
score), we consolidated stages I-VI into a single collective, representing 
the presence of AD-type neurofibrillary pathology, whereas stage 0 was 
designated for cases devoid of AD-type neurofibrillary degeneration. 
With respect to the density of neocortical neuritic plaques, assessed 
by the (CERAD or C score), individuals without neuritic plaques con-
stituted one group, whereas those with any manifestation of neuritic 
plaques (sparse, moderate or frequent (C1–C3)) were aggregated into a 
separate group for comparative analysis of the model’s predictive out-
comes. To evaluate model alignment with the severity of CAA, subjects 
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were classified into two groups, one representing the absence of CAA 
and another encapsulating all stages of CAA severity, ranging from 
mild to severe. We also evaluated the presence of arteriolosclerosis, 
underscoring the role of vascular pathology in the progression of AD 
by decreasing cerebral blood flow and impairing Aβ clearance. Further-
more, to evaluate the model’s concordance with non-AD pathologies, 
we analyzed the association between the model-generated probabili-
ties of VD with the presence of old microinfarcts and arteriolosclerosis, 
and FTD with the presence of TDP-43 pathology.

AI-augmented clinician assessments
We aimed to ascertain if our model could bolster the diagnostic prow-
ess of clinicians specializing in dementia care and diagnosis. To this 
end, a group of 12 neurologists and 7 neuroradiologists were invited 
to participate in diagnostic tasks on a subset of NACC cases (see ‘Data 
processing and training strategy’). Neurologists were presented with 
100 cases, which included 15 cases each of NC and MCI, and 7 cases for 
each of the dementia etiologies. The data encompassed person-level 
demographics, medical history, social history, neuropsychological 
tests, functional assessments, and multisequence MRI scans where 
possible (that is, T1w, T2w, FLAIR, DWI and SWI sequences). They were 
asked to provide their diagnostic impressions, as well as a confidence 
score ranging from 0 to 100 for the diagnosis of each of the 13 labels. 
These confidence scores quantitatively reflect the clinician’s certainty 
in their diagnosis, with higher scores indicating greater certainty. This 
scoring system facilitated a quantitative comparison between the clini-
cians’ diagnostic certainty and the predictive probabilities generated 
by our model. Similarly, neuroradiologists were provided with the same 
multisequence MRI scans, along with information on age, gender, race, 
and education status from 70 clinically diagnosed dementia cases. 
They were also tasked with providing diagnostic impressions, as well 
as confidence scores concerning the origin of dementia (Glossary 1). 
To evaluate the potential enhancement of clinical judgments by our 
model, we calculated AI-augmented confidence scores by averaging the 
clinicians’ confidence scores with our model’s predicted probabilities. 
We then assessed the diagnostic accuracy of the clinicians’ original 
and AI-augmented confidence scores using AUROC and AUPR metrics. 
The specifics of the case samples and questionnaires provided to the 
neurologists and neuroradiologists are detailed below.

Neurologist approach to the ratings
Neurologist 1. The clinical data were reviewed initially, taking note of 
potential contributors such as extreme age or education (for exam-
ple, age > 90 years, education less than 9 grades), primary language 
and language of cognitive testing. Pertinent factors like a history of 
transient ischemic attack or stroke, PD diagnosis and/or PD medica-
tion usage, known genetic mutations, closed head injury, alcohol or 
substance use disorders, chronic psychiatric symptoms/disorders and 
APOE genotype were assessed. Next, the current level of functional 
abilities was evaluated from the provided initial description (for exam-
ple, independent living, requiring assistance with some or all activi-
ties) and FAQ responses. FAQ scores of 9 or higher typically indicated 
limitations with instrumental activities of daily living, supporting a 
dementia diagnosis. FAQ scores ranging from 4 to 8 would align with 
MCI if cognitive test scores indicated cognitive decline. Subsequently, 
cognitive test scores were reviewed, with focus on age, education, and 
gender-adjusted Z scores. For those with NC, no Z scores deviated 
by 1 standard deviation below the mean (that is, no score of −1.0 or 
worse). Persons with MCI would exhibit at least one Z score of −1.5 or 
worse (for example, −1.75) or two scores of −1.0 in the same cognitive 
domain. Persons with dementia would typically present with two or 
more scores at −2.0 or worse. Interpretation for patients with very low 
education or non-native language cognitive testing was approached 
cautiously. Following this, brain MRIs (T1w images) were reviewed for 
signs of atrophy, the pattern of atrophy, and cerebrovascular disease. 

When available, DWI was used to identify a diffusion restriction pattern 
commonly seen in prion diseases. Functional abilities and cognitive 
test scores were used to classify persons as normal, MCI, or dementia. 
For persons between categories, a continuum scale was employed. 
For instance, a score of 80 for MCI and 20 for dementia would indi-
cate an 80% likelihood of classification as MCI and a 20% likelihood of 
classification as dementia. For individuals with MCI or dementia, the 
most likely diagnostic category or categories were selected. In cases of 
mixed dementia or unclear causation, multiple diagnostic categories 
were chosen, with their scores summing to 100. Each category’s score 
reflected the estimated contribution and, for mixed dementias, the 
extent of their contribution. For example, a score of 70 for AD, 20 for 
LBD and 10 for VD would signify an estimated 70% contribution from 
AD, 20% from LBD and 10% from cerebrovascular disease.

Neurologist 2. The evaluation of case reports began with a compre-
hensive analysis of demographics, available medical history, APOE4 
status, structured family history and an assessment of the patient’s 
level of functional independence. Subsequently, a thorough exami-
nation of corresponding clinical scales and neuropsychological test 
results was conducted. Careful observations were made regarding the 
subject’s educational background, the presence of visual or hearing 
impairments, and whether the tests were conducted in the subject’s 
native language. Following this, the synthesis of clinical data allowed 
for the prediction of the presence of MCI, dementia, or cognitive states 
falling below the MCI threshold, often referred to as ‘normal’ cognition. 
These predictions were quantified, with the most probable diagnosis 
assigned a rating exceeding 50%, whereas the others received lower 
ratings, reflecting the confidence in the diagnosis. Subsequently, the 
MRI sequences were examined alongside the case report to identify 
factors contributing to the patient’s clinical condition. Distinctly, 
findings such as medial temporal atrophy and parietal atrophy were 
prominently associated with AD, whereas the presence of flair hyper-
intensity and focal encephalomalacia without an alternative cause was 
considered indicative of vascular burden and/or dementia, especially 
when accompanied by deep and/or brainstem microhemorrhages. 
Brainstem atrophy was frequently observed in cases suggestive of 
potential stroke or Lewy body conditions, and the use of DWI sequences 
allowed for the potential identification of conditions like prion disease 
and epilepsy-related disorders. In assessing the clinical significance 
of these contributors, the most plausible factors were rated highest, 
whereas other contributors received lower but still considerable rat-
ings, typically exceeding 50%. However, distinguishing psychiatric 
features stemming from a neurodegenerative process from those 
arising as independent comorbid issues occasionally posed a chal-
lenge. Importantly, observed vascular burden in imaging, even when 
it didn’t independently warrant a dementia diagnosis, was consistently 
acknowledged under the vascular category, often rated highly due to 
the confidence in its clinical significance.

Neurologist 3. In the approach to differential diagnosis for demen-
tia, a detailed case overview encompassed a wide spectrum of clini-
cal information including demographics, vitals and comprehensive 
personal and medical histories, alongside results from systematic 
physical, neurological, psychiatric and neurocognitive evaluations. 
Cognitive function was assessed using clinician impressions from 
neuropsychiatric evaluations and standardized testing with MMSE or 
MoCA, facilitating the distinction among NC, MCI and dementia. Func-
tional assessments provided insights into the impact of neurological 
disorders on daily living activities. Specific scales and questionnaires, 
such as the Hachinski Ischemic Score, evaluations for PSP, and CBS, 
the Unified Parkinson’s Disease Rating Scale and the Neuropsychiatric 
Inventory Questionnaire, were instrumental in identifying localized 
or generalized neurological deficits, signs and symptoms of PD and 
related conditions, and characteristic features of LBD, such as visual 
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hallucinations. The presence of typical symptoms for disorders like 
NPH also contributed to fine-tuning the differential diagnosis. The 
Geriatric Depression Scale was used to discern if primary psychiatric 
disorders might mimic dementia presentations. An extensive review 
of neurocognitive testing data aided in differentiating AD from other 
cognitive disorders. Detailed MRI analyses, revealing anomalies such 
as cortical atrophy, ischemic changes and ventriculomegaly, further 
refined the diagnostic process.

Neurologist 4. The patient’s cognitive status, ranging from NC to MCI 
or dementia, was primarily determined based on neuropsychiatric test 
results and the functional assessment scale. Special consideration 
was given to patients with Parkinson’s syndrome, as their movement 
disorders could impact functional assessment scores. When neuropsy-
chiatric testing clearly indicated dementia, diagnosis was straightfor-
ward. However, cases teetering on the borderline between MCI and AD 
required a closer examination, where functional assessment scores, 
medical history, and physical examination findings were collectively 
considered, factoring in the influence of motor disorders on the assess-
ment. This process involved adjusting the probability estimate based 
on clinical judgment. Regarding etiological diagnosis, a comprehensive 
evaluation was carried out, taking into account both medical history 
and imaging data. Cases presenting with Parkinson’s symptoms led 
to differential diagnoses that included PD dementia, dementia with 
Lewy bodies, CBD, PSP and others. In instances where imaging revealed 
markers of cerebral small vessel disease, the possibility of VD was 
explored. Notably, when prominent mental symptoms were coupled 
with atrophy in one side of the frontal and temporal lobes, considera-
tion was given to frontotemporal degeneration. Infectious, metabolic, 
traumatic, and hereditary causes were also taken into account, guided 
by the relevant medical history. The adjustment of probability in these 
cases was guided by personal judgment.

Neurologist 5. The assessment combined insights from clinical and 
medication history, specific neurological examinations and neu-
ropsychological test scores. Initially, attention was given to basic 
demographic data, such as age and the subject’s living situation. Subse-
quently, a comprehensive evaluation of medical and social history was 
conducted, considering potential dementia risk factors and relevant 
habits. The presence or absence of APOE alleles was noted. Medica-
tion history was scrutinized, particularly medications associated with 
vascular comorbidities like antihypertensives and anticoagulants, 
indicative of vascular disease risk. The presence of antidepressants 
was acknowledged, considering potential psychiatric conditions linked 
to cognitive decline. During the review of neurological examinations, 
focus was placed on gaze, tremor, parkinsonism and gait assessment. 
Neuropsychological examination scores were analyzed, first taking 
note of the number of abnormal tests. MoCA scores were used when 
available, alongside other tests like WMS. Language assessment, 
often relying on Animals and Digit span backwards, played a crucial 
role. Z scores and absolute scores were considered for test abnor-
mality determination. Cognitive decline characterized by language 
and memory loss pointed to AD. The presence of hallucinations and 
parkinsonism suggested LBD, or if PD was advanced, it pointed to PD 
dementia. Executive dysfunction and disinhibition were signs of FTD. 
Hydrocephalus-associated urinary symptoms and specific findings 
hinted at NPH. MCI was identified through mildly abnormal tests and 
preserved daily activities. MRIs were considered, yet clinical synopsis 
took precedence when imaging findings did not align with the clini-
cal scenario. In offering a final diagnosis, a single label was assigned 
in cases of diagnosis confidence, whereas multiple labels were used 
if overlapping symptoms or psychiatric comorbidities/alcoholism 
could obscure the presentation. In such scenarios, several labels were 
assigned with varying confidence levels. For instance, in equivocal 
cases of dementia and MCI, ratings were employed to determine the 

likelihood of each diagnosis. If both MCI and dementia were consid-
ered, dropdowns for each dementia subtype were used to indicate the 
more probable dementia type. When distinguishing between dementia 
and psychiatric conditions or acute encephalopathy proved challeng-
ing, all relevant options were marked alongside dementia.

Neurologist 6. In assessing clinical cases for dementia, the process 
began with a comprehensive review of key demographic and historical 
data, encompassing details like age, gender, educational background, 
family history, and existing medical comorbidities, to provide con-
text for interpreting the cognitive presentation. The clinical records 
were systematically examined, with a specific focus on the critical 
domains relevant to diagnosing dementia syndromes. Key tools for 
initial assessment, such as the MMSE and the MoCA scores, provided 
an initial screening of the severity and pattern of cognitive impairment. 
Very low scores indicated advanced dementia, whereas higher scores 
within the mild impairment range prompted a more detailed review 
of neuropsychological test data. This battery of neurocognitive tests 
revealed the specific profile of cognitive deficits within domains such 
as memory, language, executive function, and visuospatial abilities, 
each of which hinted at potential etiologies. A fundamental compo-
nent of the diagnostic process involved evaluating for any concurrent 
neurological signs, which entailed a meticulous examination of physi-
cal findings, with a particular focus on motor exam results, including 
assessments for rigidity, tremors, and gait disorders often associated 
with Parkinsonian disorders. Additionally, the Hachinski Ischemic Scale 
score was considered for insights into potential vascular contributions. 
Furthermore, it was imperative to observe the individual’s functional 
status and any neuropsychiatric symptoms, as they bore diagnostic 
and prognostic significance. The clinician had to ascertain whether 
the deficits impeded daily activities. Behavioral manifestations such 
as depression, hallucinations, delusions and agitation could provide 
critical distinctions between various dementia types. Once these key 
components were systematically reviewed, the clinician synthesized 
the data to formulate a comprehensive differential diagnosis. Cognitive 
testing profiles, behavioral presentation, family history, age of onset, 
and the presence of neurological signs were all weighed and considered 
in a holistic manner. Common differentials in dementia assessment 
included AD, vascular cognitive impairment, dementia with Lewy 
bodies, PD dementia and FTD. Lastly, the MRI results were scrutinized 
for any uncommon findings that could either support or contradict 
the differential diagnosis. This involved assessing major structural 
abnormalities or alterations, such as hydrocephalus or severe atrophy, 
which could provide further backing for the final diagnosis.

Neurologist 7. The interpretation method followed a structured 
approach. Initially, cognitive impairment severity (NC, MCI or demen-
tia) was determined by assessing Functional Assessment Scale Score, 
independence level and neuropsychiatric testing. This assessment 
incorporated past medical history to exclude other potential causes 
of functional limitations. Etiology assessment comprised several con-
siderations. VD was diagnosed when factors such as stroke history, cer-
ebrovascular disease risk factors, focal neurological deficits, Hachinski 
infarction score, and specific MRI findings indicating infarctions, 
white matter hyperintensities, and perivascular spaces were present. 
Parkinsonism, as evaluated by the Unified Parkinson’s Disease Rating 
Scale, prompted investigation for LBD, NPH, VD, FTD and variants. LBD 
was considered for cases with visual hallucinations, Parkinsonism, 
cognitive impairment, and unremarkable MRI findings, whereas NPH 
diagnosis hinged on ventricular dilation and radiological features. FTD 
identification relied on executive function deficits, abnormal behav-
ior, language impairment, and MRI-documented frontal/temporal 
lobe atrophy. Mental illness was contemplated for individuals with 
relevant medical history and substantial neuropsychiatric inventory 
and GDS symptoms. Prion disease recognition was based on distinctive 
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MRI patterns. Conditions like infectious, metabolic, substance abuse, 
delirium, and psychiatric disorders were considered through medical 
history, coupled with the absence of specific MRI abnormalities. Lastly, 
multiple system atrophy was diagnosed in cases displaying Parkinson’s 
symptoms, defecation issues, ataxia and cerebellar atrophy on MRI, 
whereas TBI diagnosis was associated with head trauma history, cogni-
tive decline, localized lesions, and secondary atrophy.

Neurologist 8. The evaluation process initiated with a comprehensive 
assessment of patient demographics, medical/family history, and 
risk factors. Cardiovascular and cerebrovascular risk factors were 
scrutinized due to their potential contribution to VD and vascular 
parkinsonism. Special attention was given to assessing activities of 
daily living (ADLs), which served as a crucial factor in distinguishing 
dementia from MCI. APOE status played a pivotal role in gauging the 
likelihood of AD. The presence of APOE4 heightened the risk of AD, 
particularly in early onset cases, whereas APOE2 could potentially serve 
as a protective factor. Psychiatric history was examined to identify 
behavioral changes and assess whether conditions like depression or 
anxiety contributed to cognitive symptoms. The GDS helped differ-
entiate between pseudodementia/depression and other psychiatric 
illnesses affecting cognitive function. This information was crucial in 
pinpointing specific cognitive disorders (for example, PD dementia, 
behavioral variant FTD, impulse control disorders in the context of 
dopamine agonists). A meticulous examination of clinical findings 
focused on gait, tremor, and bradykinesia. The presence of rest tremor, 
bradykinesia, or rigidity prompted consideration of parkinsonism, or 
other forms of parkinsonism such as dementia with Lewy bodies (DLB), 
PSP or FTD. Comprehensive neuropsychological battery results were 
analyzed to discern patterns of cognitive impairment, differentiat-
ing between executive function deficits and memory impairments. 
Deviations in tasks such as Trails suggested executive dysfunction, 
potentially indicating subcortical dementia like DLB, PDD, VD or vas-
cular parkinsonism. Poor performance on WAIS-R or WAIS-III indicated 
memory impairment, typically associated with cortical dementias like 
AD. Imaging studies were instrumental in the evaluation. Patterns like 
diffuse or parietal atrophy suggested AD, whereas frontal-temporal 
atrophy indicated FTD. The presence of widespread white matter dis-
ease (WMD) burden aligned with VD or vascular parkinsonism. Specific 
assessments included the evaluation of the swallow tail sign, associated 
with PD, and midbrain atrophy, assessed through sagittal images using 
the midbrain-to-pons ratio (midbrain area/pontine area). Regarding 
the rating system, no cases received a perfect score of 100, as most 
presented with mixed pathologies, combining features such as amyloid 
beta AD changes and alpha-synuclein aggregates with parkinsonism or 
alpha-synuclein alongside evidence of tauopathy in PD-PSP variants. 
Ratings between 50% and 80% indicated varying degrees of likelihood 
for a specific pathology, with ratings above 80% signifying a stronger 
likelihood of the disease or pathology being present.

Neurologist 9. The assessment began with a thorough review of the 
individual’s medical history, with a focus on identifying major diag-
noses that could impact cognition. This included conditions like TBI, 
psychiatric disorders, stroke-related issues, and APOE status. Subse-
quently, the individual’s medication history was analyzed, considering 
potential biases introduced by medications commonly used for AD 
or PD, which might have implied a higher likelihood of these condi-
tions. Functional status assessment followed, encompassing ADLs 
and instrumental activities of daily living (iADL), providing insights 
into the individual’s everyday capabilities. A comprehensive physi-
cal examination was conducted, emphasizing the identification of 
notable abnormalities that could offer insights into cognitive sta-
tus. Psychiatric and cognitive testing scales were administered, and 
the results were carefully analyzed for consistency and coherence. 
These results were also cross-referenced with the person’s reported 

functional status. In cases of discrepancy, consideration was given to 
underlying mood or psychiatric disorders that may have influenced 
information accuracy. Chronology of symptoms, often absent from 
person-level histories, was evaluated with a particular focus on the 
Neuropsychiatric Inventory Questionnaire, which inquired about 
symptoms experienced within the last 30 days. During the review of 
imaging studies, the gathered information was taken into account. 
Attention was paid to imaging findings that may have indicated AD or 
vascular disease. Unusual symptoms in the person-level history, such 
as new motor problems or agitation, prompted consideration of rare 
conditions like FTD, Huntington’s disease, or Creutzfeldt-Jakob disease. 
Subsequently, a detailed review of the imaging data was conducted to 
identify specific features that could be indicative of these particular 
disorders. Lastly, the interpretation of cognitive testing scale results 
was influenced by the individual’s functional status. This guided the 
determination of whether the person exhibited signs of dementia 
or MCI or fell within the spectrum of normal cognitive function. The 
aim was to construct a comprehensive assessment of the individual’s 
cognitive state, accounting for these factors.

Neurologist 10. The determination of cognitive status, including NC, 
MCI or dementia, relied primarily on neuropsychiatric test outcomes 
and the functional assessment scale. Notably, when individuals exhib-
ited Parkinsonism, functional abilities were often influenced by motor 
impairments, making neuropsychiatric test results more influential 
than the Functional Activities Questionnaire (FAQ). Given the absence 
of distinct cutoff points for these categories, adjustments to the prob-
ability assessment were made based on individual judgment. Regarding 
the etiological diagnosis, a comprehensive evaluation incorporated 
all available clinical information and imaging data. For instance, cases 
presenting with Parkinsonism prompted a focused differential diag-
nosis that considered conditions like DLB, characterized by symptoms 
such as parkinsonism, dementia and hallucinations. Others included 
PD dementia (PDD), typically occurring after a prolonged history of 
PD, vascular injuries with attention to severe small vessel disease, 
especially within the basal ganglia, and NPH, identified by enlarged 
brain ventricles. Conditions such as CBD and PSP, though less common, 
required the presence of more typical symptoms like apraxia in CBD 
or abnormal vertical eye movement in PSP for diagnosis. For individu-
als diagnosed with MCI or dementia but without Parkinsonism, the 
differential diagnosis primarily encompassed AD, FTD and vascular 
injuries. FTD, for example, might exhibit pronounced non-memory 
impairments, along with psychiatric and behavioral symptoms, and 
asymmetrical brain atrophy in frontal and/or temporal lobes. Addition-
ally, vascular injuries played a substantial role in cognitive impairment 
and sometimes coexisted with AD pathology. In these instances, prob-
ability assessments were adjusted based on clinical judgment. For the 
remaining etiologies, establishing a diagnosis necessitated a detailed 
clinical history.

Neurologist 11. The evaluation process initiated with an assessment 
of the provided case profiles, encompassing baseline information like 
age, education, language, and required assistance. Supplementary 
data, including genetic test results such as APOE4 status, medication 
records, and relevant details, were also considered. Subsequently, 
various cognitive and physical examinations, along with associated 
indices, were reviewed to detect neurocognitive dysfunction. From 
these comprehensive case profiles, preliminary hypotheses were for-
mulated to guide the diagnostic process, ultimately leading to specific 
diagnoses or a set of potential options. A meticulous evaluation of 
imaging studies for each case followed, examining different sequences 
and views for signs of cerebral atrophy or structural changes, including 
WMD. These imaging findings were correlated with case profile hypoth-
eses to generate a list of probable diagnoses. Probability ratings were 
assigned to these diagnoses, reflecting the likelihood of their presence. 
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The rating process initially involved determining whether cases met 
criteria for NC, MCI or dementia. In ambiguous cases distinguishing 
between dementia and MCI, probability ratings were provided for both, 
especially when the differentiation between MCI and mild dementia 
was uncertain based on testing outcomes. Subsequently, probable 
contributing factors to the diagnoses were identified by selecting 
the types of dementia most likely present. Many cases presented with 
multiple potential contributing causes, often including VD alongside 
AD. Quantifying the likelihood of each diagnosis involved assigning 
scores of 70 or higher to those with a high probability, regardless of 
an individual factor’s relatively low contribution to their dementia. 
Higher scores indicated a greater likelihood of that diagnosis being the 
primary cause. Causes with similar probabilities scores did not reflect 
an equal degree of causality to the individual’s condition but merely 
reflected an equal probability of occurrence. Scores ranging from 20 to 
30 suggested the presence of dementia, though with a minor role in the 
clinical presentation. Scores below 10 indicated a very low probability, 
implying little to no significance.

Neurologist 12. While reviewing clinical data in conjunction with 
MRI scans, a notable absence was observed regarding information on 
symptom onset and progression. This critical aspect of history-taking 
has the potential to offer valuable insights into the diagnosis, as the 
pace of progression varies among different forms of dementia. For 
diagnostic purposes, reliance was placed on MMSE scores, employing 
a cutoff of 24 to diagnose dementia. Functional capacity assessments 
assisted in distinguishing between MCI and dementia. Psychiatric 
questionnaires proved useful in orienting toward specific diagnoses, 
such as Parkinson’s dementia, DLB or infectious causes. The evaluation 
of depression’s role in cognition was challenging, but the Geriatric 
Depression Scale provided some guidance. In cases of uncertainty, the 
MRI findings played a pivotal role. For instance, clear frontotemporal 
atrophy with behavioral disturbances and language involvement sug-
gested FTD, whereas temporal lobe atrophy leaned more toward AD. 
In cases of DLB or Parkinson’s dementia, clinical presentation bore 
more weight when MRI results were unremarkable. Moderate to severe 
white matter abnormalities pointed to VD. In most cases, a shortlist of 
potential diagnoses was compiled before reviewing the MRI. However, 
there were instances where MRI results were conclusive and prompted 
a change in the diagnosis. For example, one case indicated possible 
Creutzfeldt-Jakob disease due to hallucinations and corresponding MRI 
findings. In another, an MRI revealed encephalomalacia with ventricu-
lar enlargement following a head injury. A young case with a cavum sep-
tum pellucidum was attributed to chronic traumatic encephalopathy. 
Lastly, global atrophy in an individual with a history of alcohol abuse 
and seizures pointed to alcoholic dementia. Providing a percentage of 
certainty for each diagnosis proved beneficial, as many cases presented 
mixed pathology, especially in Parkinson’s dementia, where vascular 
disease often contributed to the clinical picture.

Neuroradiologist approach to the ratings
Neuroradiologist 1. The evaluation of MRI scans initiated with a global 
perspective to exclude multiple infarcts and identify notable brain 
atrophy patterns. The presence and severity of white matter lesions, 
chronic infarcts and microhemorrhages were recorded. Subsequent 
assessment focused primarily on volume loss, particularly emphasizing 
hemispheric asymmetry. The initial evaluation determined whether 
dominant frontal and anterior temporal or parietal and medial tem-
poral volume loss was evident. A more detailed sub-analysis of each 
region was conducted, focusing on grading severity and documenting 
regional and focal volume loss in real time. The lobar volume loss evalu-
ation was done systematically, starting with the frontal lobes, including 
attention to asymmetry when present. Sub-analyses of specific regions 
within the frontal lobes were conducted, such as the anterior insula, 
cingulate gyrus, precentral gyrus, and caudate nucleus. Evaluation of 

temporal lobe volume loss was also carried out, distinguishing mesial 
and non-mesial temporal lobe atrophy. Subanalyses of hippocampal, 
amygdala and parahippocampal atrophy were included, with special 
attention to anterior, lateral, and posterior temporal lobe atrophy, 
including fusiform, middle, and inferior temporal gyrus volume. The 
assessment for atrophy was extended to parietal and occipital lobe, 
documenting brainstem and cerebellar atrophy. When appraising 
ventricular size, a comparison was made relative to sulcal size. Findings 
favoring an AD pattern included the presence of predominant parietal 
and medial temporal lobe atrophy, or less frontal lobe involvement 
than parietal and temporal lobes. Deviations from the AD pattern, such 
as predominant frontal, anterior temporal, or occipital involvement, 
enlarged ventricles, or multiple infarcts, supported non-AD dementia 
patterns, including those indicative of LBD, VD, prion disease, FTD 
and its variants, NPH, TBI, psychiatric diagnoses and/or other condi-
tions. A rating scale from 0 to 100 was used to assess the likelihood of 
various diagnostic considerations. A rating of 0 was selected when no 
evidence supported a particular diagnosis, whereas a rating of 100 
indicated the imaging strongly suggested that entity. Ratings of 50 
were assigned when imaging findings were equally likely to represent 
the entity in question.

Neuroradiologist 2. The approach to rating the cases followed a sys-
tematic checklist, starting with an assessment of the entire brain, then 
moving through various lobes: frontal, temporal, parietal, occipital 
and the brainstem. Within this framework, the aim was to determine 
the possible causes of dementia based on imaging findings. Initially, 
features indicative of NPH were sought. These features typically stood 
out from other conditions and included disproportionate ventricular 
enlargement, an acute callosal angle at the posterior commissure level, 
sulcal crowding near the vertex, and Sylvian fissure enlargement. Next, 
the focus shifted to assessing the overall burden of WMD, characterized 
by T2 FLAIR hyperintensities. Examination was carried out in regions 
with encephalomalacia or gliosis, which might signify prior infarcts, 
helping establish a potential vascular component to dementia, either 
as the sole cause or a contributing factor alongside other processes. 
Further examination was directed toward atrophy patterns, aiming 
to identify specific neurodegenerative processes. Disproportion-
ate atrophy in the medial, basal, and lateral temporal lobes and the 
medial parietal lobes suggested AD. Relative preservation of medial 
temporal lobe structures hinted at dementia with Lewy bodies or 
PD dementia, although the absence of clinical history posed chal-
lenges for this diagnosis, as clinical features and typical MRI findings 
of medial temporal lobe preservation are valuable in a clinical setting. 
For FTD and its variants, the search was for frontal and/or temporal 
atrophy, predominately left posterior perisylvian or parietal atrophy, 
anterior temporal atrophy, predominant left posterior fronto-insular 
atrophy, midbrain atrophy relative to the pons (‘hummingbird’ sign), 
concavity of the dorsolateral midbrain, thinning of the tectal plate, 
or T2 hyperintense rim along the putamen with patchy or confluent 
T2 FLAIR hyperintensity in the rolandic subcortical white matter. In 
the quest for Prion disease indicators, examination included cortical/
gyriform diffusion hyperintensity, often accompanied by thalamic 
and basal ganglia diffusion hyperintensity. Also explored were signs 
of encephalomalacia and gliosis typical of prior TBI.

Neuroradiologist 3. During case reviews, emphasis was placed on 
patient age and MRI findings as essential factors guiding the diagnostic 
process. Age served as a key determinant, informing the assessment of 
volume loss, particularly relevant in cases of AD and frontotemporal 
lobar degeneration (FTD). Each MRI sequence contributed uniquely 
to diagnostic considerations: T1w images held importance in gauging 
volume loss, discerning distinctive patterns within the hippocampus, 
temporal lobes, and parietal lobes for AD, and focusing on volume loss 
within the frontal and temporal lobes for FTD. In the assessment for 
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NPH, attention was drawn to ventriculomegaly and its proportional-
ity to volume loss. T1w images were also instrumental in identifying 
cerebellar atrophy, indicative of conditions like alcoholism or phe-
nytoin use for seizures. Diffusion-weighted images played a critical 
role in detecting signs of Creutzfeldt-Jakob disease, characterized by 
hyperintensity in regions such as the insula, cingulate gyrus, frontal 
gyri, medial thalami, and possibly the basal ganglia. This sequence was 
also valuable for identifying infarcts. T2/FLAIR and other T2w images 
were essential for assessing small vessel disease burden, aiding in the 
evaluation of VD. They were also instrumental in detecting potential 
evidence of infectious, inflammatory, metabolic, or drug-related hyper-
intensity. The susceptibility-weighted images were used to assess for 
microhemorrhages, which could be associated with AD or Lewy body 
disease. Psychiatric diseases were typically exempt from numerical rat-
ings as their diagnosis could not usually be ascertained through imag-
ing. Ratings spanned from 70 to 90 in cases where a single diagnosis 
was highly confident. In scenarios where multiple potential diagnoses 
were considered, ratings ranged from 40 to 70 for each disease state, 
reflecting the estimated likelihood of each condition.

Neuroradiologist 4. Each case was approached by first reviewing 
the demographic information; however, as the project progressed, 
the demographic data became less informative, and by the midpoint 
of the project, demographics were reviewed only as a later step. The 
images were assessed using the SLICER software. The T2w and FLAIR 
sequences were carefully evaluated to gauge the extent of small vessel 
disease and infarcts, serving as indicators of potential vascular causes 
of cognitive impairment. These sequences also proved valuable for 
the exclusion of infectious, inflammatory, or toxic causes. The DWI 
sequence was employed to identify acute infarcts and to investigate 
neurodegenerative conditions such as Creutzfeldt-Jakob disease or 
fatal familial insomnia. Susceptibility-weighted images were analyzed 
to identify microhemorrhages, assess their extent and location, and 
rule out other potential causes of cognitive decline. However, the 
most pivotal sequences were the volumetric sequences acquired in all 
three anatomical planes. They were instrumental in assessing global 
or lobar-specific volume loss. Specific regions of interest included 
the hippocampal volume assessed through coronal sequences to rule 
out AD, the precuneus evaluated via sagittal sequences, and the pari-
etal lobes examined in axial sequences. If frontal lobe volume loss 
was evident, then the temporal lobes were assessed for signs of FTD. 
Cerebellar volume loss or infratentorial volume loss led to considera-
tions of alcohol abuse or phenytoin use, or cerebellar ataxias, whereas 
brainstem involvement indicated potential multisystem atrophy. Dis-
proportionate ventricular dilatation raised suspicions of NPH. The 
rating scale used was comprehensive, and in cases where complete 
information was lacking, the diagnosis was assigned to the best of the 
ability. A diagnosis was rated as 100 when highly confident, and as 50 
when uncertainty existed. Additionally, some cases were assigned a 
probability score between 50 and 100 when confident in excluding 
other potential causes, based on the imaging data.

Neuroradiologist 5. The approach to MR exams began with an evalua-
tion of axial T2/FLAIR images, if available. If multiple regions of gliosis 
were observed alongside areas of encephalomalacia, resulting from 
prior infarctions in multiple vascular territories, consideration was 
given to the possibility of multi-infarct dementia. Moreover, when 
encephalomalacia and gliosis predominantly affected the temporal 
lobes, cerebral autosomal dominant arteriopathy with subcortical 
infarcts and leukoencephalopathy became a potential inclusion in 
the diagnostic considerations. Following the FLAIR sequence, assess-
ment of diffusion-weighted images, if accessible, primarily served to 
rule out more acute conditions like Creutzfeldt-Jakob disease, herpes 
encephalitis, or other forms of encephalitis. Subsequently, T1w images 
were reviewed, preferably in 3D format, to examine ventricle and sulci 

dimensions. The presence of ventriculomegaly and sulcal crowding at 
the vertex prompted consideration of NPH as a potential diagnosis. 
Additionally, gyri were evaluated to identify areas exhibiting volume 
loss. T2w images were especially helpful in this regard, as they enhanced 
the visibility of CSF and accentuated regions of atrophy. Once the 
order of diagnostic differentials was established, a diagnostic rating 
was assigned. In this rating system, a score of 100 indicated absolute 
certainty, an exceedingly rare occurrence in radiology. Conversely, a 
score of less than 20 signified extreme unlikelihood, 25 denoted unlike-
liness, 50 implied the possibility of the diagnosis, whereas a range of 
50 to 75 indicated a probable diagnosis. Finally, a score exceeding 75 
suggested a high likelihood of the diagnosis being accurate.

Neuroradiologist 6. The review process began with an examination 
of the provided individual-level demographics for each case. Subse-
quently, all images provided for each case underwent analysis using 
the SLICER software. T2/FLAIR sequence was the basis for assessing 
small vessel changes, subacute to chronic infarcts, encephalomala-
cia from TBI, and any areas displaying signal abnormalities indica-
tive of potential alternative causes, such as neurodegenerative, 
infectious-inflammatory, or toxic-metabolic etiologies. T2/FLAIR 
sequence was also employed to investigate seizure-related changes. 
T2w images played a key role in evaluating ventricular size, examining 
the posterior fossa for small infarcts, and observing major intracranial 
arterial flow voids. Diffusion-weighted images were used to identify 
acute infarcts and regions with reduced diffusivity, potentially linked 
to other neurodegenerative, infectious-inflammatory, toxic-metabolic 
conditions, or seizure-related changes. Susceptibility-weighted images 
were utilized to detect areas featuring parenchymal microhemorrhage 
or calcification. Lastly, high-resolution T1w images were employed to 
analyze regional volume loss patterns suggestive of specific neurode-
generative processes. The evaluation process included the completion 
of the online ADRD radiologist task survey. During the assessment of 
sections regarding regional predominate atrophy, the high-resolution 
T1w images were revisited to ensure response accuracy. In the final 
section, person-level demographics and imaging findings were syn-
thesized to arrive at the best-guess probability for each diagnosis. The 
rating scale corresponded to the likelihood of the best-guess diagnosis. 
For instance, if there was high confidence that a case represented a 
particular diagnosis, it was assigned a score of 100, with a score of 0 
given to all other diagnoses. In cases of diagnostic uncertainty, where 
the estimated probability was 50%, a score of 50 was assigned.

Neuroradiologist 7. Brain volume loss was assessed based on 
age-appropriate norms, with T1 and T2/FLAIR sequences aiding in 
the evaluation of volume loss within each lobe. These sequences were 
particularly useful for assessing CSF presence near the convexity. 
Brainstem volume loss was primarily evaluated through mid-sagittal 
and axial images, which allowed for the examination of the pontine 
belly and cerebral peduncle size, respectively. Coronal images provided 
insights into hippocampal volume, determined by the prominence of 
the temporal horns of the lateral ventricle. Sagittal images were used 
to assess cerebellar volume loss. FLAIR sequences played a crucial 
role in detecting encephalomalacia, gliosis, infarcts and white matter 
changes. Distinct patterns were observed in various dementia types, 
such as parieto-temporal volume loss favoring AD. Extensive white 
matter changes with or without microhemorrhages in individuals over 
60 years pointed to VD. White matter changes in younger individuals 
raised consideration of alternative causes like infections or metabolic 
factors. Alcohol use often correlated with cerebellar volume loss. Trau-
matic brain injury was suspected in cases with FLAIR signal changes and 
peripheral volume loss in the anterior temporal and inferior frontal 
lobes, with or without susceptibility, along with corpus callosum and 
brainstem findings, suggestive of diffuse axonal injury. Frontal and 
temporal lobe volume loss indicated FTD. The ‘hummingbird’ sign on 
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sagittal images led to consideration of PSP, particularly when combined 
with brainstem volume loss. Asymmetric ventricular prominence rela-
tive to cortical volume loss hinted at NPH, with the corpus callosal angle 
measured on coronal images to confirm the diagnosis. Although no 
specific findings were linked to psychiatric disorders, the presence of 
a cavum septum pellucidum was weakly correlated. Multiple findings 
in a case, such as global volume loss, extensive white matter changes 
and microhemorrhages, leaned toward VD over AD due to the subjec-
tive nature of volume loss assessment. A higher rating was assigned to 
the diagnosis with more MRI findings supporting it, though no case 
received a perfect score of 100, with ratings exceeding 80 indicating 
a dominant diagnosis.

Statistical analysis
We used one-way analysis of variance and the two-sided χ2 test for con-
tinuous and categorical variables, respectively to assess the overall 
differences in the population characteristics between the diagnostic 
groups across the study cohorts. We used the two-sample two-sided KS 
test for goodness of fit to compare model-predicted AD probabilities, 
P(AD), between MCI cases with an etiological diagnosis of AD and MCI 
cases without one. We applied the Kruskal-Wallis H-test for independent 
samples and subsequently conducted post-hoc Dunn’s testing with Bon-
ferroni correction to evaluate the relationship between CDR scores and 
the model-predicted probabilities. In order to assess whether the mod-
el’s predicted probabilities for AD, FTD and LBD were higher for their 
respective biomarker positive cases compared to biomarker-negative 
ones, a one-sided Mann-Whitney U test was conducted. ADNI’s Aβ 
groups did not significantly deviate from normality and were therefore 
compared using the one-sided independent samples t-test. We applied 
the one-sided Mann-Whitney U test between neuropathologic scores 
and the model-predicted probabilities. To compare model predictions 
with expert-driven assessments, we used the Brunner-Munzel test to 
identify statistically significant increases in the mean disease probability 
scores between the levels of scoring categories. The Brunner-Munzel 
test was also used to compare the expert and model confidence scores 
for the true negative and true positive cases for each etiology. To evalu-
ate the interrater reliability of label-specific confidence scores, we 
performed pairwise Pearson correlation analyses between clinicians’ 
scores and those generated by the model85. We calculated the average 
correlation coefficient across pairs and determined its 95% confidence 
interval. In addition, we estimated the mean Pearson correlation coef-
ficient between the confidence score of neurologists and the model’s 
score for each diagnostic label using a bootstrapping approach. Pairwise 
statistical comparisons of AI-augmented clinician diagnostic perfor-
mance (AUROC and AUPR) and clinicians only diagnostic performance 
were performed with the one-sided Wilcoxon signed-rank test. In all 
analyses, we opted for non-parametric tests when the Shapiro-Wilk test 
indicated significant deviations from normality. All statistical analyses 
were conducted at a significance level of 0.05.

Performance metrics
We generated ROC and PR curves from predictions on both the NACC 
test data and other datasets. From each ROC and PR curve, we further 
derived the area under the curve values (AUC and AUPR, respectively). 
Further, we computed micro-, macro- and weighted-average AUC and 
AUPR values. Of note, the microaverage approach consolidates true 
positives, true negatives, false positives, and false negatives from all 
classes into a unified curve, providing a global performance metric. In 
contrast, the macroaverage calculates individual ROC/PR curves for 
each class before computing their unweighted mean, disregarding 
potential class imbalances. The weighted-average, whereas similar 
in approach to macroaveraging, assigns a weight to each class’s ROC/
PR curve proportionate to its representation in the dataset, thereby 
acknowledging class prevalence. We also evaluated the model’s accu-
racy, sensitivity, specificity and Matthews correlation coefficient, with 

the latter being a balanced measure of quality for classes of varying 
sizes in a binary classifier. Performance metrics were initially calculated 
for the entire testing cohort, followed by a stratified analysis based on 
age, gender and race subgroups.

Computational hardware and software
All MRI and non-imaging data were processed on a workstation 
equipped with an Intel i9 14-core 3.3 GHz processor and 4 NVIDIA 
RTX 2080Ti GPUs. Our software development utilized Python (ver-
sion 3.11.7) and the models were developed using PyTorch (version 
2.1.0). We used several other Python libraries to support data analysis, 
including pandas (version 1.5.3), scipy (version 1.10.1), tensorboardX 
(version 2.6.2), torchvision (version 0.15), and scikit-learn (version 
1.2.2). Training the model on a single Quadro RTX8000 GPU on a shared 
computing cluster had an average runtime of 7 minutes per epoch, 
whereas the inference task took less than a minute per instance. All 
clinicians reviewed MRIs using 3D Slicer (version 4.10.2) and logged 
their findings in REDCap (version 11.1.3). Figures were prepared using 
Canva and Adobe Illustrator.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Data from ADNI, AIBL, NIFD, PPMI and 4RTNI can be downloaded from 
the LONI website at https://ida.loni.usc.edu. The ADNI Tau PET data 
used for biomarker validation in Fig. 4 correspond to the November 
2021 version, and the amyloid PET data correspond to the June 2023 
version. NACC and OASIS data can be downloaded at https://naccdata.
org and https://sites.wustl.edu/oasisbrains/, respectively. Data from 
FHS (https://www.framinghamheartstudy.org/fhs-for-researchers/
data-available-overview/) can be obtained by contacting fhs@
bu.edu and conditions for access include the successful completion 
of all steps outlined at https://www.framinghamheartstudy.org/
fhs-for-researchers/, as well as approval from the FHS Research Com-
mittee. LBDSU data can be requested by contacting the Stanford Alz-
heimer’s Disease Research Center at adrcstanford@stanford.edu and 
is subject to institutional approval. We used the Montreal Neuroimag-
ing Institute MNI152 template for image processing purposes, and 
the template can be downloaded at http://www.bic.mni.mcgill.ca/
ServicesAtlases/ICBM152NLin2009. All data used in this study should 
be available free of charge upon request from the specific cohorts.

Code availability
Python scripts as well as help files along with information on the 
study population are made available on GitHub (https://github.com/
vkola-lab/nmed2024).
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a

b

c
Extended Data Fig. 1 | Shapley analysis on cases from the NACC test set 
comprising individuals along the cognitive spectrum. The figure presents 
the top twenty contributing features for the model’s positive predictions of a, 
NC, b, MCI, and c, DE labels, ranked by their mean Shapley values. These values, 

representing the average contribution of each feature to the model’s decision, 
guide the ranking from the highest to the lowest impact. For each diagnostic 
group, a subset of n = 500 cases with the most available features were selected for 
analysis.
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a b c
Extended Data Fig. 2 | UpSet plot depicting the distribution and model-
predicted probabilities of the etiological categories in NACC testing. a, 
Single and co-occurring diagnostic categories are enumerated, offering a tally 
of each condition’s frequency within the dataset. b, A logarithmic scale is used 
to delineate the overlap among these categories, shedding light on their relative 
commonality and the extent of their coexistence. This method grants a refined 
perspective on the prevalence of comorbid conditions. c, Boxplots delineating 

the spread and central tendency of the model’s predicted probabilities for 
each combination of diagnostic categories. The legend in the upper right 
interprets the sizes within b and c, providing a reference for the logarithmic 
data representation. All boxplots include a box presenting the median value and 
interquartile range (IQR), with whiskers extending from the box to the maxima 
and minima no further than a distance of 1.5 times the IQR.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-024-03118-z

a b

d e

f g h

c
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Extended Data Fig. 3 | Neuropathological validation. Array of violin plots with 
integrated boxplots, delineating the model-predicted probabilities for different 
neuropathological grades across AD, VD and FTD etiologies. A one-sided 
Mann-Whitney U test was performed on data from FHS, NACC and ADNI, each 
denoted by unique markers. AD probabilities, P(AD), were compared against 
three key AD pathological markers with progressive stages: a, Thal phases of 
Aβ plaques (N = 135, U = 282.5, p = 7.11e − 05), b, Braak stages of neurofibrillary 
degeneration (N = 249, U = 571.5, p = 6.07e − 06), and c, Consortium to Establish 
a Registry for Alzheimer’s Disease density scores of neocortical neuritic plaques 
(N = 278, U = 3916.5, p = 1.73e − 06). We further evaluated P(AD) against d, cerebral 
amyloid angiopathy (N = 274, U = 6938.5, p = 0.01) and e, arteriolosclerosis 
(N = 238, U = 2607.0, p = 0.01), both of which are common pathological findings 

in AD confirmed postmortem cases. Significant differences were also observed 
in model predicted probabilities for VD between cases with and without f, 
arteriolosclerosis (N = 230, U = 2085.5, p = 0.0002) and g, old microinfarcts 
(N = 178, U = 2289.5, p = 0.0001). h, Finally, model predicted probabilities for 
FTD differed significantly between cases with and without TDP-43 pathology 
(N = 136, U = 252.0, p = 0.0008). Table S13 also details these statistical results. No 
correction for multiple comparisons was performed and significance levels are 
illustrated as: * for p < 0.05; ** for p < 0.01; *** for p < 0.001; and **** for p < 0.0001. 
Each boxplot includes a box presenting the median value and interquartile 
range (IQR), with whiskers extending from the box to the maxima and minima no 
further than a distance of 1.5 times the IQR.
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a

b

Case Ground Truth: 

Extended Data Fig. 4 | Head to head comparison between model and 
clinicians. Comparison between model-predicted probability scores and the 
assessments provided by practicing clinicians is shown. a, For the analysis, 
neurologists (n = 12) were given 100 randomly selected cases encompassing 
individual-level demographics, health history, neurological tests, physical as well 
as neurological examinations, and multisequence MRI scans. The neurologists 
were then tasked with assigning confidence scores for NC, MCI, DE, and the 10 
dementia etiologies: AD, LBD, VD, PRD, FTD, NPH, SEF, PSY, TBI, and ODE (see 
Glossary 1). Neurologists’ confidence scores were averaged to produce a single 
consensus confidence score for each case. In the visual representation, the 
boxplot in blue indicates the distribution of confidence scores for true negative 
cases, while the boxplot in red signifies true positive cases. The symbol ‘+’ 
represents true positive cases, and ‘x’ denotes true negative cases. Significance 
levels are denoted as: ns (not significant) for p≥0.05; * for p < 0.05; ** for p < 0.01; 
*** for p < 0.001; and **** for p < 0.0001. These levels were determined using 

pairwise comparisons via the unadjusted two-sided Brunner-Munzel test, for 
which detailed pvalues and statistics can be found in Table S17. b, Similarly, 
in a separate analysis, radiologists (n = 7) were given 70 randomly selected 
cases with a confirmed dementia diagnosis encompassing individual-level 
demographics and multisequence MRI scans. The radiologists were tasked with 
assigning confidence scores for the 10 dementia etiologies. Similar to that of a, 
the visual representation consists of boxplots and scatterplots that represent 
the distribution of model and radiologists’ consensus confidence scores for 
true negative and true positive cases. Unadjusted two-sided Brunner-Munzel 
statistical test results are shown as pairwise annotations of ns, *, **, ***, or ****, 
and more detailed statistics and pvalues can be found in Table S18. Each boxplot 
presented includes a box presenting the median value and interquartile range 
(IQR), with whiskers extending from the box to the maxima and minima no 
further than a distance of 1.5 times the IQR.
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a

b

X: No Data  |  M: Model

Extended Data Fig. 5 | Neurologist and model interrater agreement. a, The 
figure presents the Pearson correlation coefficient across different diagnostic 
categories, comparing assessments from the neurologists (n = 12) and the model, 
marked as ‘M’. Each diagnostic category from NC to ODE includes a matrix 
reflecting correlation coefficient values between individual neurologists and 
the model. Shades of green signify positive correlation, indicating agreement 
between the model and neurologists, whereas magenta shades suggest negative 
correlations, indicating potential discrepancies in assessments. The mean 

pairwise Pearson correlation coefficient for each etiology is presented along with 
a 95% confidence interval. The symbol ‘X’ denotes rater pairs where the Pearson 
correlation was not calculable, due to one or both raters giving label-specific 
confidence scores with no variance. b, The heatmap shows the mean Pearson 
correlation coefficients between model probabilities and neurologist confidence 
scores for each label, along with its 95% confidence interval. The correlation 
coefficient and its confidence interval for each etiology were estimated with a 
non-parametric bootstrapping approach.
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Extended Data Fig. 6 | Image feature extraction. The Swin UNETR encoder, 
utilizing pre-trained weights, was leveraged to extract image embeddings from 
multi-sequence MRI scans into a latent space representation. Subsequently, 
these embeddings underwent a series of downsampling convolutional 
operations to achieve a condensed token dimension of 1 × 256. This dimensional 
reduction facilitated a consistent input format for both imaging and non-

imaging data into the backbone transformer. Within this architecture, the 
Swin UNETR encoder’s weights remained static (frozen), ensuring the integrity 
of the pre-trained features, while the downsampling blocks were subject to 
optimization during the training phase, allowing for adaptive learning of the 
imaging feature vector.
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Data collection We used REDCap (version 11.1.3) to generate the questionnaire for clinicians. All clinicians reviewed MRIs using 3D Slicer (version 4.10.2) and 
logged their findings in REDCap (version 11.1.3). 
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This study includes data from the following nine cohorts: National Alzheimer’s Coordinating Center (NACC), Alzheimer’s Disease Neuroimaging Initiative (ADNI), 
Frontotemporal Lobar Degeneration Neuroimaging Initiative (NIFD), Parkinson’s Progression Marker Initiative (PPMI), Australian Imaging, Biomarker and Lifestyle 
Flagship Study of Ageing (AIBL), Open Access Series of Imaging Studies (OASIS), 4 Repeat Tauopathy Neuroimaging Initiative (4RTNI), Lewy Body Dementia Center for 
Excellence at Stanford University (LBDSU), and Framingham Heart Study (FHS). Data from ADNI, AIBL, NIFD,  PPMI and 4RTNI can be downloaded from the LONI 
website at https://ida.loni.usc.edu. NACC and OASIS data can be downloaded at https://naccdata.org and https://sites.wustl.edu/oasisbrains/, respectively. Finally, 
data from FHS https://www.framinghamheartstudy.org and LBDSU https://med.stanford.edu/poston-lab/LBD.html can be obtained upon request, subject to 
institutional approval. We used the Montreal Neuroimaging Institute MNI152 template for image processing purposes, and the template can be downloaded at 
http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009.

Human research participants
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Reporting on sex and gender The data was obtained from existing cohorts. We reported sex-related information on all the cohorts whenever available. We 
also performed sex-specific subgroup analysis.

Population characteristics Participants in the study were 51,269 individuals with a mean age of 73. They included 22,349 males and 28,920 females. The 
ethnic composition was 40,335 White, 5,840 Black or African American, 1,285 Asian, 276 American Indian or Alaskan Native, 
38 Native Hawaiian or Pacific Islander and 1,430 Multiracial. All participants were screened for cognitive impairment, with 
19,849 classified as having normal cognition, 9,357 as having mild cognitive impairment (MCI) and 22,063 as having 
dementia. More details on the diagnostic information can be found in the Methods section.

Recruitment We did not recruit any participants for this study.

Ethics oversight The data collection for the Framingham Heart Study and the Lewy Body Dementia Center for Excellence at Stanford 
University was approved by the respective institutional review boards.
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Sample size We obtained data from all the nine cohorts. No sample size calculation was carried out. We considered all subjects satisfying the inclusion and 
exclusion criterion described in the manuscript. We included 38,319 participants for training and 12,950 participants for testing the model. 
More details on the study population can be found in the manuscript.

Data exclusions We excluded data from the cohorts if the diagnosis information (normal cognition (NC), mild cognitive impairment (MCI), or dementia (DE)) 
was not available.

Replication The results can be replicated by following the methods described in the manuscript or by running the code available in our GitHub repository. 
The data from ADNI, NACC, AIBL, NIFD, PPMI, OASIS, and 4RTNI are open access. Additional data requests are required to access the data 
from FHS and LBDSU for replicating the findings from our study. 

Randomization When building the deep learning model, the cases were shuffled using a consistent random seed and were split into train, validation and 
testing sets using stratified sampling at person level. 

Blinding In the comparison of clinicians versus deep learning model performance, clinicians were blinded to the documented clinical diagnoses of the 
cases presented.
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Magnetic resonance imaging

Experimental design

Design type Resting state structural MRI

Design specifications We used multiple scan sequences including T1-weighted, T2-weighted, FLAIR and SWI scans whenever available. 
Detailed descriptions of the scan protocols and design specifications can be obtained from the respective websites of 
the study cohorts.

Behavioral performance measures Not applicable

Acquisition

Imaging type(s) Structural

Field strength 1.5 or 3 Tesla

Sequence & imaging parameters T1-weighted, T2-weighted, FLAIR, SWI sequences

Area of acquisition Whole brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software The collected imaging data were stored in the NIFTI file format, categorized by participant and the date of their visit. The MRI 
scans underwent a singular pre-processing step, which involved skull stripping using SynthStrip, a computational tool 
designed for extracting brain voxels from various image types. MRI scans were linearly registered based on the MNI152 atlas 
To ensure the purity of the dataset, we excluded calibration, localizer, and 2D scans from the downloaded data before 
initiating model training.

Normalization See previous response 

Normalization template MNI152

Noise and artifact removal All MRI scans were normalized to the range [0,1] to increase the homogeneity of the data.

Volume censoring No volume censoring was used in this study.

Statistical modeling & inference

Model type and settings Our model employs the transformer architecture to process diverse diagnostic data, including demographics, medical history, 
neuroimaging, functional assessments, and neuropsychological test scores. Each data type is first transformed into a fixed-
length vector using a tailored approach, creating the initial input layer for the transformer. The transformer then synthesizes 
these vector inputs, interpreting and converting them into a coherent series of diagnostic predictions, effectively leveraging 
the complex interplay of varied health-related parameters.

Effect(s) tested Task- and stimulus-related effects were not tested in this study. 
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Statistic type for inference
(See Eklund et al. 2016)

We used Shapley analysis to perform feature importance analysis.

Correction We applied the Kruskal-Wallis H-test for independent samples and subsequently conducted post-hoc Dunn’s testing with 
Bonferroni correction to evaluate the relationship between clinical dementia rating scores and the model-predicted 
probabilities.

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis We summarized our model results using area under receiver operating characteristic curves (AUROC) and 
precision-recall curves (AUPR). Also, model accuracy, sensitivity, specificity, F1-score and Matthew's 
correlation coefficient values were reported. 
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