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Abstract

INTRODUCTION:The incidence ofAlzheimer’s disease (AD) and obesity rise concomi-

tantly. This study examined whether factors affecting metabolism, race/ethnicity, and

sex are associated with AD development.

METHODS: The analyses included patients ≥ 65 years with AD diagnosis in six Uni-

versity of California hospitals between January 2012 and October 2023. The controls

were race/ethnicity, sex, and age matched without dementia. Data analyses used the

Cox proportional hazardsmodel andmachine learning (ML).

RESULTS: Hispanic/Latino and Native Hawaiian/Pacific Islander, but not Black sub-

jects, had increased AD risk compared to White subjects. Non-infectious hepatitis

and alcohol abuse were significant hazards, and alcohol abuse had a greater impact

on women than men. While underweight increased AD risk, overweight or obesity

reduced risk. ML confirmed the importance of metabolic laboratory tests in predicting

AD development.

DISCUSSION: The data stress the significance of metabolism in AD development and

the need for racial/ethnic- and sex-specific preventive strategies.
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Highlights

∙ Hispanics/Latinos and Native Hawaiians/Pacific Islanders show increased hazards

of Alzheimer’s disease (AD) compared toWhite subjects.

∙ Underweight individuals demonstrate a significantly higher hazard ratio for AD

compared to those with normal bodymass index.

∙ The association between obesity and AD hazard differs among racial groups, with

elderly Asian subjects showing increased risk compared toWhite subjects.

∙ Alcohol consumption and non-infectious hepatitis are significant hazards for AD.

∙ Machine learning approaches highlight the potential of metabolic panels for AD

prediction.
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1 INTRODUCTION

The incidence of Alzheimer’s disease (AD) has been rising, which can be

due to the prevalence of obesity, longer lifespans, educational attain-

ment, or improved diagnostic tools.1,2 Regarding lifespan, the trends

might vary by population.3 For example, historically, non-Hispanic

Whites had higher life expectancies compared to non-Hispanic Blacks,

but the differences have been narrowing over time.4 Nevertheless,

AD still has an uneven burden on aged Black Americans. Thus,

the differences and risks for AD for different races remain to be

addressed. Although there has been increased attention to AD racial

disparity, there are still many challenges, which include issues with

recruitment, lack of biological data, and uncertainties in diagnostic

criteria.5–7

Alarmingly, the worldwide prevalence of obesity has nearly tripled

since 1975.8 In the United States, almost three quarters of adults

ages ≥ 20 are either overweight or obese.9 Obesity is associated

with a range of health risks, including metabolic syndromes or liver

disease, cardiovascular diseases (CVD), and type 2 diabetes mellitus

(T2DM).10,11 All of these, which are comorbidities of obesity, might be

risks for AD.12 Possibly as a more direct cause, obesity at midlife is

an established risk for AD.13 However, late-life high body mass index

(BMI) is associated with lower amyloid beta (Aβ) load, higher brain
volumes, and slower cognitive decline. Thus, late-life obesity can be a

protective factor forAD.14 This paradox should be validated in the con-

text of racial/ethnic groups.California is known for its high racial/ethnic

diversity and has large Hispanic and Latino populations. Moreover,

California is also home to large and diverse Asian populations.15 Over-

all, California provides a unique opportunity to study risks for AD in

ethnically diverse populations.

The liver is themost importantmetabolic organ.Westerndiet intake

and aging, which both stress metabolism and induce chronic inflamma-

tion, can contribute to the development of AD.16,17 The current study

tests a hypothesis thatmetabolic dysfunction is anADhazard in a race-

or sex-specific manner. The long-term goal is to develop population-

based preventive strategies. We studied electronic medical records

(EMR) data from six University of California (UC) health systems

(Davis, San Francisco, Los Angeles, Irvine, Riverside, and San Diego),

covering both northern and southern California. The studied patients

had late-onset AD diagnoses; a condition likely influenced by lifestyle.

Demographic data, laboratory test data, and diseases that might affect

metabolic functions were included in statistical and machine learning

(ML) analyses.

Our data revealed the disproportionate AD burden on Hispan-

ics/Latinos and Native Hawaiians/Pacific Islanders, surprisingly, but

not in Black subjects in California. Moreover, being underweight in

late life was a hazard for AD. Alcohol abuse or dependence, as well as

non-infectious hepatitis, were hazards in race/ethnicity- or sex-specific

RESEARCH INCONTEXT

1. Systematic review: Previous works have illustrated the complex interplay between the development of Alzheimer’s disease (AD) and

metabolic health, including conditions such as obesity, diabetes, and alcohol abuse. However, many of these works have focused pri-

marily on homogeneous populations, often overlooking the potential impact of race/ethnicity and sex on AD risk. Furthermore, while

some studies have explored the relationship between metabolic factors and AD risk in diverse populations, there remains a gap in

understanding the specific associations.

2. Interpretation: The present study investigates the relationship betweenmetabolic-related health issues and AD risk in a diverse pop-

ulation. By analyzing electronic medical records data from six University of California health systems, this study identified several key

findings. First, Hispanics/Latinos andNativeHawaiians/Pacific Islanders exhibited an increased hazard of AD compared toWhite sub-

jects, highlighting the importance of considering racial/ethnic disparities in AD risk. Additionally, the study revealed that alcohol abuse

and dependence were significant hazards for AD, particularly among women. Moreover, the presence of non-infectious hepatitis was

positively associated with higher AD incidence, underscoring the need to consider comorbidities in AD risk assessment. Interestingly,

while overweight or obesity was associated with a reduced risk of AD in aged populations, underweight individuals had an increased

AD risk. Furthermore, the impact of weight status on AD risk varied across racial/ethnic groups, with obese conditions significantly

increasing AD hazard among Asian subjects. Machine learning techniques further supported the importance of metabolic laboratory

tests in predicting AD development, highlighting the potential utility of biomarkers in AD risk assessment and early detection.

3. Future directions: Building upon the findings of this study, future research should aim to elucidate the underlyingmechanisms driving

the observed associations between metabolic factors and AD risk in diverse populations. Longitudinal studies are needed to under-

stand the temporal relationship betweenmetabolic health andADdevelopment, as well as the potential moderating effects of genetic

and environmental factors. Additionally, intervention studies should explore the efficacy of targeted preventive strategies tailored

to specific racial/ethnic and sex groups to reduce AD. Furthermore, efforts to integrate metabolic biomarkers into existing AD risk

prediction models may help improve the accuracy of early detection and the development of personalized preventive interventions.

Overall, addressing the racial/ethnic and sexdisparities inADrisk requires amultifaceted approach that considers the interplay among

metabolic health, lifestyle factors, and sociodemographic determinants.
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manners. These findings stress the importance of having metabolic

health to prevent AD.

2 METHODS

2.1 Study cohort

This study used Health Insurance Portability and Accountability Act

(HIPAA)–compliant health data from the University of California

HealthDatawarehouse (UCHDW), which included data from six health

systems. The Center for Data-driven Insights and Innovation built,

maintained, extracted, and harmonized the data using the Observa-

tional Medical Outcomes Partnership common data model (OMOP)

version 5.1. With OMOP, disparate clinical data can be compiled into

one UCHDWusing standard data structures and medical vocabularies

such as Logical Observation Identifiers, Names, and Codes; Prescrip-

tion Norms; and Systematized Nomenclature of Medicine. Currently,

the OMOP database at UCHDW comprises 942,483 patients who

have had at least one visit after January 1, 2012. Table S1 in sup-

porting information shows the process of mapping that standardizes

medical terminologies. Table S2 in supporting information shows the

demographic information of the UCHDWcohort.

2.2 Inclusion and exclusion criteria

Patients ≥ 65 years with a diagnosis of AD after January 1, 2012, were

identified based onAD-related International Classification of Diseases

(ICD)-9/10 codes (Table S3 in supporting information). Patients aged ≥

89 had their age set as 89 by HIPAA regulations. These patients were

labeled as “AD” (cases). AD patients who had a history of intracranial

injury, genetic susceptibility, or early-onset AD were excluded (Table

S4 in supporting information). The study encompassed 23,182 AD

patients (aged ≥ 65), and 62.29% were female. The mean age of these

patients was 85.14± 5.33 years.

The controls (166,931 patients aged ≥ 65) were randomly selected

with matched race/ethnicity (Table S5 in supporting information).

The control patients did not have AD, mild cognitive impairment,

intracranial injury, or genetic susceptibility. Table S5 summarizes the

demographic information of studied AD and control cohorts. Figure 1

and Figure 2 provide a detailed overview of the inclusion and exclusion

criteria.

2.3 Features and variables

Sixty variables classified into three categories were studied to assess

their impact on AD development (Table S6 in supporting informa-

tion). The first category includes demographic information: age, sex,

race/ethnicity, Area Deprivation Index (ADI), UC institution, and BMI.

Specifically, ADI aggregates various socioeconomic data at the cen-

sus block group level (e.g., income, education, employment, housing

quality) to measure socioeconomic disadvantage that occurs at the

neighborhood level.18 A rank of 1 means very low disadvantage, and

10 is the highest level of socioeconomic disadvantage inCalifornia. The

secondary category includes diseases that affect metabolic function,

like non-alcoholic steatohepatitis or autoimmune hepatitis, alcohol

drinking, metabolic diseases, and T2DM, as well as CVD. The last cat-

egory is lab tests, encompassing 37 laboratory test data (Table S6).

Variables are referred to as features in the context ofML.

2.4 Statistical analysis

Our analysis showed that patientswith severe liver diseases died 6 to 7

years earlier than age 77, which was the median age of AD diagnosis in

our study cohort. Themean age of death for patientswhohad liver can-

cer, cirrhosis, or toxic liver disease was 73, 72, and 74, respectively. To

mitigate the impact ofmortality on analysis and have sufficient lab data

and time for follow-up visits, wedecided to set the age cutoff at 70. Sta-

tistical analyses were done using 34,277 patients who had at least one

visit to a UC institution before age 69 and who remained alive without

AD at age 70. Within this group, 866 patients later had AD diagnoses

after age 70.

The data characteristics based on the final follow-up status are pre-

sented in Table 1. Time to AD (age 70 as time 0) was modeled using

the Cox proportional hazards model,19 treating loss to follow-up or

death as censoring events. The Cox proportional hazards model was

used to investigate the time to AD and to address the presence of con-

trol subjects who might have eventually developed AD given longer

follow-ups. Usingmodels without covariate adjustments, the impact of

demographics (sex, race/ethnicity) and ADI on AD diagnosis was stud-

ied. When assessing the effect of BMI on the timing of AD diagnosis,

adjustments were made for sex, race/ethnicity, ADI, and UC institu-

tion. Theminimumandmaximumpre-age70BMI for each subjectwere

used in separate analyses. Differences between ethnicity/race and sex

in the effects of a specific variable on ADwere examined throughmod-

els incorporating two-way interaction effects between the variable

in question and race/ethnicity and sex. When evaluating the impact

of medical diagnoses on the time to AD, the models considered the

following covariates: sex, race/ethnicity, ADI, and UC institution. The

resulting p values for diagnoses were adjusted using the Bonferroni

correction.

A multivariable Cox proportional hazards model of time to AD by

subject characteristics was fitted using variables that were signifi-

cant (adjusted or raw p < 0.05, as applicable) in univariable analysis.

The model included alcohol, non-infectious hepatitis, maximum BMI

(race-based), sex, race, UC site, and ADI. The minimum race-based

BMI and non–race-based BMImeasures were not included due to high

collinearity withmaximum race-based BMI.

To study the impact of laboratory test variables (Table S6) on the

timing to AD, the models used the pre-age 70 minimum or maxi-

mum values of each lab measurement (in separate models). Models

included sex, race/ethnicity, ADI, and UC institution as covariates and

the inverse probability of missingness weighted observations. The
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Patients who remained alive at age 70 
and had at least one visit to a UC 

hospital before 69.
N = 34,277
(AD = 866)

AD patients without intracranial injury, 
Control group: Randomly selected 

matched with race/ethnicity.
N = 190,113

(AD = 23,182, Control = 166,931)

Patients 65 years and over
N = 469,008

All patients
N = 942,483

Inclusion

Patients under 65 years
N = 473,475

AD patients with intracranial injury
N= 2,248

Unselected control subjects
N = 276,647

Patients who died before age 70 or no 
follow up visit at age 69.

N = 155,836

Exclusion

F IGURE 1 Inclusion/exclusion criteria for statistical analysis. The starting point includes all patients in the UCHDWcohort. Numbers in each
box correspond to the number of patients included/excluded, AD patients, and control patients. AD, Alzheimer’s disease; UC, University of
California; UCHDW, University of California Health Datawarehouse.

AD patients without intracranial injury, Control 
group consisted of randomly selected 

individuals, matched with race/ethnicity. 
N = 190,113

(AD = 23,182, Control = 166,931)

AD patients who had data for all 60 variables 
occurring three years before the initial AD 

diagnosis. Control group consisted of 
randomly selected 1 individual for each AD 

patient, matched with age, gender.
N = 1,006

(AD = 503, Control = 503)

AD patients with missing value for 
anyone of all 60 variables occurring 

three years prior to the initial AD 
diagnosis.
N = 22,679

Unselected control subjects
N = 166,428

Inclusion

Exclusion

F IGURE 2 Inclusion/exclusion criteria for machine learning. The starting point includes all patients in the Studied AD and Control cohort
selected from the UCHDWcohort. Numbers in each box correspond to the number of patients included/excluded, AD patients, and control
patients. AD, Alzheimer’s disease; UCHDW, University of California Health Datawarehouse.
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TABLE 1 Demographic information of patients from thematched case–control dataset at age 70 and had at least one visit to a UC institution
before age 69.

All patients NoAD at last follow-up AD diagnosed

Number 34,277 33,411 866

Age at last follow-up

Mean, years (SD) 72.5 (3.92) 72.4 (3.92) 75.8 (2.04)

Median [min, max] 73 [65, 89] 73 [65, 89] 76 [71, 80]

Sex

Female 20,732 (60.5%) 20,201 (60.5%) 531 (61.3%)

Male 13,545 (39.5%) 13,210 (39.5%) 335 (38.7%)

Race

White 24321 (71.0%) 22571 (71.0%) 613 (70.8%)

Black 2040 (6.0%) 1868 (5.9%) 39 (4.5%)

Asian 3571 (10.4%) 3348 (10.5%) 79 (9.1%)

Hispanic/Latino 3520 (10.3%) 3242 (10.2%) 102 (11.8%)

American Indian/Alaska Native 62 (0.2%) 60 (0.2%) <10

Native Hawaiian/Other Pacific Islander 170 (0.5%) 160 (0.5%) 10 (1.2%)

Multi-race 593 (1.7%) 572 (1.7%) 21 (2.4%)

ADI

Mean (SD) 4.18 (2.76) 4.19 (2.76) 3.95 (2.60)

Median [min, max] 4.00 [1, 10] 4.00 [1, 10] 3.00 [1, 10]

Abbreviations: AD, Alzheimer’s disease; ADI , Area Deprivation Index; SD , standard deviation; UC, University of California.

Bonferroni correction adjusted p values for multiple tests across

different laboratory variables.

All statistical analyses were conducted using R version 4.2.2 within

the Spark analytical platformDatabricks.

2.5 Machine learning

Unlike statistical models, which primarily examine the impact of

a single variable on time to AD, ML analysis incorporated 60

variables/features in ML. To study the impact of different fea-

tures/variables, lab tests were classified into five groups: (1) metabolic

panel, (2) blood counts, (3) serum lipids, (4) sugar, and (5) heart func-

tion (Table S6). Each group was removed to evaluate its impact on the

MLmodel’s performance.

To account for variations in testing frequencies and visit periods

among patients, the values for each feature in AD patients were based

on their last lab test results 3 years before the AD diagnosis date. For

the control subjects, the values for each feature corresponded to their

last lab test data 3 years before their final visit. A 3-year timeframewas

selected to enable AD prediction while maintaining a sufficient sam-

ple size for analysis. Based on this criterion, the study included 503 AD

patients; each had data for all 60 features. To build a balanced dataset,

control patients included503 age- and sex-matched randomly selected

patients. Table 2 shows demographic information of AD and control

cohorts used forML.

In the data processing step, one-hot encoding was used for cat-

egorical variables, converting each category into a binary vector

TABLE 2 Demographic information of balancedML dataset after
using case–control age–sex-matching strategy.

Characteristics AD Controls

Number 503 503

Mean age, years (SD) 82.9 (5.2) 82.9 (5.20)

Sex, number (%)

Female 323 (64.2%) 323 (64.2%)

Male 180 (35.8%) 180 (35.8%)

Race, number (%)

White 337 (67%) 329 (65.4%)

Black 40 (8%) 47 (9.4%)

Asian 60 (11.9%) 81 (16.1%)

Hispanic/Latino 60 (11.9%) 45 (8.9%)

American Indian/Alaska Native <10 <10

Native Hawaiian/Other Pacific Islander <10 <10

Abbreviations: AD,Alzheimer’s disease;ML,machine learning; SD, standard

deviation.

representation.20 This data processing method ensured categorical

data were effectively incorporated into the analysis and avoided ordi-

nal assumptions. For numerical variables, min–max normalization was

applied, scaling the values to a defined range, that is, 0 and 1, to ensure

a consistent treatment in the model. All models were conducted using

Scikit-learn version 0.20 in Databricks.

Ten-fold cross-validation was implemented, a reliable estimate of

model performance compared to a train/test split to reduce bias and
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variance. The dataset was randomly shuffled and split into ten folds. In

each of the ten folds, the model was trained on nine of these folds and

testedon the remainingone. This processwas repeatedwith adifferent

fold as the test was set in each iteration until all ten folds were used for

testing. The mean classification accuracy and standard deviation (SD)

of all iterations were calculated to determine the performance of each

algorithm.

3 RESULTS

3.1 Demographic overview for statistical and ML
analysis

The study population for statistical analysis comprised 34,277

patients, with 33,411 having no AD diagnosis at the last follow-up and

866 diagnosed with AD. The mean age was 72.5 years (SD= 3.92). The

mean age of AD patients was 75.8 (SD = 2.04). Females were 60.5%

of the overall population, with similar distributions in controls (60.5%)

and AD groups (61.3%). For ML analyses, 1006 subjects were evenly

split into AD patients and controls (503 each), and both cohorts had a

mean age of 82.9 years (SD = 5.2). Sex distribution was identical in AD

and control groups, of which 64.2%were females.

3.2 Racial disparity of AD

Different racial/ethnic groups havedistinct dietary habits and lifestyles

that may contribute to AD development. Table 3 shows the univariable

Cox proportional hazard analyses of sex, race/ethnicity, and ADI to the

timingofADdiagnosis. Compared toWhite subjects,Hispanics/Latinos

(p = 0.013) and Native Hawaiians/Pacific Islanders had increased haz-

ards of AD (p = 0.001). However, neither sex nor ADI was associated

with time to AD (Table 3). Table S7 in supporting information shows

the results of multivariable Cox proportional hazard models of time to

AD by demographic information, as well as alcohol and non-infectious

hepatitis. After adjusting variables in the model, the Hispanic or Latino

race andNativeHawaiianorPacific Islanders hadahigher hazardofAD

relative toWhite subjects.

3.3 The impact of late-life BMI on AD

We studied both the maximum and minimum to assess the impact

of BMI (based on the Centers for Disease Control [CDC] guideline)

because BMI values fluctuated. After adjusting for sex, race, ADI, and

UC site, Cox proportional hazards models revealed that underweight

for at least one assessment had a significantly higher hazard ratio

(HR) than those with normal BMI (p ≤ 0.001). In contrast, irrespective

of using either the maximum or minimum, overweight or obese had

reduced HR, indicating a protective effect (Table 3). However, Asian

subjects showed a significantly increased hazard of AD with obesity

versus overweight, which differed significantly from the small pro-

tective effect found in White subjects when modeling by using the

maximumBMI (p=0.021, Table 4). Conversely, therewas no significant

increase in AD hazard between races when using the minimum BMI in

modeling (Table S8 in supporting information).

Adjusting for all other variables in the multivariable Cox pro-

portional hazard model, obese or overweight (maximum BMI) was

associated with a significantly lower hazard of AD relative to normal

BMI.Moreover, high ADI increases AD hazard (Table S7).

3.4 Alcohol drinking and non-infectious hepatitis
are AD hazards

We studied whether liver dysfunctions can be hazards for AD. Addi-

tionally, other metabolic-related health issues, including T2DM and

CVD, as well as alcohol drinking, were examined (Table 5). Both non-

infectious hepatitis (HR = 5.181) and alcohol drinking (HR = 2.595)

were significant hazards by using the univariable Cox proportional

hazard models of time to AD (adjusted p value < 0.001, Table 5).

Although toxic liver disease and T2DM had elevated HR, they did not

reach statistical significance. The ICD-10 codes used to diagnose alco-

hol drinking and non-infectious hepatitis are listed in Table S9A,B in

supporting information, respectively.

Based on the result of the multivariable Cox proportional hazards

model of time to AD by demographic information, alcohol and non-

infectious hepatitis were associated with a significantly higher hazard

of AD relative to reference groups (Table S7).

By race, the impact of alcohol drinking diagnosis on time to AD

significantly affected White subjects but not others (Table S10 in

supporting information). Due to the limited number of Native Hawai-

ian/Pacific Islander subjects diagnosed with alcohol-related issues,

individuals from this demographic were excluded from the model

involving AD by alcohol with race and sex interactions. Furthermore,

the effect of alcohol drinking on time to ADwasworse for women than

men (interaction effect p = 0.034, Table S10). It is intriguing to note

that alcoholic-related hepatitis was not an AD hazard after adjusting

for race, sex, ADI, and UC location (adjusted p= 0.95, Table 5).

Standard lab tests frequently used in an annual routine health

checkupwere studied, andnonewas linked toAD.Table S11 in support-

ing information presents the results of the Cox proportional hazards

models by analyzing both the minimum and maximum of 37 labora-

tory tests. Thus, the individual laboratory test did not showa significant

hazard to AD.

3.5 Metabolic panel as a novel data source for
AD prediction

Five ML approaches, namely logistic regression, linear support vec-

tor machine, decision tree, random forest, and gradient boosting

decision trees (GBDT) were used to determine whether the studied

variables had predicting power for AD diagnosis.21–25 Table S12 in

supporting information shows the mean classification accuracy and
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TABLE 3 Univariable Cox proportional hazardmodels of time to AD by demographic information.

Variable Hazard ratio 95%CI p-value

Sex

Female vs. male 0.992 (0.865, 1.137) 0.907

Race

American Indian or Alaska Native vs.White 1.365 (0.341, 5.471) 0.660

Asian vs.White 0.848 (0.671, 1.071) 0.166

Black vs.White 0.877 (0.634, 1.212) 0.428

Hispanic/Latino vs.White 1.302 (1.055, 1.605) 0.013*

Native Hawaiian/Pacific Islander vs.White 2.708 (1.449, 5.059) 0.001*

ADI 1.000 (0.975, 1.025) 0.985

BMI

Minimumbefore age 70

Underweight vs. normal 2.018 (1.627, 2.501) < 0.001**

Overweight vs. normal 0.599 (0.505, 0.709) < 0.001**

Obese vs. normal 0.409 (0.316, 0.529) < 0.001**

Maximumbefore age 70

Underweight vs. normal 0.864 (0.407, 1.833) 0.703

Overweight vs. normal 0.748 (0.629, 0.889) 0.001*

Obese vs. normal 0.718 (0.601, 0.858) < 0.001**

Note: Models of the effect of sex, race, and ADI on time to ADwere not covariate-adjusted. Othermodels included sex, race/ethnicity, area deprivation index,

and UC institution as covariates.

Abbreviations: AD, Alzheimer’s disease; ADI, Area Deprivation Index; BMI, bodymass index; CI, confidence interval; HR, hazard ratio.

*p< 0.05, **p< 0.001.

SDs for the five algorithms evaluated on the balanced ML dataset

using 10-fold cross-validation. The GBDT algorithm achieved the high-

est accuracy of 62.43% for AD prediction when all 60 variables were

included, surpassing the 50% accuracy expected by random guess.

However, when only demographic information was included (age, sex,

race/ethnicity, ADI, UC institution, and BMI), all five algorithms yielded

an accuracy of ≈ 50% for AD classification. This illustrated the effec-

tiveness of the case–control age–sex-matching strategy in mitigating

the demographic-related impact on AD classification, thereby increas-

ing the potential to identify other relevant risk factors like diagnosis

and laboratory tests.

Interestingly, comparing the exclusion of disease diagnoses versus

lab test data, the predicting power tended to be lower when lab test

data were excluded. This finding suggested the relative importance of

lab test data in predicting AD. We, therefore, further analyzed the lab

tests by classifying them into five categories (Table S6). GBDTwas used

because it provided better prediction power than others. The results

revealed that excluding the metabolic panel lab test data resulted in

a mean accuracy of 54.88%, with a drop of ≈ 7.55%, compared to the

accuracy of 62.43% when all variables were included (Table 6). Sub-

sequent t test results produced a p value of 0.0003, surpassing the

predefined significance threshold of 0.05, indicating a statistically sig-

nificant enhancement with the inclusion of the metabolic panel lab

data. This finding suggests the potential of using the metabolic panel

as a novel source for AD prediction.

4 DISCUSSION

The study unveiled a compelling relationship between BMI and AD

hazards. Subjects categorized as underweight, according to CDC

guidelines, had a higher HR for AD compared to those with normal

BMI. Conversely, obese/overweight patients had reduced HR, reveal-

ing protective effects. These findings are particularly pertinent for

subjects who had at least one visit to a UC institution before age 69

and who remained alive without AD at age 70. Our results aligned

with prior research conducted on close to 2 million people in the UK,

which showed that being underweight in middle and old age had an

increased risk of dementia.13 Another study showed that higher BMI

was associated with an increased risk of dementia when weight was

measured > 20 years before dementia diagnosis, but such association

was reversed when BMI was assessed < 10 years before demen-

tia diagnosis.26 Our statistical analysis focused specifically on older

ages (> 69), and the data revealed that underweight was a risk of

developing AD, consistent with the conclusions of both data above in

the aged group. Moreover, our novel findings showed that BMI as a

risk for AD was race/ethnic different. It is important to note that in

elderly Asians, obesity was significantly associated with an increased

hazard of AD compared to being overweight (p = 0.022, shown in

Table 4).

It is important to note that the underrepresentation of ethnic and

racial minority groups in AD research remains an issue due to a lack
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TABLE 4 Estimates of the effect of themaximumBMI before age 70 on AD by race/ethnicity using the Cox proportional hazards model.

Race Comparison Hazard ratio 95%CI p-value

White Overweight vs. normal 0.755 (0.610, 0.934) 0.009*

Obese vs. normal 0.724 (0.582, 0.900) 0.003*

Obese vs. overweight 0.958 (0.784, 1.171) 0.681

Asian Overweight vs. normal 0.593 (0.346, 1.018) 0.058

Obese vs. normal 1.251 (0.701, 2.231) 0.447

Obese vs. overweight 2.107 (1.111, 3.997) 0.022*

Black Overweight vs. normal 0.608 (0.255, 1.445) 0.260

Obese vs. normal 0.471 (0.207, 1.068) 0.071

Obese vs. overweight 0.774 (0.3657, 1.639) 0.503

Hispanic/Latino Overweight vs. normal 0.838 (0.478, 1.469) 0.539

Obese vs. normal 0.660 (0.378, 1.151) 0.142

Obese vs. overweight 0.786 (0.509, 1.213) 0.278

Comparison

Asian—White Overweight vs. normal 0.786 (0.444, 1.393) 0.410

Obese vs. normal 1.728 (0.938, 3.181) 0.079

Obese vs. overweight 2.197 (1.124, 4.297) 0.021*

Black—White Overweight vs. normal 0.805 (0.331, 1.957) 0.633

Obese vs. normal 0.651 (0.279, 1.512) 0.317

Obese vs. overweight 0.807 (0.372, 1.754) 0.589

Hispanic/Latino—White Overweight vs. normal 1.110 (0.615, 2.007) 0.728

Obese vs. normal 0.911 (0.506, 1.641) 0.757

Obese vs. overweight 0.821 (0.509, 1.322) 0.416

Abbreviations: BMI, bodymass index; CI, confidence interval.

*p< 0.05.

of biological data or reliable information.27 The current study uses

EMR data that offers reliable diagnostic information. The data used

were harmonized from the UCHDW, which covers 34,277 patients

in both northern and southern California with enriched and diverse

races and ethnicities. The findings of Hispanics/Latinos and Native

Hawaiians/Pacific Islanders have an increased hazard of AD, empha-

sizing the importance and urgency of addressing AD health disparity

issues. Surprisingly, our data did not showBlack subjects had increased

AD hazard. Whether this is unique for California remains to be

investigated.

Light-to-moderate alcohol consumption can have detrimental

effects on brain structure, including global and regional brain volume,

as well as white matter integrity. These effects intensify with higher

alcohol intake levels and significantly increase the risk ofAD.28 Further,

excessive alcohol consumption in midlife is categorized as a modifiable

risk factor for AD.29 However, our data further revealed a significant

association between alcohol drinking as a hazard to AD affecting

women. Additionally, non-infectious hepatitis was a hazard to AD.

This finding highlights the importance of addressing alcohol use and

liver health in AD prevention strategies, particularly among women.

However, our data did not show alcoholic liver disease is a hazard. It is

essential to mention that our patients were formally diagnosed with

alcohol abuse/dependence or intoxication. They had severe drinking

problems, and the likelihood of having alcoholic hepatitis for those

patients should be very high. There is a possibility that those patients

with serious drinking problems did not seekmedical attention for their

potential liver problems. Thus, the number of patients diagnosed with

alcoholic hepatitis was small.

The impacts of T2DM and CVD on AD have been studied exten-

sively. Studies have demonstrated a higher incidence of AD in patients

with T2DM or CVD compared to those without comorbidities.30,31

However, for patients who had at least one visit to a UC institution

before age 69 and who remained alive without AD at age 70, the

analysis did not identify any of those diseases as hazards to AD. Study-

ing other age ranges or increasing the sample size would validate the

findings for the UC patients.

The investigation into various lab test variables shows that indi-

vidual laboratory tests did not predict AD hazards. Considering these

results within the context of broader hazard factors is essential.

Thus, the laboratory tests were categorized into five groups for ML

analysis. An exciting finding of this study is the potential of using

the metabolic panels as a novel source for AD prediction. These

findings highlight the crucial role of metabolic health and its broad-

reaching implications for cognitive well-being. Overall, the presented
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TABLE 5 Univariable Cox proportional hazardmodels of time to AD by diagnosis.

Variable Hazard ratio 95%CI p-value Adjusted p

NAFLD: yes vs. no 0.885 (0.630, 1.242) 0.479 1.000

NASH: yes vs. no 0.805 (0.360, 1.801) 0.598 1.000

Alcoholic-related hepatitis: yes vs. no 1.031 (0.385, 2.759) 0.951 1.000

Toxic liver diseases: yes vs. no 2.458 (0.790, 7.642) 0.120 1.000

Hepatic failure: yes vs. no 0.666 (0.214, 2.071) 0.482 1.000

Non-infectious hepatitis: yes vs. no 5.181 (2.577, 10.413) < 0.001 <0.001**

Cirrhosis: yes vs. no 0.867 (0.519, 1.448) 0.586 1.000

Inflammatory liver: yes vs. no 0.843 (0.271, 2.622) 0.767 1.000

Abscess liver: yes vs. no 1.689 (0.421, 6.786) 0.459 1.000

Autoimmune hepatitis: yes vs. no 0.635 (0.089, 4.512) 0.649 1.000

Other liver diseases: yes vs. no 0.813 (0.622, 1.063) 0.129 1.000

Liver disorders: yes vs. no 0.000 (0, Infinity) 0.986 1.000

Type 2 diabetes mellitus: yes vs. no 1.261 (1.070, 1.487) 0.005 0.118

Alcohol: yes vs. no 2.595 (1.922, 3.503) < 0.001 <0.001**

Cardiovascular disease: yes vs. no 1.045 (0.885, 1.235) 0.602 1.000

Hot flashes: yes vs. no 0.952 (0.561, 1.617) 0.856 1.000

Hot flashesmenopause: yes vs. no 0.939 (0.682, 1.293) 0.701 1.000

Note: All models included sex, race/ethnicity, AreaDeprivation Index, andUniversity of California institution as covariates. Adjusted p is Bonferroni corrected
p value.
Abbreviations: AD, Alzheimer’s disease; CI, confidence interval; NAFLD, non-alcoholic fatty livery disease; NASH, non-alcoholic steatohepatitis.

**p< 0.001.

TABLE 6 Themean accuracy and standard deviations of GBDT algorithmswith different variable groups.

All

variables

Excludemetabolic-

related variables

Exclude blood-

related variables

Exclude lipid-

related variables

Exclude sugar-

related variables

Exclude heart-

related variables

Mean accuracy 62.43% 54.88% 59.44% 64.01% 62.63% 61.93%

Standard deviations ± 4.63% ± 4.18% ± 4.78% ± 4.57% ± 3.84% ± 4.15%

Abbreviation: GBDT, gradient boosting decision trees.

data stress the necessity for the development of preventive strate-

gies that account for sex- and race/ethnicity-specific differences in AD

risk.

Although the UCHDW database consists of patients with diverse

racial and ethnic groups, the number of minority populations remains

low compared to Whites. In addition, the study design required prior

established disease diagnosis and lab test results, and patients with-

out follow-ups were excluded, which limited the number of studied

patients. Increasing the sample size and including more minority pop-

ulations would further validate and enhance the robustness of our

findings. Because the study focused on patients who visited UC insti-

tutions before age 69 and remained alive without AD at age 70, but

hadADdiagnosis after 70, this studydesignmight limit the applicability

of the findings to broader age ranges and in other health-care settings.

Moreover, while our study identified significant associations between

metabolic issueswithADdevelopmentbasedon race/ethnicity and sex,

the study design did not allow us to study the underlying biological

mechanisms.

Regarding mechanisms, emerging evidence revealed the sig-

nificance of the diet–liver–brain axis.17,32,33 Moreover, hepatic

encephalopathy can be an excellent clinical example of how liver

function affects cognition.34 However, encephalopathy is an extreme

condition, and early stages of liver disease, likemetabolic dysfunction–

associated fatty liver disease, can affect general cognition.35 Using

mice, our published data show that Western diet-fed mice have

systemic inflammation, microglia activation, and reduced learning

ability and memory.36 Additionally, shaping the gut microbiota using

prebiotics improves diet-associated cognitive decline demonstrated

in mouse models.17 Thus, uncovering molecular biomarkers within

the gut–liver axis based on sex and race might be essential for early

prediction, diagnosis, and intervention.
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