Skip to main content
. Author manuscript; available in PMC: 2024 Oct 17.
Published in final edited form as: IEEE Trans Affect Comput. 2023 Oct 16;15(3):1153–1165. doi: 10.1109/taffc.2023.3324910

Table 2.

Comparison of binary classifiers’ performance in the prediction of eustress and distress

NB LR SVM KNN MLP LSTM CNN-LSTM DT RF XGBoost
Eustress
Accuracy(%) 68.14 70.32 79.25 83.55 79.29 79.86 80.03 82.21 84.29 85.65
Precision(%) 62.74 65.52 78.07 82.13 79.30 78.42 78.07 81.59 84.47 85.24
Recall(%) 61.74 63.41 72.92 80.79 71.81 73.10 72.92 78.10 80.42 81.60
F1-score(%) 62.23 64.44 75.40 81.45 75.37 75.66 75.40 79.81 82.39 83.38
Distress
Accuracy(%) 54.03 65.14 70.16 70.73 70.89 75.45 78.35 72.24 74.92 78.90
Precision(%) 53.53 65.20 71.56 71.92 72.29 76.06 78.37 72.12 75.31 79.21
Recall(%) 53.23 64.70 69.29 69.50 69.92 74.60 77.72 72.20 74.03 78.38
F1-score(%) 53.38 64.94 70.40 70.68 71.08 75.32 78.04 72.16 74.66 78.79