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Abstract

Previous studies have solely focused on establishing Machine Learning (ML) models for 

automated detection of stress arousal. However, these studies do not recognize stress appraisal 

and presume stress is a negative mental state. Yet, stress can be classified according to its influence 

on individuals; the way people perceive a stressor determines whether the stress reaction is 

considered as eustress (positive stress) or distress (negative stress). Thus, this study aims to assess 

the potential of using an ML approach to determine stress appraisal and identify eustress and 

distress instances using physiological and behavioral features. The results indicate that distress 

leads to higher perceived stress arousal compared to eustress. An XGBoost model that combined 

physiological and behavioral features using a 30 second time window had 83.38% and 78.79% 

F1-scores for predicting eustress and distress, respectively. Gender-based models resulted in an 

average increase of 2–4% in eustress and distress prediction accuracy. Finally, a model to predict 

the simultaneous assessment of eustress and distress, distinguishing between pure eustress, pure 

distress, eustress-distress coexistence, and the absence of stress achieved a moderate F1-score 

of 65.12%. The results of this study lay the foundation for work management interventions to 

maximize eustress and minimize distress in the workplace.

Keywords

Psychological Stress; Physiological Data; Behavioral Data; Machine Learning

HHS Public Access
Author manuscript
IEEE Trans Affect Comput. Author manuscript; available in PMC 2024 October 17.

Published in final edited form as:
IEEE Trans Affect Comput. 2023 October 16; 15(3): 1153–1165. doi:10.1109/taffc.2023.3324910.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. INTRODUCTION

Stress, labeled the “epidemic of the 21st century,” [1] affects a majority of Americans, with 

job pressure being the main stressor [2]. Office work, which encompasses 18.5 million 

people in the US [3], leads to significant stress due to long hours, heavy workload, job 

insecurity, conflicts, and inappropriate task assignments.

Distress refers to the overwhelming feeling of being “stressed out” when facing 

uncontrollable stressors [4]. It negatively impacts workers, leading to psychological 

effects like loss of concentration, impaired performance, insecurity, as well as physical 

consequences such as tension, insomnia, and headaches. This places a burden on the 

healthcare system, with American companies estimated to lose up to $300 billion annually 

due to worker distress [5]. A survey of 17,000 American office workers revealed that 

33% missed work due to distress [6], reducing overall productivity and the national gross 

domestic product. Thus, distress among office workers is a significant concern that requires 

an urgent solution.

On the other hand, eustress, or positive stress, occurs when people feel confident in handling 

a stressor, resulting in higher concentration, energy, motivation, confidence, engagement, 

and excitement [7]. It serves as a driving force for individuals to achieve success, fulfillment, 

and overcome challenges [8]. While the negative effects of job stress have been extensively 

studied, the variations in eustress and distress remain largely unexplored [9].

Work organizations typically focus on limiting stressors with the assumption that stress is 

negative, disregarding the potential benefits of eustress [10]. However, effective management 

plans should aim to minimize distress and maximize eustress by optimizing work stressors. 

This can be achieved through approaches that set challenging yet attainable expectations 

for employees [11]. Determining workers’ perception of stressors as eustress or distress is 

challenging but necessary. While indicators of distress are well-understood, knowledge of 

indicators specific to eustress is limited. Machine Learning (ML) offers the potential to 

examine psychophysiological responses in relation to both eustress and distress. Previous 

studies have mainly focused on detecting stress arousal by differentiating between “stress” 

and “no stress,” neglecting the appraisal component [12]. In fact, only one study has 

attempted to detect eustress using an automated approach. Li et al. [13] utilized a small 

sample size (n=7) and data from participants’ computers, phones, and heart rate sensors. 

They achieved a moderate detection accuracy of 70% using a machine learning algorithm. 

This study demonstrates that automated stress detection can go beyond arousal detection and 

focus on the appraisal of stress as eustress or distress.

Furthermore, personal factors, such as age and gender, influence how individuals appraise 

stress experiences. For instance, a study of 281 office workers in technology firms found 

that younger females reported higher eustress, while males experienced more distress due 

to a lack of emotional support at work [9]. Another questionnaire-based study of 595 

office workers revealed that older employees and those with higher academic qualifications 

perceived work overload as more distressing compared to younger counterparts [14]. To that 
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end, any attempt to understand the differences between eustress and distress must not ignore 

the impact of personal characteristics on the appraisal of stress.

Built on this background, this study aims to assess the potential of using an ML approach 

to determine stress appraisal and identify instances of eustress and distress among office 

workers. The study investigated six research questions. (1) How does stress level (i.e., 

arousal) change as a function of eustress and distress (i.e., valence)? (2) What ML 

algorithms are best suited for the prediction of eustress and distress? (3) What window 

size for data processing is best suited for the prediction of eustress and distress? (4) What 

data modality (i.e., physiological, behavioral, or combination of both) is best suited for the 

prediction of eustress and distress? (5) How does gender affect the prediction of eustress 

and distress? and (6) How can we create a stress appraisal prediction model to differentiate 

between eustress, distress, eustress-distress coexistence, and no-stress?

The remainder of this paper is organized as follows. Section 2 provides a comprehensive 

background overview of stress detection research. Section 3 explains in detail the 

experimental setup for data collection, the procedure for data cleaning and processing, and 

the training and testing of the different ML algorithms. Section 4 provides a summary of 

the results, while Section 5 offers a discussion, and provides insights into the feasibility of 

using ML for identifying positive and negative appraisals of stress. Section 6 focuses on the 

conclusions drawn from the results and outlines the study limitations and future research 

directions.

2. BACKGROUND

2.1 Psychophysiological and behavioral responses to stress

Multimodal stress detection research typically relies on analyzing three main categories 

of responses: psychological, physiological, and behavioral. These categories encompass 

different aspects of human responses to stress and are often used in combination to provide a 

comprehensive understanding of stress levels.

Psychological processes play a pivotal role in shaping the stress response and have been 

employed to establish precise labels for training machine learning algorithms in stress 

detection [12]. The assessment of acute stress can be achieved by examining various 

facets of the psychological response. Questionnaires designed to gauge perceived stress 

levels, emotional valence, and arousal, for example, serve as indicators of acute stress 

[15]. While previous research has primarily concentrated on stress arousal, stress appraisal 

questionnaires have not garnered widespread recognition. Nevertheless, the Valencia 

Eustress-Distress Appraisal Scale (VEDAS) [16], [17] offers an opportunity to evaluate 

the psychological dimensions of stress appraisal, thus advancing stress detection research by 

incorporating appraisal in addition to arousal. This scale serves as a validated instrument for 

assessing stress appraisal and has undergone translation into multiple languages, as well as 

validation across diverse populations worldwide.

In addition to psychological responses, stress activates the autonomic nervous system, 

leading to variations in bodily biomarkers and physiological signals [12]. While various 
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biomarkers have been used to measure stress, some are inconvenient to collect (such as 

cortisol levels from saliva or blood samples, or EEG via electrode cap) and unsuitable for 

continuous stress detection. Non-invasive physiological measures such as Heart Rate (HR), 

Heart Rate Variability (HRV), Skin Temperature (ST), ElectroDermal Activity (EDA), and 

Blood Volume Pulse (BVP) (i.e., volume of blood flowing through the peripheral blood 

vessels) are more commonly studied in stress research, as they can be collected using 

wearable devices [18]. For instance, HR and HRV are direct indicators of stress, with higher 

levels of HR and lower levels of HRV generally associated with psychological stress [19]. 

During periods of psychological stress, EDA typically increases due to increased sweating, 

BVP tends to show an increase under stress. On the other hand, ST tends to decrease during 

stress due to vasoconstriction, which reduces blood flow to the skin and results in cooler 

skin temperatures.

Furthermore, the psychophysiological stress response can manifest in behavioral changes, 

which may be observed through alterations in body posture, facial expression, and 

interaction with the environment. While the exploration of behavioral measurements for 

stress detection is not as extensive as that of physiological measures, pioneering studies have 

demonstrated their potential predictive power, and further research holds the potential to 

strengthen these findings. Video cameras have been employed to capture and analyze facial 

and posture features in relation to stress development, yielding substantial improvements 

in stress arousal prediction. Additionally, within the context of office work, observing 

workers’ interactions with their computer, such as mouse or keyboard usage, can provide 

valuable insights into work pressure and the associated increase in stress arousal. These 

behavioral indicators, when combined with physiological measures, contribute to a more 

comprehensive understanding of stress dynamics.

Hans Selye characterized stress as a state of heightened arousal and emphasized that when 

faced with stress, the crucial factor is how it is perceived by the individual—whether as a 

positive or negative experience [20]. Consequently, stress appraisal emerges as an outcome 

of stress arousal, providing a means to anticipate eustress and distress by employing 

physiological and behavioral indicators already employed for stress arousal prediction. 

However, further investigation is required to determine the association between stress 

appraisal and physiological and behavioral changes and determine the extent of their impact 

during shifts in positive and negative valence.

2.2 Stress detection

The existing body of literature has primarily focused on the identification of stress 

arousal [12]. Unfortunately, this approach has largely overlooked the appraisal component 

inherent in the stress response. However, the limitations observed in these stress detection 

studies can offer valuable insights that can be utilized in the development of dependable 

stress appraisal models. Notably, a majority of these investigations have predominantly 

relied on physiological data as the foundation for constructing their machine learning 

prediction models [12]. In light of this, Alberdi et al. [12] contend that the integration 

of a multimodality stress detection approach is imperative to enhance the accuracy of 

detection. This viewpoint finds support in the work of Liao et al. [21], who hypothesize 
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that physical symptoms, such as an accelerated heart rate, are not exclusively indicative 

of stress. Consequently, stress detection machine learning models that incorporate the 

fusion of information from multiple modalities are likely to exhibit increased reliability 

and proficiency in discerning between stressful and non-stressful situations.

Yet, while some studies have attempted to adopt a multimodal approach, many of them have 

focused solely on combining various physiological features without incorporating data from 

other domains, such as behavioral data [12]. In contrast, Koldijk et al. [22] conducted a 

laboratory experiment that simulated stressors commonly experienced in office work, such 

as interruptions and time pressure, and collected both physiological data (heart rate and 

skin conductance) and behavioral data (posture, facial expressions, and human-computer 

interactions). The feature importance analysis of their stress detection model showed that 

facial expressions, head movement, and skin conductance were among the most crucial 

features for detecting stress arousal. This demonstrates the contribution of combining 

different modalities in stress detection research. However, additional research is necessary 

to investigate the trade-offs between physiological and behavioral features in terms of 

prediction accuracy, especially in the context of stress appraisal.

Finally, many stress detection studies in office-like environments rely on using psychometric 

tests (arithmetic calculations, Stroop tests, memory tests) or visual stimuli to induce stress 

[23], [24]. Although proven to induce stress effectively, these tests do not accurately mimic 

real office work (e.g., completing reports, writing, preparing presentations, etc.), which 

could lead to unreliable stress detection results when implementing the models in real office 

environments. It should be noted that these tests may not be the optimal means of creating 

eustress and distress conditions, and thus, it is necessary to reconsider the experimental 

procedures, particularly when examining stress appraisal.

To this day, the investigation conducted by Li et al. [13] represents the only explicit attempt 

to employ machine learning techniques for the prediction of eustress. Nevertheless, the 

study is not without its limitations, which include a small sample size comprising merely 

7 individuals, an inadequate grasp of a comprehensive methodology for distinguishing 

between eustress and distress, as well as limited analysis pertaining to the behavioral and 

physiological variations observed in instances of eustress. Additionally, the study fails to 

explore how eustress may vary in relation to personal characteristics. In another study, Setz 

et al. [25] aimed to differentiate between stress and cognitive load in a way that is similar to 

the distinction between distress and eustress. By focusing on this differentiation, they sought 

to provide a more accurate representation of the psychological experiences of individuals 

in office work settings. Their results showed a good prediction accuracy that reached 82%. 

However, their work falls short in detecting situations characterized by the absence of stress 

or instances where stress coexists with cognitive load.

3. METHODOLOGY

We conducted an experimental procedure to study the physiological and behavioral signals 

that are most useful for the automated detection of eustress and distress among office 

workers. To obtain as wide a range of signals as possible within each participant, the 
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70-minute experiment incorporated a phase of low-stress engagement at a computer 

workstation, followed by a phase of engagement that incorporated multiple stressful 

components. The study was approved by the Institutional Review Board of the University of 

Southern California.

3.1 Participants

A total of 48 participants voluntarily completed the experiment, of which 28 were females 

and 20 were males. Participants were mainly graduate and undergraduate students with 

a mean age of 22.6 years and a standard deviation of 2.1 years. Individuals with eye/

vision problems that would prevent them from working on a computer, with psychological 

problems that make them sensitive to stress-inducing tasks, who were pregnant, or who were 

taking any medication that would affect their physiological signals were excluded.

3.2 Experimental Procedure

To collect physiological data such as heart rate, BVP, EDA, ST, and wrist accelerations, 

participants wore an E4 Empatica wristband [18] and an H10 polar chest strap [26]. To 

reduce motion artifacts, the E4 device was placed on the non-dominant hand, as research 

has shown that this hand experiences less motion than the dominant hand [18]. This 

reduces instances of motion interference in the data collected by the E4 device. During the 

experiment, a Microsoft Azure Kinect DK camera was installed facing the participant at the 

top of the screen to record their faces. Additionally, a logging application called Mini Mouse 

Macro [27] ran in the background of the computer to record participants’ interactions, such 

as keyboard keystrokes and mouse clicks.

As presented in Fig. 1, the experiment consisted of two phases: low-stress work and 

high-stress work. At the start of each phase, participants remained still for 5 minutes to 

collect resting physiological data. Participants then rated their stress level on a 0–100 scale. 

Throughout both phases, every 5 minutes, participants completed a pop-up questionnaire on 

the computer screen to rate their perceived stress level on the 0–100 scale and to appraise the 

work as eustress and distress using the VEDAS [16], [17]. Eustress was rated as a source of 

opportunity/challenge using a 6-point scale (with 1 being “very definitely is not” and 6 being 

“very definitely is”), while distress was rated as a source of pressure using the same scale.

In the low-stress task, participants were given 40 minutes to prepare a slide deck for a 

presentation about their favorite movie, TV series, or book, which was a familiar topic 

that allowed them agency over the task. The allotted time and topic had been previously 

piloted, ensuring that participants had ample time to complete the assignment with no time 

constraints or pressure. After a break, participants were given 30 minutes to prepare a 

new presentation on an unfamiliar topic - the scientific and philosophical achievements of 

two ancient Greek philosophers. The high-stress task was carefully designed to create time 

pressure and an unfamiliar workload. Participants were informed that they would present 

their work to a committee at the end of the experiment to encourage them to take the task 

seriously.

Additional external stressors were added during the high-stress task. Participants turned 

on their video cameras and shared their screens via Zoom with a confederate posing as 

Awada et al. Page 6

IEEE Trans Affect Comput. Author manuscript; available in PMC 2024 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a professor with expertise in optimizing work settings for office workers. The confederate 

informed participants that he would monitor their work and reduce their score whenever 

he noticed suboptimal performance. Participants were told that their final score would be 

compared to others in the study, with the highest scorers receiving the highest compensation 

($50) and the lowest scorers receiving minimal compensation ($5). However, at the end of 

the high-stress task, participants were debriefed and informed that the confederate was not 

a professor, and their score had no impact on their compensation. All participants received 

the maximum compensation. Participants were also informed that they would not actually 

present their work to a committee, and the task was designed to push them to perform to the 

best of their abilities.

3.3 Feature Extraction

To analyze the HRV data, we used the Kubios software package [28], which provides 

accurate and detailed HRV analysis and extracts the time and frequency-domain indices 

of the heart rate signal for every time window. We applied a medium level of artifact 

correction that identifies R-R intervals varying above or below 0.25 seconds compared with 

the average. This method helps to preserve the variability of the data while addressing the 

presence of any artifacts. Kubios also uses a piecewise cubic spline interpolation method 

to generate corrupted or missing values, resulting in a cleaner and more accurate HRV 

signal. It is noteworthy that the RR-interval, which represents the time between successive 

R-peaks in heart rate analysis, was excluded from the feature set. This decision was made 

to prevent feature duplication, given the direct relationship between RR-interval and heart 

rate. Generally, the RR-interval and heart rate are inversely proportional, with their product 

being a constant value of 60,000 (HR x RR interval = 60,000). This relationship was further 

confirmed in our dataset, as there was a strong 94% correlation between these two features.

Before feature extraction, BVP and ST signals were filtered using winsorization [29], a 

statistical technique to remove outlier values by replacing extreme values beyond the 2th 

and 98th percentiles. We used this method to clean the noisy BVP and ST signals collected 

from the Empatica E4, as done in [30]. For EDA data, we utilized the MATLAB Ledalab 

toolbox [31], which provides various functions to clean and process EDA data. We applied 

a series of signal processing techniques, including a Butterworth low-pass filter, Hanning 

smoothing with a window size of 4 samples, and manual artifact correction to remove any 

noise introduced by movement or other sources of interference.

Following this cleaning procedure, we computed various statistical parameters including the 

mean, standard deviation, median, minimum, maximum, 25th and 75th percentiles, and the 

slope of BVP, EDA, and ST. Our analysis focuses on these specific statistical parameters 

as they have been used in previous studies related to stress detection, demonstrating 

their relevance and effectiveness in detecting stress levels, thus providing a comprehensive 

evaluation of the different aspects of stress appraisal [12]. All physiological related-features 

were subtracted from the corresponding experimental phase’s 5 minutes baseline for each 

participant. Also, the x, y, and z wrist accelerations were calculated for every time window.

We used OpenFace [32] to extract participants’ mean and standard deviation of facial 

action unit (AU) intensities from the RGB video recorded by the Kinect camera. AUs 
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are predefined facial muscle movements that correspond to emotions and are categorized 

as main AUs, head movement AUs, and eye movement AUs. Facial expressions are an 

excellent indicator of stress, making them suitable for stress detection research [22]. We 

excluded the head translation vector in the x, y, and z planes from the analysis because it was 

dependent on the participant’s height and position in the camera frame. We also dropped 

head rotation in the x and y planes due to high interdependence with the gaze vector, 

resulting in redundant features. A correlation analysis supported this finding, indicating a 

close relationship between these variables (Pearson correlation between 89% and 94%). By 

removing these features, we avoided duplicating information in our analysis.

Finally, keyboard strokes and left and right mouse clicks were aggregated for the predefined 

time windows. While these measures may not be directly related to physiological changes 

associated with stress, they are known to be affected by cognitive and emotional states and 

can reflect changes in work-related stress levels. The inclusion of keyboard strokes and left 

and right mouse clicks as features in a dataset aimed at predicting stress in an office setting 

is a relatively novel approach that has shown promising results in recent studies [33], [34].

3.4 Data Processing

Due to technical errors, some sensors failed to collect data, resulting in missing data for 

some participants. Keyboard and mouse files were missing for three participants during the 

low-stress condition, and RGB video files were missing for two others during the high-stress 

condition. To impute the missing data, we trained an XGBoost model using data from 43 

participants with complete data. We optimized the model by tuning hyperparameters such as 

learning rate, maximum depth of trees, and number of trees through cross-validation. Using 

the optimized XGBoost model, we predicted the missing data points for keyboard, mouse, 

and RGB video files. This method is accurate and preserves the standard deviation and shape 

of the feature distribution, avoiding data loss due to deletion of rows with missing entries 

[35].

Depending on the window size, the physiological and behavioral dataset comprised of 

48 participants×70 minutes per participant×1/window size. For instance, considering a 30 

second time window, the total number of datapoints would be: 48×70×1/(0.5min) = 6720 

datapoints. The final dataset included 83 features including 34 physiological features, 48 

behavioral features including 3 human-computer interactions, 39 facial-related features and 

6 features for the hand wrist acceleration, and 1 feature indicating the participant’s gender. 

All features were normalized using min-max scaling, which involved a linear transformation 

of the original data to a range between 0 and 1. Table 1 presents a summary of all the 

features included in our analysis.

Participants’ ratings of stress level were each subtracted from the rating provided at the end 

of the corresponding resting period resulting in stress arousal ratings ranging from −100 to 

100. Appraisals of eustress and distress were transformed into a binary outcome. “Stress 

is not appraised as” eustress or distress was created by bundling any response from the 

3 categories of “very definitely is not a source of,” “definitely is not a source of,” and 

“generally is not a source of.” Similarly, the 3 categories of “very definitely is a source of,” 
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“definitely is a source of,” and “generally is a source of” were grouped into “stress appraised 

as” eustress or distress.

3.5 Metrics for prediction assessment

Eustress and distress were transformed into binary outcomes for ML analysis, a 

classification problem. Metrics used to evaluate prediction performance included accuracy, 

unweighted (average) precision, recall, and F1 score, which accounts for class imbalance. 

Each model presented in the results section was assessed using the leave-one-person-out 

cross validation method, a technique commonly used in machine learning to build models 

that are robust and generalizable.

4. RESULTS

To provide a foundation for our findings, we first present a variety of descriptive data related 

to stress appraisal across and within the two experimental conditions. While the overall 

perceived stress level among all participants for both work conditions was relatively low 

(M=13.96, SD=20.24), our experiment induced stress given that the perceived stress level 

was on average 13.96 points higher than the baseline. In addition, the low-stress work 

condition induced more eustress (N=2,110) among participants than distress (N=1,380). On 

the other hand, the high-stress work condition resulted in almost equal eustress (N=2,390) 

and distress (N=2,220) datapoints. Despite the low-stress condition being 10 minutes 

longer than the high-stress condition, the distress datapoints in the latter (N=2,220) were 

significantly higher than the former (N=1,380), as evidenced by the significant results of the 

chi-squared analysis (X2 (df=1, N=6,720) = 1,120, p<0.001). Fig. 2 provides a summary of 

the eustress and distress datapoints distribution across both conditions.

4.1 Perceived stress levels variation across eustress and distress conditions

To answer our first research question, we conducted two independent t-tests that examined 

how perceived stress level (i.e., arousal) changed as a function of eustress and distress (i.e., 

valence). The first test investigated the effect of eustress appraisal on stress arousal. The 

results show a significant effect of eustress appraisal on the stress arousal (t(6718)=−17.44, 

p<0.001); the stress arousal was significantly higher when datapoints were labeled as “stress 

appraised as eustress” (M=16.92, SD=21.74) in comparison to the data points labeled as 

“stress not appraised as eustress” (M=7.96, SD=15.11). The second test examined the effect 

of distress appraisal on stress arousal. The results show a significant effect of distress 

appraisal on stress arousal (t(6718)=−28.05, p<0.001), more specifically stress arousal was 

significantly higher with datapoints labeled as “stress appraised as distress” (M=20.06, 

SD=22.59) compared to the stress arousal associated with datapoints labeled as “stress not 

appraised as distress” (M=6.92, SD=14.19).

4.2 Comparison between different ML models

We answered our second question by investigating which ML model is best suited for 

predicting eustress and distress using the 83 features in our dataset. We examined ten 

models, including Naïve Bayes (NB), K-nearest neighbor (K-NN) (K-values between 3 and 

15), Support Vector Machine (SVM) with different kernels, Decision Tree (DT), Random 
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Forest (RF), Extreme Gradient Boosting (XGBoost), MultiLayer Perceptron (MLP), and 

Logistic Regression (LR) as well Long Short-Term Memory (LSTM) and a combination of 

Convolutional Neural Network (CNN) and LSTM models. Both LSTM and CNN-LSTM 

were implemented with the Keras Sequential API. The LSTM model consisted of a single 

LSTM layer with 64 units, followed by a dense layer with sigmoid activation for binary 

classification. The input shape was determined by the time steps in the training data and 

a single feature dimension. The model was optimized using binary cross-entropy loss and 

Adam optimizer. The CNN-LSTM model included one-dimensional convolutional layers, 

followed by an LSTM layer and a dense output layer. It employed 64 filters in the 

convolutional layers with a kernel size of 3 and ReLU activation. A max-pooling layer 

and dropout were applied to reduce overfitting.

Fig. 2 reveals a somewhat unbalanced distribution of the eustress and distress classes. 

Although unbalanced datasets can pose challenges for classification problems, the degree of 

imbalance in this binary distribution is not severe enough to require statistical intervention. 

To confirm our assumption, we conducted ML analysis both with and without data 

augmentation. The results showed comparable performance between the datasets, with the 

augmented dataset exhibiting only a small increase of 2% in accuracy and approximately 3% 

for the F1-score across all ML models. Thus, the accuracy, precision, recall, and F1-score 

reported in Table 2 are based on the actual dataset without any augmentation.

4.3 Comparison between different window sizes

This section answers the third research question and presents our findings on the optimal 

window size for training eustress and distress prediction models. In our analysis, we 

considered four different window sizes, namely 30 seconds, 1 minute, 2.5 minutes, and 

5 minutes, with corresponding datasets of 6720 datapoints, 3360, 1344, and 672 for each 

window size respectively. We chose a 30-second time window based on the recommendation 

of Bernardes et al. [36], who found that this is the smallest time frame that can reliably 

capture HRV features that accurately assess psychological stress. Furthermore, we chose 

1 minute as it is a commonly used window size in previous studies on stress prediction 

[22]. The 2.5-minute window size was chosen to capture a longer period of signals, which 

may provide additional information for predicting eustress and distress. Finally, given that 

participants received a new questionnaire every 5 minutes, a timeframe of 5 minutes was 

determined to be the maximum feasible window size. The results presented in Table 3, are 

based on training an XGBoost model using all 83 features.

4.4 Comparison between different modalities

To answer question four, we trained different ML models to determine how different 

data modalities affect the prediction performance of eustress and distress. Since XGBoost 

resulted in the highest accuracies among the ML models, all analyses conducted from 

this point forward used XGBoost. The results in Table 4 show that the combination of 

physiological and behavioral features resulted in the highest prediction accuracy and F1-

scores for both eustress and distress.
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Next, we employed SHAP feature importance analysis [37] to identify the most influential 

physiological and behavioral features for predicting eustress and distress. Fig. 3 displays the 

feature importance analysis for the eustress and distress binary models using combined 

physiological and behavioral data. Only the top 15 features are shown, as including 

additional features showed a negligeable improvement in performance. Using only the top 

15 features led to a slight decline in performance when compared to the full models. The 

accuracy and F1-score for eustress decreased from 85.65% and 83.38% to 83.99% and 

82.11% respectively, while for distress, the accuracy and F1-score decreased from 78.90% 

and 78.79% to 76.19% and 75.40% respectively.

4.5 Gender-based models

This section answers the fifth question of the study. Fig. 3 shows that gender was the 

second most important feature in the prediction of eustress. Therefore, we decided to build 

gender-based stress appraisal models. The distribution of the eustress and distress binary 

variables based on gender is presented in Fig. 4 below.

We created gender-based models by dividing our initial dataset of 6720 datapoints (30 

second time window) into two subsets: one for males (2800 datapoints) and one for females 

(3920 datapoints). XGBoost models were trained for each dataset, incorporating all available 

features within a 30-second time window. Table 5 presents the results of these gender-based 

models.

4.6 Differentiating between eustress, distress, eustress-distress coexistence, and no-
stress

Individuals in the workplace can perceive stressors differently, resulting in varying levels 

of eustress and distress [38]. For example, a worker may feel pure eustress when leading 

a successful project, but pure distress when dealing with limited work resources or a toxic 

work environment. While eustress and distress can be experienced separately, they can 

also coexist in the workplace. For instance, a worker may experience pressure to meet 

a deadline (eustress) while also feeling overwhelmed by workload (distress). Conversely, 

individuals may experience no stress at all when they’re disengaged or bored at work, 

which can negatively impact their performance and well-being. An administrative assistant, 

for example, may feel no eustress or distress when performing repetitive tasks, leading to 

feelings of disengagement or apathy towards their work.

This coexistence of eustress and distress highlights the need for a more comprehensive 

understanding of workplace stress. Thus, after exploring the distinct concepts of eustress 

and distress, creating prediction models for each, and identifying the physiological and 

behavioral characteristics that best represent them, we developed a comprehensive model to 

predict the simultaneous assessment of both types of stress. Our model aims to capture not 

only the presence of eustress and distress but also their simultaneous appraisal, enabling a 

more nuanced understanding of the complex experiences individuals face in the workplace. 

Therefore, we developed a new outcome measure that distinguishes between pure eustress, 

pure distress, eustress-distress coexistence, and the absence of stress. We reverted back to 

the binary formulation of eustress and distress, defining “Eustress” as stress appraised as 
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eustress but not distress, “Distress” as stress appraised as distress but not eustress, “Eustress-

distress coexistence” as stress appraised as both eustress and distress, and “No stress” as 

stress not appraised as either eustress or distress. Table 6 presents the formulation of stress 

appraisal states.

The resulting dataset is imbalanced, as approximately 50% of cases reflected Eustress-

distress coexistence, while Distress was only identified in 5% of cases. To address 

the issue of imbalanced classes, we utilized an oversampling technique by employing 

the synthetic minority oversampling technique (SMOTE) algorithm [39]. This technique 

involves generating new synthetic samples in the minority classes by selecting a random 

sample from the minority class, identifying the k-nearest neighbors, and creating synthetic 

data points in the direction of the vector that connects the minority instance and its 

neighbors. It is worth noting that the SMOTE algorithm was applied solely to the training 

set, not the testing set. For this analysis, we utilized the XGBoost algorithm to build our 

predictive model and incorporated all available features with a 30-second time window. 

The XGBoost model achieved a moderate classification performance, with an accuracy of 

74.42%, precision of 66.78%, recall of 63.55% and F1 score of 65.12%.

5. DISCUSSION

5.1 Perceived stress level variation across eustress and distress conditions

When participants indicated having a eustress feeling, their stress arousal was significantly 

higher than with a non-eustress feeling. Similarly, participants experiencing a distressing 

feeling showed significantly higher stress arousal compared to the non-distress feeling. 

However, a distressful situation was considerably more intense than situations that elicited a 

eustress feeling as the former led to a substantially higher level of stress arousal. Hans Selye 

defined stress as the body’s response to a certain demand but distinguished between eustress 

and distress [20]. He denoted stress as arousal and explained that whenever stress arises, 

the question becomes about its valence and whether the stressed individual perceives it as 

positive or negative. The results from the t-tests are in accordance with Selye’s definition of 

stress; both eustress and distress were associated with an increase in perceived stress arousal.

5.2 Comparison between different ML models

Naïve Bayes classifier had the weakest F1-score for eustress (62.23%) and distress 

(53.38%), likely due to its assumption that the presence of a particular feature is independent 

of all other features, which is not applicable to physiological and behavioral features that 

are interdependent. Logistic regression also showed weak F1-score for eustress (64.44%) 

and distress (64.94%) likely because the target classes have no linear correlation with 

the features. In contrast, decision tree, K-NN, SVM, and MLP models had fair to good 

prediction accuracy. The best K-NN model with a K value of 3 achieved F1-scores of 

81.45% for eustress and 70.68% for distress. Among SVM models, the polynomial kernel 

in the 6th degree led to the best F1-score of 75.40% for eustress and 70.40% for distress. 

MLP also showed good F1-scores of 75.37% for eustress and 71.08% for distress, despite its 

relatively longer training time for large datasets.
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The LSTM model achieved an F1-score of 75.66% for eustress and 75.32% for distress. 

Additionally, the CNN-LSTM model showed similar performance to the LSTM model in 

terms of F1-scores, achieving ≈75% for eustress and (75–78%) for distress. These results 

indicate that combining convolutional and recurrent layers is an effective approach for 

predicting stress appraisal from physiological and behavioral signals, as it captures both 

local and temporal dependencies, outperforming other models in the study.

The best-performing models were XGBoost (eustress: 83.38%, distress: 78.79%) and 

random forest (eustress: 82.39%, distress: 74.66%), with slightly better performance for 

XGBoost. XGBoost is an optimized gradient boosting technique that builds decision trees 

sequentially and penalizes underperforming leaves. In contrast, random forest combines 

multiple decision trees using bagging. XGBoost, by learning from previous mistakes, can 

capture complex patterns and outperforms most classification algorithms. Another study by 

Hseih et al. [40] (F1-score: 89%) also identified XGBoost as the most effective algorithm to 

distinguish between stress and amusement states. However, it is important to note that their 

study employed a different experimental design from ours. In contrast, our findings highlight 

the importance of assessing individual appraisal of work conditions as a source of pressure. 

Therefore, while the results of [40] are impressive, our study provides novel insights into the 

context of work-related stress.

Finally, our study found that ML models can predict eustress and distress with reasonable 

accuracy and F1-scores. However, both metrics were lower for distress, which may be 

due to its complexity and the influence of contextual factors. Response bias [41] may 

also have played a role, as participants may have under-reported their distress levels to 

appear competent, resulting in misalignment between actual and reported distress and lower 

performance for the distress model compared to the eustress model.

5.3 Comparison between different window sizes

Our results suggest that shorter window sizes may capture more fine-grained fluctuations in 

the physiological and behavioral signals and result in a slightly more accurate prediction. 

However, the differences in accuracy and F1-scores between the tested window sizes are 

relatively small. Within the range of window sizes that were tested, the choice of window 

size may not be critical for achieving good model performance. Additionally, it is important 

to acknowledge that emotions may not fluctuate as rapidly as within the short time frames 

tested in our experiment. While our study provides valuable insights, it is limited to a 

controlled laboratory experiment with a short duration of 70 minutes. As such, longitudinal 

data collection in real-world office environments is necessary to determine how eustress 

and distress develop over time and how well prediction models perform in such settings. 

This will also allow for the exploration of larger window sizes and their effectiveness in 

capturing changes in stress appraisal over longer time periods. Further research is needed to 

fully understand the complexities of stress appraisal and its prediction in real-world settings. 

Nonetheless, our findings offer important validation and evidence that predicting eustress 

and distress is possible.
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5.4 Comparison between different modalities

Previous studies, focusing on detecting stress as an arousal state, demonstrated that 

a combination of behavioral and physiological signals leads to higher ML prediction 

performance. For instance, Koldijk et al. [22] showed that a combination of physiological, 

facial, and computer interaction features led to the highest accuracy in differentiating 

stressful from non-stressful work conditions for office workers. Our results show that the 

same conclusion holds for determining stress appraisal as distress and eustress. In the study 

of Li et al. [13], a composite of features derived from smartphone and computer usage, along 

with heart rate data, was utilized to identify occurrences of eustress in a naturalistic data 

setting. The authors’ findings revealed a prediction accuracy of 71.33%, albeit their study 

population was confined to a mere seven participants. Our laboratory-based results, however, 

suggest that a blend of facial features and physiological measures beyond heart rate may 

serve as stronger indicators of eustress reaching a prediction accuracy of 85.65% and an 

F1-score of 83.38%.

The combination feature set resulted in only a slight increase in performance (2–4%) 

compared to the physiological feature sets for eustress and distress predictions, while the 

behavioral feature set showed a larger increase (accuracyeustress:12%, F1-scoreeustress:15% 

and accuracydistress:6%, F1-scoredistress:7%). These findings suggest that physiological 

features may be more informative than behavioral features for predicting eustress and 

distress. However, further research is needed to fully evaluate the relative importance of 

each feature set. These results have practical implications for researchers interested in 

implementing this framework. If high prediction performance is crucial, a combination of 

features may be necessary, but this would require significant financial and computational 

resources to acquire and analyze the data. Alternatively, relying on a unimodal framework 

with physiological features can provide good prediction performance, comparable to the 

combination feature set.

Upon examining the SHAP plots, a clear contrast emerged between the dominant predictors 

for eustress and distress. Notably, physiological data played a prominent role in predicting 

eustress, as 10 out of the top 15 features were physiological, whereas only 4 were 

behavioral, and gender was the final feature. Conversely, in predicting distress, 6 behavioral 

features were among the top 15, which explains why the performance of behavioral-based 

models (72.35%) was relatively comparable to that of physiological-based models (74.83%). 

However, this trend, as shown in Table 3, did not hold for eustress prediction models 

(Behavioral = 73.38%, Physiological=83.45%). These findings highlight the importance 

of considering the distinct predictors for eustress and distress, particularly in developing 

effective prediction models.

Our study found that EDA, BVP, and ST were the most important physiological features for 

predicting both eustress and distress. This confirms previous research, which suggested that 

EDA is a strong indicator of stress but is not enough on its own to differentiate between 

eustress and distress [42]. Our study uniquely shows that ST and BVP are also important 

predictors of stress appraisal. In addition to these features, heart rate (minimum heart rate) 

and HRV features (high frequency bands) were among the most important features for 

unveiling stress appraisal. Our review of the literature showed that only one attempt has been 
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made to determine when an office worker is feeling eustressed [13], with similar findings of 

importance as in our study.

The identification of brow lowering (AU04), lid tightening (AU07), and upper lip raising 

(AU10) as predictors of distress is consistent with prior research linking these action units 

with negative emotions such as anger, fear, sadness, and worry, which are commonly 

observed in response to threatening or stressful events [43]. Interestingly, AU14, which 

is not typically associated with emotional expression, has been found to predict both eustress 

and distress. This finding is noteworthy, as it suggests that the presence of AU14 may reflect 

a sense of enjoyment or pleasure, consistent with the experience of eustress. Alternatively, 

it may also reflect a coping mechanism or an attempt to maintain a positive mood in the 

face of adversity. Our study identified a unique finding of gaze angle in the y-direction, 

but we acknowledge that head movement and gaze cannot be interpreted separately from 

body posture, which we did not examine. Yang et al. [44] argue that head movements 

are typically associated with gaze drifting and body movements, highlighting the need for 

further investigation into body posture to obtain a complete understanding of the behavioral 

characteristics of eustress and distress.

We added productivity-related features to our model, considering the impact of eustress and 

distress on workers’ productivity [8]. Wrist accelerations in the x and y planes emerged as 

significant predictors of both eustress and distress. This finding is consistent with Holder 

et al.’s argument that hand acceleration captured by the Empatica E4 is a crucial factor in 

predicting stress arousal [45], reflecting people’s engagement and performance [46], which 

is related to the impacts of both eustress and distress on engagement and excitement during 

work. In contrast to previous studies, our results did not find keyboard strokes and mouse 

clicks as crucial features for predicting eustress or distress. Nonetheless, these metrics may 

be relevant in real office settings or different types of office tasks [22]. Future work could 

examine other HCI features like keystroke pressure, gaze duration, and application usage to 

enhance the prediction of eustress and distress.

5.5 Gender-based models

When employing gender-based models, eustress prediction performance improved more 

considerably than distress prediction performance. For males and females, the eustress 

prediction accuracy was 86.65% and 88.02%, respectively, compared to the 85.65% 

prediction accuracy for the generalized eustress model. The male and female groups’ 

distress prediction accuracy was 79.74% and 80.12%, respectively, compared to the 78.90% 

prediction accuracy for the generalized distress model. However, when examining the F1-

scores, the only notable improvement was observed for the eustress category in the females’ 

group with an F1-score of 86.80% in comparison to 83.38% for the generalized model. 

This larger increase in the eustress model is consistent with the SHAP results. Gender was 

not among the top predictors of distress, but it was the second most important feature in 

predicting eustress, as shown in Fig. 3.

Gender is an important factor in the way people perceive and respond to stress. Stress is 

a complex biological and psychological phenomenon, and research has consistently found 

gender differences in the physiological, cognitive, and behavioral responses to stressors. For 
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instance, women tend to have stronger physiological responses to stress than men, including 

a higher heart rate and blood pressure [47], which may be attributed to hormonal factors. 

Additionally, societal expectations and gender roles can influence how men and women 

perceive and respond to stressors at work [25], leading to differences in coping strategies 

and outcomes. These gender differences may also extend to eustress and distress, with 

studies suggesting that men and women may experience different types of stressors that 

elicit either eustress or distress [9], [48].

In recent years, ML and predictive modeling techniques have been used to develop tools 

for detecting and predicting stress. These models often incorporate gender as a feature to 

address the effect of gender on stress detection and acquire better prediction performance 

[49], [34]. In the present study, separating the eustress and distress prediction models by 

gender led to an improvement in prediction performance, suggesting that gender-specific 

differences play an important role in stress appraisal.

It is important to note that stress appraisal is influenced by a variety of personal and 

contextual factors, and gender is just one of these factors. Other personal characteristics, 

such as age, personality traits, work type, and coping styles, may also play a role in stress 

appraisal and response. By creating more group models based on personal characteristics, 

we may be able to further improve the performance of machine learning techniques in stress 

appraisal. Building on that, future research should continue to explore the role of gender 

and other personal characteristics in stress appraisal and response, to further enhance our 

understanding of this complex phenomenon.

5.6 Differentiating between eustress, distress, eustress-distress coexistence, and no-
stress

The results of the classification problem involving four stress appraisal classes indicate an 

overall decline in performance (accuracy=74.42%, F1-score=65.12%) when compared to 

the binary classification problems for eustress (accuracy=85.65%, F1-score=83.38%) and 

distress (accuracy=78.90%, F1-score=78.79%). These observed differences in performance 

can be attributed to various factors inherent to the nature of the classification tasks. Firstly, 

the binary classification task inherently possesses a simpler structure compared to the 

multi-class classification problem, as it involves distinguishing between only two classes. 

In contrast, the 4-class classifier is burdened with the intricate task of differentiating 

among four distinct classes. This increased complexity of the multi-class problem poses 

greater challenges for the classifier in accurately classifying instances. Secondly, the 

presence of class imbalance can significantly impact classifier performance. While the 

balanced distribution of classes in the binary classification problem may contribute to 

higher accuracy and F1 score, imbalanced class distributions in the 4-class classification 

problem, particularly when certain classes have significantly fewer instances, can adversely 

affect overall classifier performance. The minority classes (i.e., distress class), being 

underrepresented, may prove more difficult to accurately classify, leading to lower scores. 

Lastly, the overlapping features among classes in a multi-class classification scenario 

introduce inherent ambiguity and elevate the difficulty in correctly classifying instances. 

In our case, there might be a potential overlap between the “Eustress-distress coexistence” 
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class and the “Eustress” and “Distress” classes, introducing some classification errors. 

Conversely, binary classification problems often exhibit more distinct boundaries between 

the two classes, facilitating the classifier’s discrimination process.

The study conducted by Setz et al. [25] aimed to differentiate between stress and cognitive 

load using electrodermal activity (EDA) data collected from 33 subjects in a laboratory 

experiment. Although not directly related to eustress and distress, their work is similar to 

our study’s objective of distinguishing between different stress states. Multiple ML models, 

including linear discriminant analysis, SVM, and nearest class center, were tested, with the 

highest accuracy of 82.8% achieved. This research presents a comparable analysis between 

cognitive load and eustress and stress and distress. However, our study contributes to the 

literature by identifying pure eustress, pure distress, eustress-distress coexistence, and the 

absence of stress. We have expanded the classification beyond the binary categorization of 

stress and cognitive load to include four different stress appraisal states.

Our approach has important implications for workplace settings where stress is prevalent. By 

distinguishing between eustress and distress, managers and supervisors can intervene early 

to prevent negative emotions from escalating. Additionally, our ability to detect eustress-

distress coexistence is valuable in identifying mixed emotional states that are difficult to 

discern through self-report measures. This information can facilitate targeted interventions 

that help individuals develop coping strategies and reframe negative emotions. These 

findings have practical significance for the development of affective computing systems 

that can accurately detect and differentiate between different emotional states in real-time. 

By using a combination of physiological and behavioral features, our approach represents a 

significant step forward in the field of affective computing. It has the potential to be applied 

in a variety of contexts, including workplace stress management, mental health monitoring, 

and personalized healthcare.

6. LIMITATIONS & FUTURE RESEARCH

While this study presents the first attempt to employ ML for differentiating eustress 

and distress, it also has some limitations. First, although the experimental procedure was 

designed to simulate stressful office work, participants were assigned predesigned tasks and 

were put under extreme work conditions (i.e., zoom monitoring, compensation withhold). 

Hence, this experiment falls short of mimicking the dynamics and complexity of office 

work. To that end, future research directions should examine office workers’ eustress and 

distress in their naturalistic work environments. Second, the proposed ML models presented 

in this paper did not consider the full personalized experience of stress and only accounted 

for gender as a moderating prediction feature. Eustress and distress appraisal are affected 

by various personal characteristics; what is considered as eustress for one person can be 

distress for another. For that, future research should incorporate personal characteristics 

(e.g., age, personality traits) while building automated prediction frameworks for eustress 

and distress or establishing personalized and unique ML models for groups of workers 

following their personal characteristics. Finally, our results showed that both head movement 

and gaze were important predictors of eustress and distress, which hints at the importance 
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of incorporating body posture in future research studies to differentiate between eustress and 

distress appraisal.

7. CONCLUSIONS

This study represents the first attempt to employ an ML framework to predict eustress and 

distress in an experimental setting. The study mimicked different work settings with two 

stress conditions: low-stress and high-stress work. Physiological and behavioral signals were 

used in establishing the prediction models. Results show that the perception of distress is 

associated with a higher level of subjective stress arousal than the perception of eustress. 

The XGBoost classifier had the best prediction performance for both eustress and distress 

compared to nine other classifiers. Using this ML model along with a window size of 

30 seconds, the combination of physiological and behavioral features led to 85.65% and 

78.90% accuracy in predicting eustress and distress, respectively. Additionally, the results 

indicate that gender plays a role in predicting eustress and distress conditions, with a 

potentially higher influence in predicting eustress than distress. Finally, we developed 

a model to predict the simultaneous assessment of eustress and distress, distinguishing 

between pure eustress, pure distress, eustress-distress coexistence, and the absence of stress. 

The developed model achieved a moderate accuracy of 74.42% and F1-score of 65.12%.

This study presents promising findings that can be integrated with work management 

practices to minimize work distress and promote eustress among office workers. Personal 

factors play a major role in how workers perceive the stress associated with their work tasks. 

Thus, eustress-distress prediction models could help work managers effectively design, 

tailor, and assign work duties among office workers with the aim of maximizing eustress 

at the expense of distress. Also, implementing this framework may be useful for promoting 

self-awareness among workers about their negative stress levels and the specific work 

conditions that increase their distress. Finally, such a framework could be coupled with a 

notification system to alert workers about prolonged distress experiences and provide them 

with appropriate intervention suggestions that limit unhealthy distress exposure.
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Fig. 1. 
Experimental design schemati
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Fig. 2. 
Distribution of eustress and distress across stress conditions
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Fig. 3. 
Gender-based distribution of eustress and distress variables
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Fig. 4. 
Feature importance for the distress and eustress binary classification models
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Table 1

Features Dataset

Type (Number of features) Signal Features Included

Physiological (34)

EDA Blood Volume Pulse Skin Temperature
Mean, Standard deviation, Median, Minimum, Maximum, 

25th & 75th percentile, slope fitted through the data.

Heart Rate and HRV Mean, Standard deviation, Minimum, Maximum, rmsdd, 
LF peak, HF peak, LF power, HF power, LF/HF

Behavioral (48)

Facial action units Head Rotation Eye gaze 
direction Mean, Standard deviation

Blink Count

Hand wrist acceleration Mean, Standard deviation

Mouse right clicks Mouse left clicks Keyboard 
keystrokes Count

Gender (1) Female vs Male Binary
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Table 3

Window size analysis for binary classification of eustress and distress

Eustress Distress

30 sec 1 min 2.5 min 5 min 30 sec 1 min 2.5 min 5 min

Accuracy(%) 85.65 83.16 82.15 84.23 78.90 78.27 76.35 77.24

Precision(%) 85.24 82.75 78.88 82.96 79.21 77.75 75.97 77.29

Recall(%) 81.60 80.17 83.75 84.52 78.38 76.96 77.11 75.05

F1-score(%) 83.38 81.44 81.24 83.37 78.79 77.35 76.53 76.15
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Table 4

XGBoost results for binary classification of eustress and distres

Eustress Distress

Physio Behavior Combined Physio Behavior Combined

Accuracy(%) 83.45 73.38 85.65 74.83 72.35 78.90

Precision(%) 81.00 69.81 85.24 75.48 72.32 79.21

Recall(%) 80.26 67.48 81.60 73.63 71.28 78.38

F1-score(%) 80.63 68.62 83.38 74.54 71.79 78.79
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Table 5

Gender-based binary eustress and distress prediction models

Eustress Distress

Male Female Male Female

Accuracy(%) 86.65 88.02 79.74 80.12

Precision(%) 81.19 87.25 78.50 79.80

Recall(%) 84.10 86.35 79.43 77.98

F1-score(%) 82.62 86.80 78.96 78.88
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Table 6

Simultaneous stress appraisal formulation and data distribution

Eustress Appraisal Distress Appraisal Stress Appraisal Datapoints

Stress not appraised as eustress Stress not appraised as distress No stress 1890

Stress appraised as eustress Stress not appraised as distress Eustress 1230

Stress appraised as eustress Stress appraised as distress Eustress-distress coexistence 3270

Stress not appraised as eustress Stress appraised as distress Distress 330
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