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Background: Accurate delineation of knee bone boundaries is crucial for computer-aided diagnosis (CAD) 
and effective treatment planning in knee diseases. Current methods often struggle with precise segmentation 
due to the knee joint’s complexity, which includes intricate bone structures and overlapping soft tissues. 
These challenges are further complicated by variations in patient anatomy and image quality, highlighting 
the need for improved techniques. This paper presents a novel semi-automatic segmentation method for 
extracting knee bones from sequential computed tomography (CT) images. 
Methods: Our approach integrates the fuzzy C-means (FCM) algorithm with an adaptive region-based 
active contour model (ACM). Initially, the FCM algorithm assigns membership degrees to each voxel, 
distinguishing bone regions from surrounding soft tissues based on their likelihood of belonging to specific 
bone regions. Subsequently, the adaptive region-based ACM utilizes these membership degrees to guide the 
contour evolution and refine segmentation boundaries. To ensure clinical applicability, we further enhance 
our method using the marching cubes algorithm to reconstruct a three-dimensional (3D) model. We 
evaluated the method on six randomly selected knee joints.
Results: We evaluated the method using quantitative metrics such as the Dice coefficient, sensitivity, 
specificity, and geometrical assessment. Our method achieved high Dice scores for the femur (98.95%), tibia 
(98.10%), and patella (97.14%), demonstrating superior accuracy. Remarkably low root mean square distance 
(RSD) values were obtained for the tibia and femur (0.5±0.14 mm) and patella (0.6±0.13 mm), indicating 
precise segmentation. 
Conclusions: The proposed method offers significant advancements in CAD systems for knee pathologies. 
Our approach demonstrates superior performance in achieving precise and accurate segmentation of knee 
bones, providing valuable insights for anatomical analysis, surgical planning, and patient-specific prostheses.
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Introduction

Musculoskeletal disorders are a significant concern in 
healthcare, driving the need for advanced computer-
aided diagnosis (CAD) systems to efficiently detect knee 
disorders (1). These systems not only reduce the workload 
for medical professionals but also minimize the inherent 
variability in manual assessments. Accurate and precise 
bone segmentation from Computed tomography (CT) 
images is pivotal for thorough evaluation, staging, and 
treatment planning. Traditionally, experts have relied 
on manual segmentation methods, which involve labor-
intensive annotation or region of interest (ROI) marking on 
knee scans. However, these manual approaches are time-
consuming, laborious, and subject to human variability (2). 

Automating the knee image segmentation process 
presents a promising solution to the challenges of manual 
segmentation. In recent years, there has been a remarkable 
advancement in automated segmentation methods from 
classical image processing techniques to sophisticated deep 
learning-based approaches. Despite these advancements, 
automating knee image segmentation remains challenging 
due to issues like low image contrast, complex knee 
structures, and intensity variations within the ROI (3). 

Knee arthroplasty has significantly evolved since 
its inception in the 1960s, when early efforts laid the 
groundwork for modern joint replacement procedures (4). 
Initially, techniques focused primarily on alleviating pain 
and restoring basic joint function but were limited by the 
materials and surgical methods available at the time. Over 
the decades, advancements in biomaterials, prosthetic 
design, and surgical techniques have significantly improved 
knee arthroplasty outcomes (5). 

In the contemporary clinical landscape, the primary 
indications for knee arthroplasty include end-stage 
osteoarthritis, rheumatoid arthritis, and post-traumatic 
arthritis. These conditions lead to severe joint pain, 
deformity, and functional impairment, profoundly impacting 
patients’ quality of life. Osteoarthritis, in particular, is the 
most common reason for knee replacement, characterized 
by the degeneration of cartilage and underlying bone, 
resulting in pain and stiffness (6). 

Modern knee arthroplasty procedures involve the precise 
removal of damaged cartilage and bone, followed by the 
placement of highly durable artificial implants (7). These 
implants are designed to replicate the natural movement and 
function of the knee joint, thereby restoring mobility and 
reducing pain. The procedure typically includes steps such 

as preoperative planning using imaging, bone resection, 
implant fitting, and postoperative rehabilitation (8).  
Recent advancements have focused on developing patient-
specific instrumentation (PSI) and computer-assisted 
surgery (CAS), which enhance the precision of implant 
placement and alignment (9). Accurate alignment is crucial 
for the longevity of the implant and overall success of the 
procedure, as misalignment can lead to increased wear, 
implant failure, and the need for revision surgery (10).

Knee replacement surgery has significantly advanced, 
with personalized procedures tailored to each patient’s 
unique anatomy. This process begins with a CT scan of the 
patient’s knee joint, from which a precise three-dimensional 
(3D) model of the knee anatomy is generated. This model 
serves as the foundation for subsequent surgical planning. 
The accurate and automated segmentation of knee bones 
from CT images is crucial in clinical settings, offering 
streamlined workflows and cost-effective solutions (11). 
The demand for effective knee joint treatments, including 
total knee arthroplasty (TKA), has significantly increased. In 
2019, 374,833 TKA surgeries were performed in China (12). 
Furthermore, projections indicate that TKA surgeries will 
escalate to 1.26 million by 2030 in the United States (13). 

CT imaging provides high-definition images with an 
exceptional signal-to-noise ratio, making it a powerful non-
invasive modality (14). CT imaging offers superior tissue 
differentiation capabilities, providing enhanced contrast 
for visualizing bone structures. Compared to magnetic 
resonance imaging (MRI), CT images deliver higher spatial 
resolution, ensuring finer detail and greater accuracy in 
bone imaging (15). 

Previous studies on automatic knee bone segmentation 
have primarily focused on magnetic resonance (MR) data, 
utilizing voxel-based (16) or block-wise classification 
techniques (17) that incorporate texture features and 
intensity distribution. However, these methods have 
struggled to effectively address the significant intensity 
and texture variations present in both CT and MR images. 
To enhance segmentation robustness, many studies have 
used statistical shape models (SSM) (18-20) as prior 
knowledge to guide the segmentation process. Despite their 
potential, these methods face challenges in achieving fast 
and accurate model initialization and adaptation. Graph-
based algorithms (21) have been extensively utilized for 
various vision tasks, including bone segmentation (22-24). 
However, the accuracy of such algorithms usually depends 
on seed points often manually provided. Moreover, bones 
are often segmented individually rather than jointly, leading 
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to suboptimal segmentation results, particularly in regions 
where bones are in close proximity or touching, potentially 
causing overlapping segmentations.

Deep learning approaches have gained significant 
recognition due to their outstanding results in image 
segmentation (25). However, these approaches often 
require large annotated datasets for training (26), which can 
be problematic in applications where only limited images 
are available. Recent advancements, including transfer 
learning (27), unsupervised domain adaptation (28) and 
zero-shot learning (29), have been introduced to mitigate 
the challenge of limited training data. Traditional methods 
based on unsupervised learning offer distinct advantages, 
including providing interpretable and explainable results 
and requiring less computational power compared to deep 
learning methods. Multiple methods have been presented in 
recent studies For instance, Almajalid et al. (30) presented 
a fully automatic detection and segmentation method for 
knee bone based on modified U-Net models, achieving 
Dice indices of 97% for the femur, 96% for the tibia, and 
92% for the patella. Ambellan et al. (18) introduced a robust 
segmentation technique using a 3D SSM combined with 
convolutional neural networks (CNNs) to segment bone 
and cartilage. Hohlmann et al. (31) proposed a method 
using SSM for 3D reconstruction from ultrasound (US) 
images, enhancing accuracy and reliability in generating 
detailed 3D models. Liu et al. (32) introduced a knee joint 
segmentation method using adversarial networks. du Toit 
et al. (33) presented a deep learning architecture using a 
modified 2D U-Net network for segmenting the femoral 
articular cartilage in 3D US knee images. Hall et al. (34) 
proposed a watershed algorithm to segment tibial cartilage 
in CT images. Additionally Liu et al. (35) performed 
segmentation of femur, tibia, and cartilages using deep 
CNNs and a 3D deformable approach. Their segmentation 
pipeline was based on a 10-layers SegNet using 2D knee 
images. 

Liu et al. (36) introduced a novel 3D U-Net neural 
network approach, leveraging prior knowledge, for 
segmenting knee cartilage in MRI images. Li et al. (37) 
proposed a deep learning algorithm based on plain 
radiographs for detecting and classifying knee osteoarthritis, 
achieving an accuracy of 96%. Mahum et al. (38) developed 
a CNN-based method for classifying knee osteoarthritis, 
achieving a classification accuracy of up to 97%. Norman 
et al. (39) applied an end-to-end automatic segmentation 
technique without any extensive pipeline for image 
registration. Chadoulos et al. (40) utilized a multi-atlas-

based model to segment cartilage, attaining Dice similarity 
coefficient (DSC) values of 88% and 85% for femur and 
tibial cartilage, respectively. Gandhamal et al. (41) presented 
a hierarchical level-set-based method for segmenting knee 
bones, yielding good results but struggling with small 
or separated bone regions. Cheng et al. (42) developed a 
simplified CNN-based architecture, termed a holistically 
nested network (HNN), for segmenting the femur and 
tibial bone. Chen et al. (43) presented a YOLOV2-based 
detection mechanism for knee joints, utilizing various 
transfer learning-based pre-trained models. Peng et al. (44)  
introduced a sparse annotation-based framework for 
accurate knee cartilage and bone segmentation in 3D 
MR images. Chadoulos et al. (45) proposed a multi-view 
knee cartilage segmentation method from MR images, 
achieving an accuracy of up to 92%. Deschamps et al. (46) 
presented an innovative approach based on hierarchal 
clustering to detect joint coupling patterns in lower limbs. 
Rahman et al. (47) introduced a novel approach for bone 
surface segmentation using a graph convolutional network 
(GCN), focusing on enhancing network connectivity by 
incorporating graph convolutions.

Despite significant advancements in automated 
segmentation methods, precise segmentation of knee 
bones remains challenging due to the complex anatomy of 
the knee joint, which features intricate bone formations 
and overlapping soft tissues. Many existing methods are 
either computationally intensive or require extensive 
annotated datasets for training, which may not be feasible 
in all clinical settings. Our study aims to address these 
challenges by developing a robust segmentation method 
that enhances anatomical fidelity, minimizes segmentation 
errors, and adapts to variations in CT image quality and 
patient anatomy. This approach ensures high accuracy and 
reliability in segmenting knee bones from CT images while 
maintaining efficiency.

This  paper  introduces  a  nove l  medica l  image 
segmentation pipeline designed to accurately segment knee 
bones from CT images. The methodology involves a two-
step process: an initial pre-segmentation step followed by a 
segmentation refinement step. Initially, the ROI is extracted 
using the contour extraction method based on Canny edge 
detection. Subsequently, a refinement step is applied to 
the pre-segmented data using the fuzzy C-means (FCM) 
clustering method, which incorporates spatial constraints 
to improve segmentation outcomes. The segmentation 
is further refined using an adaptive region-based active 
contour model (ACM), which utilizes specialized region 
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descriptors to guide the contour’s movement and ensure 
precise identification of the ROI boundaries. The detailed 
flowchart of the manuscript is illustrated in Figure 1. 

The manuscript is organized into the following sections: 
section “Methods” provides a detailed description and 

working of our proposed methodology. Section “Results” 
presents the segmentation results and discussion, 
highlighting the performance of our method. Lastly, section 
“Discussion and Conclusions” presents the conclusion.

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and informed 
consent was obtained from all volunteers who participated 
in the study. Ethical approval for this study was waived 
by the ethics committee of Second Affiliated Hospital of 
Dalian Medical University. 

Dataset preparation

In our study, we utilized CT images from twenty patients, 
comprising fifteen males and five females. The CT scans 
were acquired using a standardized protocol with a slice 
thickness and interval of 0.5 mm, a window width of  
2,000 Hounsfield units (HU), and a window level of 500 HU. 
These images were in DICOM format, with a resolution 
of 512×512 pixel and a spatial resolution of 0.5 mm per 
pixel. Each dataset consisted of 100 to 300 slices taken in 
the axial plane. The CT datasets were collected from the 
Second Affiliated Hospital of Dalian Medical University. In 
compliance with ethical considerations, all patient-specific 
information was anonymized to maintain privacy.

Dataset preprocessing

The objective of pre-processing is to enhance the image 
quality, as CT scanner-acquired data frequently contains 
a variety of artifacts, including noise and distortion, which 
can adversely affect segmentation accuracy (48). These 
complexities in CT images are illustrated in Figure 2. To 
improve the quality of knee bone CT scans and reduce 
noise artifacts, we applied a thresholding technique, setting 
pixel intensities outside the bone intensity range of 100 to  
1,500 HU to zero. This step ensures that only bone 
tissues are retained, eliminating other structures and 
artifacts. Initially, we performed image cropping to remove 
extraneous background and soft tissue pixels, simplifying 
the dataset and reducing computational complexity. This 
step involved defining the boundaries based on consistent 
anatomical landmarks, specifically the distal femur, proximal 
tibia, and patella, to cover the entire knee joint area. 
The cropping ensured the inclusion of all relevant bone 

CT image data

Preprocessing
(Noise removal, intensity normalization)

FCM algorithm
(Membership degree calculation from each voxel)

Region based active contour model
(Contour evolution using membership degree)

Marching cubes algorithm
(3D reconstruction of the segmented knee bone)

Results evaluation & analysis
(Quantitative measures, geometrical & visual analysis)

Figure 1 Flowchart of the proposed methodology. CT, computed 
tomography; FCM, fuzzy C-means.
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structures while accommodating anatomical differences and 
variations in patient positioning. Figure 3 provides a visual 
representation of the cropped region.

The segmentation technique presented in this work 
was implemented using Python programming language, 
specifically on the PyCharm platform. Key libraries for 
image processing and visualization included Open-Source 
Computer Vision Library (OpenCV) and Visualization 
Toolkit (VTK). 

Contour detection

A contour extraction method based on Canny edge 
detection is employed to extract the knee joint region 
from DICOM images. This method effectively locates 
and extracts the pixels corresponding to the knee joint’s 
ROI. The Canny edge detection algorithm is optimal for 
detecting edges in images, adhering to well-defined criteria: 
maximizing edge detection while minimizing the error 
rate, accurately localizing edges close to the true edges, and 
ensuring single-edge detection for minimal responses. This 
is achieved through the application of a Gaussian filter, as 
shown in Eq. [1]:

( )
2 2

2
x +y-

2σ
2

1g x, y = e
2πσ

× 	 [1]

Here, σ represents the Gaussian standard deviation, set 

at 1.4, to smooth the image and enhance edge detection. 
The low and high thresholds for edge detection were set 
at 0.1 and 0.4 times the maximum gradient, respectively. 
Additionally, adaptive thresholding techniques were 
implemented to dynamically adjust threshold values 
based on local image characteristics. The selection of the 
optimal filter is based on two key factors: the σ value, 
which controls the degree of smoothing, and the filter 
size, which determines the sensitivity to noise. Empirical 
experimentation and literature review guided the selection 
of these parameters, conclusively determining that a 
Gaussian standard deviation (σ) of 1.4 and a filter size of 
(3×3) produced optimal results. As the filter size increases, 
sensitivity to noise decreases, leading to the preservation of 
more accurate edge information. The canny algorithm is 
then applied to detect edges, as shown in Eq. [2] and Eq. [3]. 
The results are shown in Figure 4.
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Here xG  and yG  represents the mean magnitudes of the 
horizontal and vertical gradient, respectively, while ( ),H x y  
denoting the count of connected pixels associated with each 
pixel position.

Figure 2 CT images showing complexities such as regions of soft tissues, noises, and intensity inhomogeneity across different slices. 
The green marked boxes identify areas corresponding to soft tissues and noises, while the blue boxes highlight regions of intensity 
inhomogeneity. CT, computed tomography.
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Figure 3 Cropping of knee CT image to eliminate extraneous background details and extract relevant bone structures. CT, computed 
tomography.

Figure 4 Outer contour extraction of the knee CT image. (A) Knee CT image showing the original data. (B) Outer contour extraction using 
Canny edge detection with a σ value of 1.4). CT, computed tomography.
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FCM segmentation

FCM clustering is renowned for its efficiency and versatility, 
making it a widely adopted technique in diverse fields (49). 
FCM, an unsupervised clustering method, classifies image 
voxels into distinct clusters based on their similarity within a 
multidimensional feature space (50). In our implementation, 
FCM clustering is integrated with pre-extracted knee joint 
contours to incorporate additional spatial context into 
the segmentation process. Each voxel is represented as 
a feature vector with intensity values, and FCM clusters 
these voxels based on their inherent similarities within the 
knee joint region. This integration not only simplifies the 
segmentation process but also ensures smoother results, 
particularly in regions with intricate anatomical features. 

To address the sensitivity of FCM to noise and image 
artifacts, we introduced a spatial penalty term into the 
objective function. This penalty discourages the assignment 
of spatially distant voxels to the same cluster unless their 
intensity values are similar. By incorporating this spatial 
penalty, our method maintains spatial coherence and 
reduces the algorithm’s sensitivity to noise and artifacts. 
Specifically, the spatial penalty mitigates the effects of 
Gaussian noise by favoring spatially adjacent voxels. 
Experimental results demonstrate that our method remains 
robust across various levels of Gaussian noise, maintaining 
accurate segmentation performance even with a standard 
deviation of up to 20. The enhanced optimization objective 
function, denoted as E, is defined as: 
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Here, n represents the voxel count, c represents the total 
number of clusters, m denotes the fuzziness parameter, iju  
represents the membership degree of the thi  voxel in the thj  
cluster, ix  corresponds to the feature vector of the thi  voxel, 
and jv  represents the centroid of the thj  cluster. The term 
| |i jx v−  quantifies the dissimilarity between the feature 
vector ix  of the thi  voxel and the centroid jv  of the thj  
cluster. The term ( )spatial ,D i j  represents the spatial distance 
penalty between voxel i and cluster centroid ϳ, and λ is a 
weight parameter balancing the intensity and spatial terms. 
The membership degrees iju  are updated using the Eq. [5]: 
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where | |,i kx v  denotes the Euclidean distance between the 
feature vector ix  of the thi  voxel and the centroid kv  of the thk  
cluster. This updated equation calculates the membership 
degree iju  based on the relative distances between the 
voxel and the cluster centroids. The fuzziness parameter m 
controls the degree of fuzziness of the clusters, with higher 
values resulting in softer clusters. The centroids were 
recalculated based on the updated membership degrees 
using Eq. [6]:
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Here, ix  represents the feature vector of the thi  voxel, 
and jv  represents the centroid of the thj  cluster. The 
convergence criterion for this recalculation was defined as 
a change in centroid positions less than 0.001. The final 
membership degrees (Figure 5) were then used to assign 
voxels to the most suitable cluster.

The FCM algorithm uses a set of input parameters, 
including the number of clusters, fuzziness parameter, and 
termination criterion, to iteratively assign each voxel to a 
specific cluster subject to its membership degree. For our 
study, the algorithm was configured with three clusters 
and a fuzziness parameter (m) of 2. These parameters were 
selected to achieve a balance between segmentation accuracy 
and computational efficiency. We evaluated the algorithm’s 
performance across various iteration limits: 50, 100, 150, 
and 200 iterations. Our analysis revealed that clustering 
results generally converged within 100 iterations for most 
datasets. Increasing the iteration limit beyond 100 did 
not substantially improve clustering performance, but did 
lead to increased computational time. Conversely, setting 
the iteration limit below 100 sometimes led to premature 
convergence and suboptimal clustering. Hence, a maximum 
of 100 iterations was determined to be optimal, offering a 
practical balance between accuracy and computational cost. 
Additionally, a convergence criterion of 0.001 was used to 
ensure the algorithm’s convergence. 

Further evaluation of stability and convergence involved 
plotting the objective function’s trajectory across varying 
iteration limits (Figure 6). This plot highlights that 
the algorithm typically stabilizes within 100 iterations, 
reinforcing the necessity of allowing the full iteration 
process to achieve consistent performance. Additionally, we 
visualized the clustering results using a 3D scatter plot for 
100 iterations (Figure 7). This visualization illustrates the 
distribution of data points across clusters and the positions 
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of the centroids, demonstrating the FCM algorithm’s 
proficiency in producing well-defined and accurate clusters. 
The following steps summarized the algorithm:

(I)	 Start by initializing the number of clusters (c) and 
the fuzziness parameter (m);

(II)	 Randomly select (c) centroids (this involves 
choosing initial cluster centers randomly from the 
data points, which serves as the starting point for 
the clustering process);

(III)	 Calculate the membership degrees of each voxel 

using the above equation;
(IV)	 Update the centroids of each cluster using the 

membership degrees;
(V)	 Repeat steps 3–4 until convergence is achieved, i.e., 

until the algorithm has found stable centroids and 
membership degrees.

Once the FCM algorithm is applied, the region-based 
active contour approach will use the resulting membership 
degrees as an input to enhance the segmentation results 
and obtain a more accurate delineation of the knee bone 

Figure 5 Image processing using FCM. (A) Original DICOM image. (B) Membership degree values produced by FCM, highlighting 
distinct regions of interest. FCM, fuzzy C-means; DICOM, Digital Imaging and Communications in Medicine.
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boundaries.

Adaptive region-based ACM with customized energy 
function

To further enhance the knee bone boundary segmentation 
accuracy, we used an adaptive region-based ACM. By 
leveraging the specialized region descriptor provided 
by FCM, our model guides the contour’s movement to 
precisely identify the ROI. The integration of the adaptive 
region-based ACM with FCM clustering not only improves 
segmentation accuracy but also enhances computational 
efficiency. Our approach builds upon the methodology 
proposed by Chan-Vese (51) and is implemented through 
the following steps:

(I)	 Define fitting energy function: the energy function 
quantifies the alignment between the evolving 
contour and the adjacent image intensities. The 
energy function is expressed as:

( ) ( ) ( )
( ) ( )

Area_inside Area_outside

Length

E v

G I I dxdyσ

φ µ φ φ

λ φ α

= ⋅ + ⋅

 + ⋅ + ⋅ ∇ ⋅ ∇ ∫
	 [7]

Here, ϕ represents the level-set function, 
with µ, ν, and λ being weighting parameters that 
balance internal and external energy terms. A 
Gaussian kernel Gσ  with a standard deviation σ is 
used to preserve image smoothness and gradient 

information. The parameter α controls the level of 
edge attraction.

(II)	 Integrate the regularization term: the energy 
function is integrated with a regularization term to 
ensure precise and stable contour evolution. The 
variational level-set formulation is given by:

( ) ( )( )H
t

φ
δ φ ακ β φ

∂
= −

∂
	 [8]

where, κ is the curvature of the level-set function, 
and H is the Heaviside function.

(III)	 Formulate the evolving curve equation: the 
Euler-Lagrange equation is utilized for energy 
minimization, resulting in the evolving curve 
equation:

( ) 0Hακ β φ− = 	 [9]

(IV)	 Iteratively apply the gradient descent algorithm: 
the gradient descent algorithm is iteratively applied 
to optimize the energy function and obtain the 
optimal contour, ensuring efficient and accurate 
scientific image analysis.

In our study, the parameters µ, ν, λ, α were set to 0.1, 
0.9, 0.2, and 0.5, respectively, to balance internal and 
external energy terms. The regularization parameter δ 
was set to 1.0 to ensure stability and convergence of the 
contour evolution. A maximum of 50 iterations were 
allowed to optimize the energy function and obtain precise 
segmentation results. Figure 8 illustrates the convergence 
behavior of our algorithm across various iteration limits 
(10, 50, 100, and 150). The results demonstrate that  
50 iterations yield the minimum objective function value, 
indicating optimal performance in terms of convergence 
efficiency and precision. Figure 9 presents the segmentation 
accuracy (Dice scores) for the femur, tibia, and patella across 
different iteration counts. The Dice scores notably increase 
from 10 to 50 iterations and then stabilize, suggesting that 
additional iterations beyond 50 do not significantly improve 
accuracy but may increase computational overhead. These 
results validate our parameter settings and iteration limits, 
highlighting their effectiveness in precise and efficient 
knee bone boundaries segmentation. Additionally, we 
tested various parameter values to assess the robustness of 
our method. We found that increasing µ and ν improved 
contour smoothness and stability, particularly in noisy 
regions, but sometimes led to a loss of fine details. While, 
higher λ and α alues enhanced the contour’s adherence to 
object boundaries, which was advantageous for images with 
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Figure 8 Convergence of the region-based active contour model energy function over different iteration limits.

Figure 9 Segmentation accuracy as measured by the Dice score for femur, tibia, and patella over different iteration counts. 
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clear edges but could cause instability in highly textured 
regions. The final segmentation results, as shown in  
Figure 10, demonstrate the model’s ability to achieve precise 
and accurate delineation of knee bone boundaries.

3D reconstruction of the knee bone

The knee joint segmentation results were utilized to 
generate a 3D volumetric rendering using the marching 
cubes algorithm (52). This process involved converting 
the contour data into a 3D matrix, creating a spatial model 

of the knee bone. Each voxel in this matrix represents a 
distinct element in the spatial domain. The iso-surface 
for each voxel was computed based on the threshold value 
or contour level, effectively delineating the boundary of 
the knee bone. The marching cubes algorithm efficiently 
generated the surface of the knee bone using triangular 
facets, enabling enhanced visualization of its spatial 
structure. Figure 11 presents the resulting 3D volumetric 
rendering, with the x- and y-axes correspond to the x- and 
y-pixels of the image, while the z-axis represents the pixel 
height of the knee bone.
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Figure 10 Segmentation results using an adaptive region-based active contour model. The femur, tibia, and patella are color-coded in red, 
blue, and green, respectively. The results are displayed across different views: (A) sagittal, (B) coronal, and (C) axial. 

Figure 11 3D reconstruction of knee joint model. 3D, three-dimensional. 

A B C

Results 

Segmentation results

We evaluated the accuracy and reliability of our proposed 
method by comparing its segmentation results with those 
obtained from manual segmentation performed by two 
expert annotators using the 3D Slicer software. This 
comparison served as a reliable benchmark to assess the 
effectiveness and reliability of our approach, which can be 
seen in Figures 12-14.

Morphological quantitative assessment

We performed a quantitative validation to evaluate the 
performance of our segmentation method. For this 
purpose, we randomly selected six CT image stacks, each 
representing a distinct knee joint. Manual segmentation 
of the bone regions was performed on each image, serving 
as the ground-truth reference for comparison. We utilized 
established metrics, including the DSC, sensitivity, and 

specificity, to assess the reliability of our segmented 
models (53). The choice of metrics was deliberate and 
directly aligned with the objectives of our study. The DSC 
quantifies the degree of overlap between the segmented 
knee bone region and the ground-truth reference, serving as 
a key measure of segmentation accuracy. Sensitivity, assesses 
the method’s ability to correctly identify knee bone regions, 
reducing the likelihood of missing true positive (TP) 
regions. Specificity, evaluates the method’s capacity to avoid 
false positives (FP), ensuring that non-knee bone regions 
are correctly identified. The mathematical formulations of 
these evaluation metrics are as follows:

2 TP
DSC =

2 TP + FP + FN

×

×
	 [10]

TP
Sensitivity =

TP + FN
	 [11]

TN
Specificity =

TN + FP
	 [12]
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Figure 12 Comparative analysis of femur bone segmentation. (A) Automated segmentation using FCM and region-based ACM; (B) manual 
segmentation. FCM, fuzzy C-means; ACM, active contour model.

Figure 13 Comparative analysis of tibia bone segmentation. (A) Automated segmentation using FCM and region-based ACM; (B) manual 
segmentation. FCM, fuzzy C-means; ACM, active contour model.

A B

A B

In the above equations, TP denotes the accurately 
identified bone tissue region, false negative (FN) signifies 
the incorrectly identified non-bone tissue region, FP 
represents the erroneously identified bone tissue region and 
true negative (TN) corresponds to the correctly identified 

non-bone tissue region.
Table 1 provides the Dice statistics for the segmented 

knee bone across the selected dataset. The Dice scores 
ranged from 95.99% to 98.95%, demonstrating a high 
level of concordance and precision in segmenting the 
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Figure 14 Comparative analysis of tibia bone segmentation. (A) Automated segmentation using FCM and region-based ACM; (B) manual 
segmentation. FCM, fuzzy C-means; ACM, active contour model.

A B

bone regions. These values, notably high within the field 
of medical imaging, affirm the effectiveness and reliability 
of our method. The high Dice scores for the femur and 
tibia are indicative of their relatively simpler geometry and 
larger size, which the algorithm can segment with greater 
consistency. However, the patella, due to its smaller and 
more complex structure, exhibited slightly lower Dice 
scores. This suggests that finer anatomical details present 
additional challenges, leading to minor deviations in 
segmentation performance.

Table 2 provides the sensitivity scores for the segmented 
knee bone regions. These scores illustrate the method’s 
effectiveness in identifying TP regions within the dataset. 
Sensitivity scores for the femur ranged from 97.96% 
to 99.21%, demonstrating high accuracy in identifying 
femur regions. This high sensitivity is attributed to the 

distinct shape and clear boundary contrast of the femur in 
CT images. The tibia achieved sensitivity scores between 
96.92% and 98.36%, reflecting reliable detection, with 
slight variation due to its elongated structure. Sensitivity 
scores for the patella ranged from 94.68% to 98.15%, 
indicating successful identification despite challenges 
such as partial volume effects and its articulating position 
with the femur. Figure 15 illustrates the distribution and 
variability of sensitivity scores across different bone regions 
using box-whisker plots.

Table 3 provides the specificity scores for the segmented 
knee bone regions. Our method achieved average specificity 
scores of 99.67%, 99.50%, and 99.33% for the femur, 
tibia, and patella, respectively. These high specificity 
scores reflect the method’s effectiveness in accurately 
distinguishing non-bone tissue from the targeted regions. 
The specificity scores, consistently above 99%, reflect the 
algorithm’s robustness in avoiding FP and ensuring that 
non-bone structures are correctly identified and excluded 
from the segmented regions. The slightly lower specificity 
for the patella compared to the femur and tibia suggests 
that the patella’s complex interface with surrounding tissues 
can occasionally be misinterpreted, leading to a marginal 
increase in FP rates. However, these differences are 
minimal, underscoring the overall high performance and 
reliability of our segmentation method. Figure 16 presents 
box-whisker plots of the specificity scores, confirming the 
method’s robust performance.

Overall, our method’s performance, as reflected in 

Table 1 Dice score values for femur, tibia and patella

Dataset Femur (%) Tibia (%) Patella (%)

1 98.61 97.67 97.14

2 98.31 97.14 96.67

3 97.56 96.84 96.41

4 98.95 98.10 96.92

5 97.33 96.75 95.99

6 97.48 97.60 96.89
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the Dice coefficients, sensitivity, and specificity scores, 
demonstrates its robustness and precision in knee bone 
segmentation. The slight variations in performance across 
different bone structures are consistent with the inherent 
anatomical and imaging challenges. Our results highlight 
the effectiveness and clinical applicability of our method in 
providing accurate delineations of knee bone structures in 
CT imaging.

Geometrical accuracy assessment

Despite achieving an impressive Dice score of 98%, a 
more comprehensive evaluation of segmentation accuracy 
was imperative through geometric validation. To validate 
geometric precision of our segmentation approach, 
we implemented the Iterative Closest Point (ICP)  

algorithm (54) to register and align the segmented bone 
surfaces with a reference model. The geometric accuracy 
was quantitatively evaluated using the root mean square 
distance (RSD), as defined in Eq. [13] (55).

( ) ( )1 2
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=
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The comparison involved evaluating segmented models 
against manually segmented ground-truth models. Differences 
in mesh geometry between the two models were visualized 
using a color-coded scale, which highlighted variations in 
shape and structure. Geometric validation was performed 
on all six randomly selected datasets. The RSD values were 
computed for the femur, tibia, and patella across all datasets. 
Table 4 summarizes the RSD values for each bone model. 

Table 2 Sensitivity score values for femur, tibia and patella

Dataset Femur (%) Tibia (%) Patella (%)

1 99.16 98.23 98.15

2 99.10 98.11 96.97

3 98.04 96.92 95.74

4 99.21 98.36 96.67

5 98.31 97.41 94.68

6 97.96 98.33 95.45
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Figure 15 Box-whisker plot illustrating sensitivity scores for segmented knee bone regions. The plot visualizes the distribution of sensitivity 
scores for femur, tibia, and patella. 

Table 3 Specificity score values for femur, tibia and patella

Dataset Femur (%) Tibia (%) Patella (%)

1 99.83 99.67 99.60

2 99.67 99.55 99.50

3 99.50 99.33 99.17

4 99.73 99.65 99.57

5 99.17 99.10 98.83

6 99.33 99.50 99.10
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The RSD values indicate the geometric differences for 
the femur, tibia, and patella models across the datasets. The 
average RSD values were 0.5±0.0183 mm for the femur, 
0.5±0.0213 mm for the tibia, and, 0.6±0.0163 mm for the 
patella. These results demonstrate the high geometric 
accuracy of our method, with minimal deviations from the 
manually segmented ground-truth models. The spatial 
resolution of the CT images was 0.5 mm per pixel, which is 
sufficiently fine to capture detailed anatomical features. The 
observed RSD values are close to the pixel size, confirming 
that the segmentation accuracy aligns closely with the 
inherent resolution of the imaging data.

Additionally, visual inspection of the segmented models 

(Figures 17-22) further validated our method. The color-
coded error maps did not reveal significant over- or 
underestimation in any specific regions, demonstrating 
consistent performance across the entire bone structures.

Computational time efficiency 

Computational efficiency is crucial for the practical 
implementation of medical image analysis algorithms. 
To  eva lua te  the  per formance  o f  our  knee  bone 
segmentation method, we conducted a detailed evaluation 
on a dedicated system equipped with an Intel® Core 
(TM) i5-1115G4 CPU, 16GB of RAM, and a 64-bit 
Windows 10 environment. We measured the execution 
time for each step of our algorithm to determine its 
overall computational efficiency. In Step 1, we applied 
preprocessing techniques, including Canny edge detection 
and Gaussian filtering, to enhance the image quality and 
prepare it for segmentation. Step 2 involved using FCM 
to classify pixels and separate knee bone structures from 
surrounding tissues. In Step 3, a region-based ACM was 
employed to refine the initial segmentation obtained 
from Step 2, ensuring accurate delineation of the knee 
bone structures. Finally, in Step 4, we used the marching 
cubes algorithm to reconstruct the segmented knee bone 
structure in three dimensions.
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Figure 16 Box-whisker plots illustrating the specificity scores for segmented knee bone regions. The plot visualizes the distribution of 
specificity scores for femur, tibia, and patella. 

Table 4 Geometrical accuracy (RSD) values for femur, tibia and 
patella

Dataset Femur RSD (mm) Tibia RSD (mm) Patella RSD (mm)

1 0.51 0.49 0.59

2 0.49 0.53 0.61

3 0.52 0.48 0.58

4 0.50 0.50 0.60

5 0.48 0.52 0.62

6 0.53 0.47 0.57

RSD, root mean square distance; mm, millimeters.
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Figure 18 Geometric validation of tibia bone 3D mesh using color coded map for Case 1. 3D, three-dimensional. 

Considering the inherent complexity of knee bone 
segmentation and the variability in the number of slices 
per dataset (ranging from 100 to 300), the average total 
execution time per dataset ranged from approximately 190 
to 230 seconds. Figure 23 illustrates the efficiency of our 
methodology, as it achieves accurate segmentation results 
within a reasonable timeframe, making it suitable for 
clinical settings.

Completeness & accuracy of segmentation

Completeness of the segmented knee bone region
A critical concern in knee bone segmentation is the ability 
to accurately encompass the entire knee bone region. Our 
methodology addresses this concern comprehensively 
through an iterative process. Initially, the FCM clustering 
algorithm segments the image into clusters based on voxel 
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Figure 17 Geometric validation of femur bone 3D mesh using color-coded map for Case 1. 3D, three-dimensional.
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Figure 19 Geometric validation of patella bone 3D mesh using color coded map for Case 1. 3D, three-dimensional. 

intensity similarities. This step helps in distinguishing the 
knee bone components (femur, tibia, and patella) from 
other tissues. Subsequently, the adaptive region-based 
ACM refines these initial clusters by incorporating spatial 

continuity and boundary regularization. By iteratively 
updating membership degrees and centroids based on voxel 
similarities, our algorithm adeptly identifies and assigns 
voxels to their corresponding clusters. This process ensures 
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Figure 20 Geometric validation of femur bone 3D mesh using color coded map for Case 2. 3D, three-dimensional. 
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Figure 22 Geometric validation of patella bone 3D mesh using color coded map for Case 2. 3D, three-dimensional. 
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Figure 21 Geometric validation of tibia bone 3D mesh using color coded map for Case 2. 3D, three-dimensional. 

that even in the presence of missing regions, the algorithm 
can adaptively adjust to capture the entire knee bone region 
accurately. The completeness of segmentation is visually 
confirmed in Figures 24,25, where our method is compared 
against other state-of-the-art segmentation techniques. Our 
method demonstrates superior performance in maintaining 
completeness of the knee bone region.

Accuracy of the segmentation boundaries
Another key aspect is the fidelity of the segmented 

boundaries in aligning with the true anatomical contours 
of the knee bone. We scrutinized the potential for 
deviations or inconsistencies in the segmentation results. 
Our methodology excels in achieving highly accurate 
segmentation boundaries that closely adhere to the true 
anatomical contours of the knee bone. The FCM algorithm 
performs precise clustering by analyzing voxel similarities in 
a multidimensional feature space, effectively distinguishing 
the knee bone components from surrounding tissues. 

Furthermore, the region-based ACM iteratively 
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Figure 23 Execution time (seconds) for each step of our framework, highlighting the method’s computational efficiency across different 
image series.
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Figure 24 Comparison of segmentation results for femur and patella bones in CT images with missing regions. (A) Manually segmented, 
(B) proposed method, (C) CPSM, (D) atlas-based, (E) ASM, and (F) deformable model. CT, computed tomography; CPSM, coupled prior 
shape model; ASM, active shape model. 
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Figure 25 Comparison of segmentation results for tibial bone in CT images with missing regions. (A) Manually segmented, (B) proposed 
method, (C) CPSM, (D) atlas-based, (E) ASM, and (F) deformable model. CT, computed tomography; CPSM, coupled prior shape model; 
ASM, active shape model.

optimizes the active contour to align closely with the true 
anatomical boundaries. This is achieved by minimizing an 
energy function that balances internal forces (smoothness 
of the contour) and external forces (image gradient and 
intensity information). The regularization term ensures that 
the contour evolves smoothly while accurately adhering to 
the bone boundaries. Minor deviations or inconsistencies, 
which may arise due to inherent variations in the image 
data or limitations in the segmentation process, have 
minimal impact on the overall accuracy and reliability of the 
segmentation results. This boundary accuracy is illustrated 
in Figures 24,25, where the segmented contours closely 
match the manual annotations by expert annotators.

Comparison with other state-of-the-art methods

To validate the accuracy of our bone region segmentation 
method, we conducted a benchmarking process against 
established image segmentation techniques using the Dice 
score metric for quantitative assessment. This comparison 
involved adapting MRI-based segmentation techniques 
for CT data, requiring specific preprocessing steps such as 

intensity normalization, noise reduction through filtering, 
and adjustments to algorithm parameters tailored to CT 
imaging characteristics. These steps were crucial to optimize 
our method’s performance given the higher contrast and 
noise levels typically encountered in CT compared to MRI.

For instance, methods by Shan et al. (56) and Fripp  
et al. (57) incorporated prior data and pre-defined models, 
which may not generalize well to the varied intensity profiles 
and artifacts present in CT images. This limitation can lead 
to under-segmentation or over-segmentation, especially in 
regions with ambiguous boundaries or overlapping tissue 
structures. Our approach operates independently of prior data, 
offering flexibility and broader applicability in diverse clinical 
settings. Additionally, Zhou et al. (58) focused exclusively 
on single MRI sequences, which are computationally 
intensive and less adaptable to the high-resolution and 
varied intensity characteristics of CT datasets. The 
computational complexity and specificity to MRI sequences 
limit their practical application to CT images, where our 
method demonstrates a significant advantage in both 
performance and computational efficiency. Pang et al. (59)  
reported average surface distances primarily for specific slice 
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Table 5 Comparison of mean Dice values among proposed method and other benchmark methods

Method Mean Dice(femur) Mean Dice(tibia) Mean Dice(patella)

Pang et al. (59) 94.5 92.7 –

Shan et al. (56) 97.1 96.7 –

Zhou et al. (58) 97 96.2 89.8

Fripp et al. (57) 95.2 95.2 86.2

Proposed method 98.04 97.35 96.67

locations rather than comprehensive measurements across 
the entire bone surface, making it challenging to assess their 
method’s effectiveness on full volumes.

Table 5 provides a detailed comparison of our results with 
recent studies, demonstrating that our method consistently 
achieves high average Dice scores across the six randomly 
selected cases. However, direct comparisons are nuanced 
due to differences in methodologies, imaging modalities, 
and dataset characteristics. These results indicate that our 
method performs at a comparable or superior level to the 
other methods, underscoring both the high anatomical 
fidelity and robustness of our segmentation approach.

Figure 26 visually compares our method’s segmentation 
outcomes with those of various approaches. Our method 
consistently exhibits sharper and more precise delineation of 
bone regions, showcasing robustness in handling challenges 
like soft tissue variations, intensity irregularities, and noise 
inherent in CT images. This improvement is attributed 
to advanced clustering algorithms and contour refinement 

techniques that effectively preserve bone boundaries and 
minimize segmentation errors.

Discussion

In this study, we presented a semi-automatic method for 
segmenting multiple knee bones from CT images. Our 
approach combines various image preprocessing techniques, 
including canny edge detection and gaussian filtering, with 
advanced algorithms such as FCM, region-based ACM, and 
marching cubes for 3D reconstruction (60).

The methodology begins with the application of Canny 
edge detection and Gaussian filtering to enhance image 
quality by emphasizing significant edge features. The 
FCM algorithm is then used to classify pixels into distinct 
tissue classes, considering the uncertainty associated with 
tissue intensity variations and overlapping regions. This 
classification provided an initial segmentation, which was 
then refined using a region-based ACM. The ACM iteratively 

A B C D E F

Figure 26 Comparison of segmentation results for two cases using the proposed method and other methods. (A) Manually segmented, (B) 
proposed method, (C) CPSM, (D) atlas-based, (E) ASM, and (F) deformable model. CT, computed tomography; CPSM, coupled prior 
shape model; ASM, active shape model.
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adjusted the contours by minimizing an energy function that 
integrated both image-based and geometric priors, ensuring 
precise delineation of the knee bone boundaries. Finally, the 
marching cubes algorithm was employed to reconstruct the 
3D model of the segmented bone regions, enabling enhanced 
visualization and providing critical support for accurate 
diagnosis and treatment planning (61). 

The quantitative evaluation of our method, using 
well-established benchmark metrics, including the Dice, 
sensitivity, and specificity, demonstrated its exceptional 
performance. The obtained high Dice scores for the femur 
(98.95%), tibia (98.10%), and patella (97.14%) underscore 
the remarkable overlap between the segmented regions and 
the corresponding ground truth manual segmentations. 
These results strongly affirm the reliability and accuracy of 
our methodology (62). 

Further validation was conducted through geometrical 
validation, focusing on the alignment and geometric 
similarity of the segmented bone surfaces. Utilizing the 
ICP algorithm, we registered the segmented surfaces and 
computed the RSD to quantify geometric differences. The 
low RSD values for the tibia and femur (0.5±0.14 mm) and 
patella (0.6±0.13 mm) highlight the method’s ability to 
accurately capture the intricate geometries of knee bone 
structures with high consistency (63). 

Conclusions

In conclusion, our study presents an advanced integration 
of the FCM algorithm with an adaptive region-based 
ACM for the segmentation of knee joints from CT images. 
This approach has demonstrated exceptional accuracy and 
efficiency, making it a valuable tool for precise orthopedic 
surgery planning. The results provide distinct and non-
overlapping segmentation of knee bones, highlighting 
its clinical relevance and applicability. However, several 
challenges and limitations must be considered. A key 
limitation is the dependency on image preprocessing 
techniques, which, although essential for enhancing image 
quality, may inadvertently introduce noise or artifacts that 
could compromise segmentation accuracy. Furthermore, 
the current study does not fully explore the method’s 
performance in pathological cases, where abnormal bone 
structures might present significant challenges. While 
this study has focused on knee bone segmentation, future 
research could explore the segmentation and geometrical 
modeling of other anatomical structures within the knee 
joint, such as ligaments and cartilage. Moreover, to establish 

the clinical utility of our segmentation framework, rigorous 
clinical trials involving orthopedic surgeons and radiologists 
are essential. These trials would evaluate the method’s 
integration into routine clinical practice and its impact 
on improving surgical outcomes. By addressing these 
limitations, we aim to enhance the robustness and clinical 
applicability of our segmentation method.
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