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Abstract

Biological and clinical heterogeneity is a major challenge in research for developing

new treatments for Alzheimer’s disease (AD). AD may be defined by its amyloid beta

and tau pathologies, but we recognize that mixed pathologies are common, and that

diverse genetics, central nervous system (CNS) and systemic pathophysiological pro-

cesses, and environmental/experiential factors contribute to AD’s diverse clinical

and neuropathological features. All these factors are rational targets for therapeu-

tic development; indeed, there are hundreds of candidate pharmacological, dietary,

neurostimulation, and lifestyle interventions that showbenefits in homogeneous labo-

ratory models. Conventional clinical trial designs accommodate heterogeneity poorly,

and this may be one reason that progress in translating candidate interventions has

been so difficult. We review the challenges of AD’s heterogeneity for the clinical trials

enterprise.We then discuss howadvances in repeatable biomarkers and digital pheno-

typing enable novel “single-case” and adaptive trial designs to accelerate therapeutics

development, moving us closer to personalized research andmedicine for AD.
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Highlights

∙ Alzheimer’s disease is diverse in its clinical features, course, risks, and biology.

∙ Typical randomized controlled trials are exclusive and necessarily large to attain arm

comparability with broad outcomes.

∙ Repeated blood biomarkers and digital tracking can improve outcome measure

precision and sensitivity.

∙ This enables the use of novel “single-case” and adaptive trial designs for inclusivity,

rigor, and efficiency.
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“. . . practitioners of wide experience have frequently re-

echoed the old saw: ‘It is more important to know what sort

of a patient has the disease than what sort of a disease the

patient has.’”1

1 HETEROGENEITY IN ALZHEIMER’S DISEASE
AND ITS CONSEQUENCES FOR CLINICAL
THERAPEUTICS DEVELOPMENT

1.1 Biological and clinical heterogeneity in
Alzheimer’s disease

Alzheimer’s disease (AD) may be defined by the presence of amy-

loid beta (Aβ) and tau protein pathologies in the brain,2 but we know

that myriad genetics, central nervous system (CNS) and systemic

pathophysiological processes, and environmental-experiential factors

contribute to both AD’s essential pathologies and to the protean char-

acteristics and course of its clinical dementia syndrome (Table 1).

This heterogeneity presents challenges for researchers and clinicians

alike.

Biologically, genetics are an important ground for heterogeneity

in AD, from rare deterministic mutations (amyloid precursor pro-

tein/presenilin 1/presenilin 2 (APP/PS1/PS2)) to strong variants that

increase or decrease risk (apolipoprotein E [APOE] ε4, APOE ε2) and
many gene variants of small effect.3 Neuropathologically, large-scale

autopsy studies find that mixed pathologies, especially AD plus cere-

brovascular disease, but also TDP-43, other tau, and/or α-synuclein
proteinopathies are far more common than pure AD.4,5 The relative

contributionsof eachof these toADand its dementia syndromearedif-

ficult to ascertain. In addition, we increasingly recognize many associ-

ated pathophysiological processes among people with AD. Underlying

the plaque and tangle lesions and gliosis visible under the microscope

are a host of invisible molecular abnormalities spanning proteostasis,

inflammation, metabolism, neurovascular functioning, and many other

homeostatic and repair responses.6,7 Varying degrees of these exist

in vicious cycles—both cause and consequence—further exacerbating

amyloid and tau pathologies and promoting neurodegeneration.

Clinically, AD varies widely in its cognitive and behavioral profiles.

Diagnosing and tracking progression from pre-clinical stages to mild

cognitive impairment (MCI) or dementia can be hard. An amnesia

predominant decline is most common, but it is not unusual to see atyp-

ical presentations such as aphasia syndromes or apathetic/disinhibited

behaviors reminiscent of frontotemporal dementias, or visual process-

ing syndromeswith relative sparing ofmemory. Furthermore, although

the degrees of cognitive impairment correlates with the density and

extent of AD pathology, the correlation is modest and some people

have high levels of AD pathology with minimal cognitive impairment

or vice versa.8 Indeed, adjusted for age, sex, and education, plaque and

tangle pathology account for no more than 30%–40% of the variance

of cognitive functioning in older adults.9 This attests to the importance

of the many varied or unknown residual factors conferring resistance,

reserve, resilience, or vulnerability to the clinical expression of AD

pathology. Ages at onset vary widely. AD disease duration until end-

stage or death is 6–10 years for most,10,11 but may be 20 or more

years for others, with varying rates of progression at different stages.

Cognitive functioning varies within the individual, with good days and

bad days.12 A wide variety of ethnoracial, educational, socioeconomic,

sociocultural, dietary, lifestyle, and environmental factors may either

increase or decrease vulnerability to the disease, its clinical expression,

or the sensitivity of clinical measurements.13,14

Finally, most older adults have medical co-morbidities and con-

current medications that impact AD pathology, biology, symptoms,

and functioning. This confounds our ability to measure and inter-

pret the response to an AD treatment.15,16 Eighty percent to 90%

of older adults are taking at least one prescription drug, 70%–

80% are taking two, and 30%–40% are taking at least five.17 To

further complicate matters for clinical trials, some of the most com-

mon medications are themselves of interest for re-purposing in AD,

including angiotensin receptor blockers, anti-diabetes drugs, anti-

inflammatories, and psychotropics.18

1.2 Consequences for clinical therapeutics
research and development

1.2.1 Targeting single biology in multifactorial
disease

Focusing on only one biological feature (e.g., Aβ) in a complicated dis-

ease without accounting for others may lead to disappointing results

in outcomes. For example, the new anti-amyloid immunotherapies can

lower AD’s Aβ biomarkers down to normal or near-normal levels with

secondary effects of lowering tau biomarkers too.19–21 However, this

appears to onlymodestly slow the progression of dementia, not stop it.

Demonstrationof any clinical benefits of amyloid reduction is an impor-

tant and hard-won scientific advance, but it also underscores that AD’s

dementia progression is due to more than Aβ, and there is also het-

erogeneity in treatment responses.22 Multipronged approacheswill be

necessary.

1.2.2 Limitations in the translational value of
common non-clinical experimental findings

Hundreds of small molecules, biologicals, gene therapies, biophysi-

cal treatments, lifestyle and dietary interventions, supplements, and

other approved pharmaceuticals have shown benefit for AD-related

phenomena in transgenic mice or other laboratory models of AD. Non-

clinical in vivo research commonly compares experimental and control

treatments between “groups” of genetically and experientially iden-

tical cells or animals. In essence, this is an n-of-1 experiment, with

treatment repeatedmultiple times in virtually the samemouse. Almost

all heterogeneity is controlled for, allowing sensitive detection of sig-

nal above random confounds’ noise (and yet there is still variability in

response). Much is learned about the pharmacological, biological, or
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TABLE 1 Heterogeneities affecting clinical research and personalizedmedicine in AD.

Signs, Symptoms, Syndromes

Cognitive deficits: memory, executive, language, visual

Neurobehavioral features: mood, anxiety, psychosis, apathy, disinhibition

Major variants: amnestic, posterior cortical atrophy, logopenic primary

progressive aphasia, behavioral

Clinical Stages

Asymptomatic/pre-symptomatic/resilient

Mild cognitive impairment/prodromal

Dementia, mild/moderate/severe/agonal

Neuropathology

Mixed pathologies

Thal phases of amyloid plaques

Braak stages of tau neurofibrillary tangles

Tau strains

Cerebral amyloid angiopathy

TDP-43

α-Synuclein
Gliosis

Cerebrovascular

Course

Age at onset

Progression stable, slow –> rapid

Genetics

APOE
Familial PS1/PS2/APP

Polygenic risk and small effect variants

Demographic and Life History

Age at onset

Sex

Gender

Sexual orientation

Race

Ethnicity

Education

Socioeconomic status

Cultural factors

Nutrition and diet

Environmental exposures

Habits and other lifestyle

Health care access

Stress

Health

Co-morbidities: systemic, neurologic and psychiatric

Concurrentmedications and dietary supplements

Pathophysiology

Protein synthesis, folding, post-translational

modification

Proteolysis, autophagy, proteasome

Inflammation and immune dysregulation

Oxidative stress

Metabolism

Mitochondrial/bioenergetic

Vascular

Neuroprotection

Neuroplasticity

Abbreviations: AD, Alzhemer’s disease; APOE, apolipoprotein E; PS1, presenilin 1; PS2, presenilin 2; APP, amyloid precursor protein.

behavioral effects, but no animal or cell culture models encompass the

plethora of neuropathology, heterogeneous backgrounds, lived expe-

riences, and uniquely human features of dementia in people with AD.

The generalizability of findings to mice of other genetic backgrounds,

ages, or environmental exposures is rarely explored. When diverse

genetic strains of mice have been compared for the effects of the

5XFAD APP or p301L tau transgenes, for example,multifold differences

have been observed in amyloid pathology, tau propagation, gliosis, and

behavior.23,24 Perhaps if such research included more genetic, age,

and environmental diversity, fewer but more robust treatment candi-

dates would emerge with greater likelihood of benefit in human AD.

Another strategy for non-clinical evaluation of treatment effects amid

heterogeneity might be to sequentially test in animal or cell models

of increasing complexity with mixed pathologies. There are informa-

tive conditional transgenic and other models for Aβ, tau, α-synuclein,
TDP-43, cerebrovascular, metabolic, and other disease processes in

AD and related dementias. This is already done to limited degrees.

Examples include the 3xTg amyloid and tau transgenic mouse,25 and

various Aβ and tau transgenic mice plus viral-mediated overexpres-

sion of α-synuclein or atherosclerosis.26,27 Investigated systematically,

much can be learned about how these different pathologies interact,

and how well candidate treatments for proteostasis, vascular injury,

metabolism, or inflammation, for example, prevent neurodegeneration

in heterogeneous, complex disease.

1.2.3 Limitations of conventional parallel group
experimental designs in clinical research

Candidate drugs enter Phase 2 clinical trials seeking signals of efficacy

based on compelling biological mechanisms of action, promising phar-

macological activity in non-clinical models, and favorable safety data

fromnon-clinical toxicology studies andPhase1 trials. In termsof study

design, the parallel-group, randomized, placebo-controlled trial is con-

sidered the gold standard trial design for drug development28 and is

used in theoverwhelmingmajority ofPhase2 clinical trials inADandall

Phase 3 trials for common diseases. In this design, participants are ran-

domly allocated to placeboor one ormore active treatment arms run in

parallel and then the average effects of the treatment in each group are

compared. Treatment armgroups are necessarily large to achieve aver-

age comparability of demographics and clinical and disease severity

amidst theheterogeneity of disease pathology, clinical symptoms, rates

of progression, and diversity of people. They are complex to manage

and paralyzingly expensive, with Phase 2 trials costing tens of millions

of dollars, or more.29,30

Participants in the parallel arms need to be as comparable as possi-

ble to interpret efficacy signal above heterogeneity’s noise. The three

main design strategies used to achieve this are to narrow eligibility

for purer samples, balance who is in each arm for known potential

confounds using stratified randomization, and enlarge sample size to
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enable the randomization to effectively achieve this goal. Each comes

with drawbacks—scientific, practical, and ethical.

Restrictive eligibility reduces heterogeneity by selecting the peo-

ple for whom the drug may be hypothesized to work best or in whom

one can most reliably measure an effect. Common exclusion criteria

include age, language proficiency, education, standardized cognitive

test scores (too high, too low), biomarkers of AD pathology (too much,

too little), atypical AD syndromes, medical and psychiatric comorbidi-

ties, concurrent medications, and more. However, overly restrictive

eligbility criteria create rarefied samples that lack representativeness

of the majority of people with AD and are vulnerable to missing those

persons or those forms of AD for which the drug may be helpful. Prac-

tically, screen failure rates may approach 90%,31 increasing the time

and expense for full enrollment. Such exclusionary criteria also are sys-

tematically discriminatory. In the United States and Europe at least,

typical eligibility criteria favor White, educated, affluent people who

have had good health care and are culturally comfortable with the

medical research enterprise over people of color, ethnicities, socioe-

conomics, lifestyles, and health issues that themselves are risk factors

for the diseases we investigate. Eligibility criteria do not accommodate

the well-known ethnoracial differences in performances on tests used

in eligibility screening and for possible differences in normative values

for AD biomarkers.32–34

Balancing parallel groups for known or presumed confounds

through stratified randomization attenuates the effects of heterogene-

ity at the time of randomization. Common factors for balancing include

age, sex, education, cognitive impairment, APOE genotype, and more

recently, amyloid and tau pathology measured with positron emission

tomography (PET). But many other known contributors to progression

are not included such as common co-morbidities (e.g., diabetes, hyper-

tension, and depression) and common medications, some of which

are themselves under investigation for dementia. Better balancing for

other biomarkers, such as inflammatory, vascular, metabolic, renal, or

even cerebral atrophy could be important in parallel designs, but given

our still limited knowledge about their roles in AD, they are rarelymea-

sured or considered.With all this complexity, Phase 3 trials typically do

not utilize more than a few strata, if any.

The remaining solution is to increase sample size to dilute or aver-

age out the effects of uncertain, unknown, or random confounds. For

382 Phase 2 drug, biological, dietary supplement, or neurostimula-

tion treatment trials for AD or MCI listed in clinicaltrials.gov since

2000, a total of 337 were parallel-group randomized controlled tri-

als with an average enrollment of 170 (median 120, data accessed

January 1, 2024). This requires many sites and/or lengthy enrollment

periods, introducing yet other kinds of assessment and sociodemo-

graphic heterogeneities, as well as the complexity and expense of

site training and monitoring. Special efforts may be expended to

increase participation by under-represented groups, but this is in

tension with the need for comparability of participants and enroll-

ment pace. It is scientifically and ethically imperative to do so but

requires further expansion of sample size, recruitment effort, time, and

expense.

1.2.4 Universal outcome measures

Parallel designs strive for comparable groups that are then assessed for

outcomes that are suitably broad for all participants. The administra-

tion of commonly used standardized cognitive tests and test batteries

favored by regulatory agencies like the Alzheimer’s Disease Assess-

ment Scale-Cognitive subscale (ADAS-Cog) is variable35 and may lack

sensitivity to the changes in cognition and function that might be most

meaningful to one or another participant in a heterogeneous group and

may be especially unsuitable formembers ofminoritized groups poorly

represented in the development of these tests.36 Variable or uncom-

mon manifestations of AD are ignored if not excluded (e.g., visual,

language, or frontal variants).While looking for averageoutcomes, true

responses at the individual level can be missed. More personalized

measures like the Clinician’s Interview-Based Impression of Change

Plus caregiver input (CIBIC-Plus) or Goal Attainment Scaling (GAS)

measures might accommodate heterogeneity better37 but are still vul-

nerable to many biases. Finally, trial durations are necessarily long to

detect enough change above the heterogeneous rates of progression

and variable clinical performances (good and bad days) measured only

a handful of times over a year or two.

1.2.5 Reporting of clinical trial results

Just as AD is heterogeneous in its disease biology and clinical features,

it is likely to be heterogeneous in its responses to any given treat-

ment. Efficacy is typically reported as the average difference between

experimental and control groups for a top-line, primary endpoint (e.g.,

a global measure of cognition or function) that is either statistically

significant or not. If the primary outcome is not met, secondary and

exploratory outcomes are discounted or ignored irrespective of what

they showed, and the development of that treatment stalls. Respon-

der analyses for efficacy, if undertaken, are rarely reported and we do

not learn if anyone benefited in a negative study or who benefited in

a positive study. In the example of lecanemab reporting, we appreci-

ate that the drug slowed clinical decline by an average of 27% after

18 months of antibody treatment compared to placebo treatment.19

In secondary analyses, we see that male patients seemed to improve

more than female patients and older people more than younger. How-

ever, even in large trials like thiswhere subgroupanalyses are reported,

effect size and statistical power for secondary analyses may be lacking

to draw confident conclusions. This should not detract from the pri-

mary outcome, but follow-up studies or different analytical approaches

that carefully identify “responders” would be very informative to fully

understand for whom the treatment was effective and how much

so. Some reasons for not reporting may have to do with the insen-

sitivity and imprecision of endpoint measures for any given person,

high rates of placebo response, and limitations of conventional data

analytic methods to identify true responders with some degree of sta-

tistical confidence. Furthermore, there may be complex underpinnings

to response related to unobserved factors and, therefore, inferences
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about responders may be subject to misinterpretation. With new

and emerging statistical techniques such as counterfactual prognos-

tic models and machine learning, we can now generate more reliable

individual-level predictions, for example, constructing individual treat-

ment response (ITR) scores using multi-modal baseline information on

a training set to reveal covariates-treatment interactions.22,38

Insufficiently informative reporting of trials also may be related

to the constraints of regulatory approval pathways aswell as economic

interests within the health care investment community driving drug

development. Regulatory agencies are responsible for protecting the

public health by ensuring the safety and efficacy of drugs, biological

products, medical devices, and so forth. This population orientation

may at times be in tension with the individual patient orientation of

health care practitioners. If a drug does not show statistical benefit

in the population with the indication for which it is intended, it can-

not move forward. Yet within that population there may be subgroups

or individuals for whom the drug really worked. Responder analyses

might elucidate these, but the consequence might be having to re-

define the indication, setting development back to conductmore trials.

This is inefficient and costly.

2 APPROACHES TO EMBRACE HETEROGENEITY
AND ACCELERATE THERAPEUTICS DEVELOPMENT

2.1 Biomarker profiling

Transformational advances in biomarkers and digital health technolo-

gies now provide a host of new diagnostic and assessment tools to

enrich our understanding of each person’s AD and they enable more

powerful trial designs tomeasure treatment effects. These can accom-

modate individual differences and evaluate treatment responses at the

individual level with greater rigor.

2.1.1 Imaging and biofluid biomarkers for AD
“AT(N)”

Among the major biomarkers for aging and dementia, PET imaging for

amyloid (A) and tau (T) is now generally accepted as proxy for gold

standard AD histopathology. Cerebrospinal fluid (CSF) measures of

Aβ1−42 and Aβ1−40, total tau (t-tau), and several phospho-isoforms

of tau (p-tau) are also well established. Measurement of p-tau and Aβ
in plasma is rapidly improving, now with 90+% accuracy in predicting

amyloid PET or CSF AD biomarkers.39,40 Along with amyloid and tau

biomarkers, multi-sequence MRI can be used to gauge vascular con-

tributions in the form of infarcts, small vessel ischemic disease, and

cerebral amyloid angiopathy, as well as for rough staging of neurode-

generation (N) by patterns of atrophy. Measuring “AT(N)” biomarkers

is now essential when considering amyloid-specific immunotherapies

where amyloid pathology must be confirmed to ensure potential

benefit and amyloid angiopathy must be recognized to avoid undue

risk.

2.1.2 Blood-based biomarkers

Themeasurement of AD-related proteins in blood39,40 is a tremendous

achievement for clinical chemistry, and the minimal risk, broad acces-

sibility, low burden, and economy of blood collection are transforming

clinical diagnosis and research for AD. Until recently, quantifying very

low levels of brain-specific proteins, including Aβ and tau diluted in the
vast blood pool was not possible. But new ultrasensitive reagents and

microfluidic, electrochemiluminescent, aptamer, nucleic acid tagged

proximity extension assay, and mass spectrometric technologies now

provide unprecedented sensitivity. Different proteoforms of tau, espe-

cially p-tau181, p-tau217, and p-tau231 have shown the most benefit for

diagnosis and possibly for staging AD too.41 Aβ proteoformsmeasured

with mass spectrometry also show good discriminatory reliability,

especially in combination with other features.42 And data for other

biomarkers such as neurofilament proteins (e.g., neurofilament light

[NfL]) and glial fibrillary acidic protein (GFAP) are also accruing to

characterize their utility.

Blood-basedbiomarkers forbraindisordershave limitations though.

They are most useful for CNS-specific (or CNS-predominant) proteins

like brain-specific p-tau,GFAP, orNfL.Other interesting proteins, espe-

cially inflammatory, metabolic, and vascular proteins produced in the

brain in AD are diluted in blood amid those same proteins produced

by other tissues throughout the body. Increased or decreased levels

of such proteins measured in blood cannot be confidently attributed

to the AD affecting the brain. This issue prompted interest in neural-

derived and glial-derived exosomes for measurement of intracellular

proteins and RNAs, although this promising area is still fraught with

technical challenges and difficulties in replicability. Finally, blood lev-

els of all proteins (CNS or not) are affected by systemic metabolism

and excretion that may differ among people, potentially confounding

interpretation of the measurements. Nonetheless, as these challenges

are overcome, we will see new molecular biomarkers of neuroin-

flammation, cerebrovascular dysfunction, neurometabolism, and other

processes yielding greater insights and person-specific targets for

intervention.

2.1.3 Biomarkers for broader profiling of multiple
pathophysiological processes

As blood-based biomarkers for AD make great strides, CSF remains

an important, accessible biofluid for biomarkers of neurodegenerative

dementias beyond Aβ and tau. In continuity with the brain’s intersti-

tial fluid, CSF is enriched in proteins and other biochemicals secreted,

excreted, or otherwise released from neurons, glia, and the cere-

bral vasculature. CSF biomarkers showing promise include α-synuclein
seeding assays for Lewy body diseases,43 tau seeding assays for

tauopathies,44,45 synaptic and axonal degeneration (e.g., neurogranin,

post-synaptic density protein 95 [PSD95], NfL),46,47 and gliosis (e.g.,

GFAP, chitinase-3-like protein 1 [YKL-40], soluble triggering receptor

expressed on myeloid cells 2 [sTREM2]). There are many other assays

of brain-generated proteins enriched in CSF that may be informative
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for a host of other pathophysiological processes relevant toAD, includ-

ing inflammation, metabolism, oxidative stress, and vascular integrity.

Profiling these can be useful for identifying those pathophysiologi-

cal processes most active in a given person’s disease and can guide

personalized treatment andmonitoring.

2.1.4 Digital health “biomarkers” for ecological,
person-specific clinical profiling and tracking

Digital health technologies, including wearables, smartphone apps,

and remote monitoring systems are also changing the landscape of

research in AD and related dementias (ADRD), providing valuable data

for early detection, tracking progression, and evaluating treatment

effects.48–50 Smartwatches or other wearable sensor devices can col-

lect continuous physiological data, such as pulse, electrocardiograms,

electrodermal response, movement, gait, falls, and geolocation. With

such massive amounts of data, both a priori and artificial intelligence

(AI) driven, analyses detect changes in behavior and physiology asso-

ciated with AD within the individual. Tablets, online platforms, and

smartphone apps enable researchers to administer standardized cog-

nitive tests remotely. Speech can be recorded to monitor language

and voice features associated with dementias, including word-finding,

grammar, fluency, articulation, and acoustics.51,52 Finally, sensors in

people’s homes can track daily activities, sleep patterns, medication

adherence, socialization, and other behavioral changes.

Among the key advantages of these new digital health tools are

the density, continuity, saturation of learning effects, and ecological

authenticity of data collected in people’s natural environments. This

contrasts with the sparsely administered, formalized, and stressful

neuropsychological assessments in office settings. Averaging densely

sampled data in the wild may give a more precise and accurate mea-

surement of neurocognitive behaviors and physiology over time. This

increases sensitivity to detect change within the individual with dis-

ease progression or intervention. In clinical trials or clinical practice,

it reduces the chances of missing true change in outcomes assess-

ments conducted amid the “good days and bad days” of infrequently

scheduled visits.

A historic limitation of digital health assessment in AD clinical

research has been the older generations’ unfamiliaritywith computers,

smartphones, and other digital technologies. This is rapidly changing

as Baby Boomers, who are more comfortable with digital technolo-

gies, enter the vulnerable ages for AD and health technology designers

increase their focus on this demographic.53

Biomarkers as surrogate endpoints

The biomarkers field is booming, and knowledge about how well

biomarkers (biological or digital) predict or track disease and dementia

is growing rapidly. Whether that knowledge is now sufficiently mature

to justify biomarkers as surrogates for clinically meaningful outcomes

in trials is controversial,54 even for the best-established biomarkers

like amyloid PET. At present, they can be considered only as suggestive

of potential clinical effect, and thus their best role may be as endpoints

in Phase 2 trials where the goal is to vet treatment effects biologically

and clinically to the degree possible with smaller scale, shorter dura-

tion and lowerexpense studies than inPhase3pivotal trials.Ultimately,

clinically meaningful slowing, stopping, or improvement of dementia

must be determined by clinical means, such as survival, activities of

daily living assessment, patient and caregiver feedback, andhealth care

utilization. With the continued inclusion of biomarkers in all phases

of treatment development, some biomarkers may advance to a point

where their surrogacy for some outcomes can be established. It is

important to note that this will greatly enable primary and secondary

prevention studies where the only clinically meaningful outcome is the

maintenance of good cognition, function, and general health.

2.2 Experimental designs to better accommodate
heterogeneity and increase efficiency

Biomarkers and digital assessment tools enable alternative, more

powerful experimental designs that can better accommodate hetero-

geneity while more efficiently testing for efficacy in smaller numbers

of participants. Some strategies that may be especially powerful in

the pilot, feasibility, early and middle stages of development to de-

risk subsequent pivotal trials for regulatory approval include “single-

case” experimental designs and iterative, small trials, especially with

Bayesian responsive adaptive designs. Findings that replicate in multi-

ple trials in Phase 2 providemore confidence formoving the treatment

into Phase 3, and trials can be woven into a seamless Phase 2/3 pro-

gram with pre-specified stopping rules and futility analyses along the

way, facilitated by Bayesianmethods.

2.2.1 Single-case efficacy experimental design for
personalized research

“Single-case”, “within-person,” or “N-of-1” designs encompass a family

of experimental designs in which each person is the experimental unit

serving as their own control.55,56 Investigators repeat measurements

of a dependent outcomevariable before andafter introducing the inde-

pendent intervention variable. In most AD trials, biomarker or clinical

measures are administered once at baseline, once at the end of the

study, and maybe a few times between. In contrast, low-burden blood

and digital biomarkers allow repeated measures in lead-in or placebo

conditions, yielding baseline averages with variability for more pre-

cise estimates of biological or clinical states. Repeated measurements

continue as participants then receive active treatment. Person-specific

distributions of outcome measures in each condition can be com-

pared descriptively and statistically. With each person compared to

themselves, most heterogeneities are controlled, and precision, sensi-

tivity, and confidence about change are maximized with the repeated

outcome measurements. Such designs have been used commonly in

education, psychology, and occupational therapy research, where the

heterogeneity of behaviors and bespoke intervention strategies often

preclude group designs.57 Single-case experimental designs also have
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played roles in medicine, especially in chronic respiratory, dermato-

logic, digestive, or orthopedic pain conditions for medication initiation

and discontinuation studies. They are used increasingly in precision

cancer research and care. In rare or unique diseases, they are the only

viable experimental design.

Single-caseexperimental designshavemanyvariations.At their sim-

plest, a control reference period “A” is followed by an experimental

treatment period “B,” with repeated outcomes measures throughout.

A slightly more complicated design is A-B-A, where the experimental

treatment is withdrawn to see if measures return to baseline. Classic

crossover trials where participants are randomized to either an A-B or

a B-A sequence is yet another variation. A-B-A and classic crossover

trials are especially useful when little carry-over is expected, for exam-

ple, for rapid symptom relief in relatively stable chronic or very slowly

progressive illnesses (e.g., dopaminergic drugs for Parkinson’s disease).

They are less useful for disease-modifying treatments or those with

long-lived effects. Finally, there are multiple crossover, randomized

controlled trials, where participants pass through two or more ran-

domized sequence crossover trials, for example, B-A > A-B > A-B . . .

or A-B > B-A > B-A. These true ‘‘N-of-1″ trials are especially robust

statistically, although still vulnerable to carry over effects, natural time

trends, and other random and systematic confounds.55

Various strategies can enhance experimental rigor in single-case

designs. Repeated measurement is the essential element for pre-

cision/reliability of measurement of within-subject change between

control and experimental conditions. The baseline control condition

can be masked with a placebo or standard-of-care treatment. The

timingof the switch toor fromexperimental treatmentmaybe random-

ized. Duration of treatment andwashout periods can be tailored to the

pharmacodynamic effects and the biomarker outcomes (e.g., protein

half-life).

There are also vulnerabilities with single-case designs and chal-

lenges in their implementation. Although AD progression is relatively

slow, there are fast or uneven progressors, the rate of change of which

may shift within the trial, making the disease states different between

trial phases. Other random factors of time, cumulative practice effects

in cognitive outcomes, seasonality, intercurrent illnesses, as well as

other uncontrollable life circumstances all can affect a person’s trial. Of

course, these factors are true for conventional parallel arm designs as

well.

Biomarkers may change for different reasons in different people.

For example, lowerNfL levelsmaybedue to improvement inADpathol-

ogy in one person, but weight loss in another, and improved kidney

function in another. Findings must be interpreted cautiously both for

the individual within the context of all the data accrued and especially

if making generalizations from aggregated single-case trials.

Single-case experimental trials are more than anecdotes. Reporting

conventions and guidelines have been laid out.58–60 Properly designed,

these trials are interrupted time series under control and experimen-

tal conditions where outcomes are assessed repeatedly and rigorously.

Data are analyzedwith a variety of statistical methods that can accom-

modate small data samples, autocorrelation, count data, and measure

effect size for each individual. Each person’s trial stands on its own.

However, to consider the generalizability of treatment effect beyond

the individual, various analytical and meta-analytical approaches may

be used to combine data. The gains in statistical power for such designs

over conventional parallel groups of heterogeneous participants are

large.61

2.2.2 Bayesian adaptive experimental designs

Bayesian inferential and response-adaptive clinical trial designs62–65

are now slowly making their way into AD and other neurodegenera-

tive disease trials.66–70 Practically speaking, all therapeutics research

and development begins as “Bayesian,” wherein some prior knowledge

about a disease including its prevalence, etiological, pathophysiolog-

ical, and/or clinical features are aligned with a drug or other inter-

vention that addresses those features to create an experiment with

a reasonable expectation of measurable efficacy. In traditional clin-

ical trials using a frequentist approach, sample size allocations and

type I error allocations are pre-defined, fixed, and followed strictly.

In Bayesian adaptive design, the data are evaluated recursively and

the posterior parameter distributions are updated and used to mod-

ify the trial according to a priori rules. Hypotheses about treatment

effects, eligibility characteristics, and other relevant parameters can

be updated as trials proceed. Specialized statistical analyses enabling

these modifications often involve computationally intensive modeling,

machine learning, and nowAI.

A U.S. Food andDrug Administration (FDA) Guidance defined adap-

tive trial design as “a clinical trial design that allows for prospectively

planned modifications to one or more aspects of the design based

on accumulating data from subjects in the trial.”71 Adaptive trials

can allow early termination for efficacy or futility in one or another

arm, more rapid ascertainment of safe and effective dose, increasing

or decreasing sample size, dynamically changing selection or alloca-

tion of participants to treatment arms based on their responses, and

modifying biomarkers and clinical criteria for patient stratification,

treatment selection, or treatment response. The conduct of these trials

is demanding, but the overall efficiency and likelihood of success with

sequential trial refinements are improved.

Adaptive designs enable platform trials for AD/ADRD, including

umbrella trials where different treatments can be compared between

eachother anda commonplaceboarm, andbasket trials inwhichdiffer-

ent AD subtypes or related dementias are compared for response to a

given drug thatmight target some common feature (e.g., inflammation)

of the different diseases. Adaptively, continuous analysis of real-time

data according to pre-specified parameters allows the investigator to

“play the winner,” advancing effective treatments or removing agents

with a low probability of success, or focusing on disease indications

or subpopulations in which treatment works. Ethically, the number

of participants exposed to ineffective or poorly tolerated treatment

is reduced. Economically, conventional trials are long and expensive

due to their large and fixed nature. Adaptive designs reduce costs

associated with patient recruitment, data collection, and trial duration

by optimizing these elements. Analysis and modeling of accumulating
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data can enhance statistical power and allow more accurate, reliable

inferences and robustness. Ultimately, it is a more efficient path to

personalized medicine for AD, as it successively identifies participant-

specific characteristics and responses, thereby leading to targeted

therapies with the greatest benefit and least risk of harm for the

individual.

One limitation of adaptive design in AD is that clinical changes take

longer tomanifest thanoutcomes in, for example, tumor sizeor survival

in cancer. By the time we identify the arm or subgroup showing better

efficacy inAD, other armsmay already be fully enrolled. Therefore, this

trial design is better suited for biomarker or other surrogate outcomes,

which can change more rapidly and with less variability compared to

clinical outcomes. That said, certain plasma biomarkers do fluctuate

within individuals over short durations of time,72 and so factoring in

this variability is critical to avoid premature allocation decisions.

3 COMBINATION THERAPY AND
PERSONALIZED MEDICINE FOR MCI AND
DEMENTIA DUE TO AD

Since the first description of Aβ as the chief constituent of plaques

in 1984,73 the field’s consensus neuropathological definition of AD

includes Aβ pathology as its sine qua non.74 Decades of testing the

amyloid cascade hypothesis of AD ensued,75 with Aβ as the fore-

most target of therapeutics research. The success of new anti-amyloid

immunotherapies in lowering Aβ with a convincing slowing of clinical

dementia progression, at least for some people, is a major scientific

breakthrough in support of a role for Aβ in AD. Reducing Aβmay turn

out to be a necessary step in the treatment of AD, but it seems insuffi-

cient to stop AD dementia, at least in its symptomatic stages. Perhaps

pre-symptomatic treatment will be preventive, or more potent anti-

amyloid therapies attacking various proteoforms will be more effec-

tive. Still, with increasing appreciation of the heterogeneities of AD, it

is almost certain that genetic (e.g.,APOE), inflammatory, metabolic, and

other processes and co-morbidities driving neurodegeneration and

dementia will need to be addressed concurrently.

Precision medicine in oncology with biomarkers and combina-

tion therapies has led to spectacular advances in survival rates.76,77

Our accounting of the multiple pathophysiological contributions to

AD dementia is far from complete, but there is a growing array of

new biomarkers, technologies, and analytics to measure them with

greater precision and robustness at the individual level. With contin-

uing improvements and validation, plasma Aβ and tau biomarkers may

soon supplant CSF and imaging biomarkers for diagnosis and person-

alized treatment decision-making for anti-amyloid immunotherapies.

APOE genotyping will similarly be used, as APOE e4 homozygosity

may confer an unacceptable risk of amyloid-related imaging abnor-

malities (ARIA), and new APOE-oriented therapies are emerging for

which genotyping will be needed.78 Other emerging biomarkers will

delineate key pathophysiological factors and other pressure points

that might be addressed in a comprehensive combination treatment

plan.

Repeatable blood biomarkers and digital assessment tools can

empower personalized disease management in research and likely

soon in clinical practice too. For instance, tracking an individual’s

response to anti-amyloid therapy with plasma biomarkers may help

determine responsiveness and if or how long to continue therapy. If

biomarkers find no meaningful change over a 6-month or 9-month

period, then that person’s treatment might be reasonably discontin-

ued. On the other hand, if there is a response, then a return to normal

range might prompt tapering or stopping treatment. Should levels rise

again, treatment can be re-initiated. Similarly, objective detection of

clinical benefit may be facilitated with home-based digital monitoring,

whichmay bemore informative than periodic office-based evaluations

to guide treatment decisions.

In clinical research, adaptive and/or single-case experimental

designs also enable efficient combination therapy trials. Treatments

can be implemented sequentially, perhapswith randomization of order

and start times to enhance rigor, all the while tracking with repeatable

measures within the individual for convincing or meaningful change.

In such a design platform, heterogeneity is both used and controlled,

accelerating the process of early phase development and determining

the benefits for the individual participant.

We are in an extremely exciting era in AD research. Leveraging

the advances of accessible, minimally invasive, and easily repeatable

blood-based and digital biomarkers for precise biological and func-

tional measurement, along with big data and AI analytics, we advance

toward personalized treatment and prevention as we also increase our

understanding of this complicated and heterogeneous disease.
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