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Background: Computed tomography (CT) offers detailed cross-sectional images of internal anatomy for 
disease detection but carries a risk of solid cancer or blood malignancies due to exposure to X-ray radiation. 
This study aimed to develop a new method to quickly predict patient-specific organ doses from CT 
examinations by training neural networks (NNs) based on radiomics features.
Methods: CT Digital Imaging and Communications in Medicine (DICOM) image data were exported 
to DeepViewer, a clinical autosegmentation software, to segment the regions of interest (ROIs) for patient 
organs. Radiomics feature extraction was performed based on the selected CT data and ROIs. Reference 
organ doses were computed using Monte Carlo (MC) simulations. Patient-specific organ doses were 
predicted by training a NN model based on radiomics features and reference doses. For the dose prediction 
performance, the relative root mean squared error (RRMSE), mean absolute percentage error (MAPE), 
and coefficient of determination (R2) were evaluated on the test sets. The robustness of the NN model was 
evaluated via the random rearrangement of patient samples in the training and test sets.
Results: The maximal difference between the reference and predicted doses was less than 1 mGy for all 
investigated organs. The range of MAPE was 1.68% to 5.2% for head organs, 11.42% to 15.2% for chest 
organs, and 5.0% to 8.0% for abdominal organs; the maximal R2 values were 0.93, 0.86, and 0.89 for the 
head, chest, and abdominal organs, respectively.
Conclusions: The radiomics feature-based NN model can achieve accurate prediction of patient-specific 
organ doses at a high speed of less than 1 second using a single central processing unit, which supports its use 
as a user-friendly online clinical application.
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Introduction

Computed tomography (CT) is the prevalent diagnostic 
modality for various diseases owing to its capacity to 
generate cross-sectional images of the internal structures 
of organs and tissues (1-3). CT imaging is a diagnostic 
modality that enables the identification of various 
pathological conditions, such as infectious, traumatic, 
inflammatory, and hemorrhagic disorders (4-6). However, 
exposure of patients to ionizing radiation from CT scans 
may result in DNA damage, which could potentially lead 
to the development of solid cancers (7-11). A retrospective 
cohort study from Australia reported there to be a 
significant association between CT radiation exposure and 
overall cancer incidence, with a relative risk of 1.24 (95% 
confidence interval: 1.20–1.29) among pediatric patients 
exposed to radiation (12). Therefore, the estimation of 
patient-specific organ doses from CT scans is necessary 
for the evaluation and management of the potential 
carcinogenic risk associated with radiation exposure.

The main methods used to calculate patient-specific 
organ doses include size-specific dose estimation (SSDE), 
Monte Carlo (MC) simulation, and neural networks (NNs) 
(13-18). SSDE adopts a phantom-based the volume CT 
dose index (CTDIvol) and patient size-related equivalent 
water diameter (Dw) to calculate patient-specific organ 
doses. NN models apply fully connected networks (FCNs) 
or convolutional neural networks (CNNs) to account for 
anatomical characteristics beyond patient size and can 
achieve a relatively better performance than can SSDE in 
predicting patient-specific organ doses. However, NN-
based prediction models may require a large number of 
patient samples to be allocated to the training and test 
sets to ensure that the prediction accuracy remains robust 
if the patient sample allocation strategy changes. MC 
can conduct precise dose calculations directly based on 
patients’ three-dimensional CT Hounsfield unit (HU) 
measurements for exacting accurate organ doses. Thus, MC 
is presently the benchmark data for other dose prediction 
methods (19-21). However, owing to the large number 
of transport simulations for photons and electrons, MC 
requires intensive computational resources, including 
central processing units (CPUs), graphics processing units 
(GPUs), and even computing time. This reduces MC’s user-
friendliness in the context of quickly completing clinical 
online prediction tasks. Thus, it is necessary to devise new 
methods to predict patient-specific organ doses from CT 
scans with high accuracy, fast speed, and stable prediction 

performance.
In this study, organ doses computed with MC were used 

as reference doses. The robust FCN model was trained 
based on radiomics features and MC-calculated organ 
doses to predict patient-specific organ doses within a short 
time, with relatively better robustness and use of minimal 
computational resources. Radiomics features are highly 
condensed numerical features that include a considerable 
greater amount of intensity, anatomical, and tissue 
properties beyond the Dw or patient size used by the SSDE. 
The FCN model trained based on radiomics features 
sufficiently reflects the correlation between patients’ 
complex characteristics and organ doses, thus precisely 
predicting patient-specific organ doses. The performance 
of the FCN model was evaluated by calculating the 
relative root mean squared error (RRMSE), mean absolute 
percentage error (MAPE), and coefficient of determination 
(R2) of the test sets. The robustness of the FCN model was 
verified via the random allocation of patient samples to the 
training and test sets at a ratio of 8:2.

Methods

The materials and methods included source patient data, 
data processing, and dose prediction methods. As indicated 
in the flowchart in Figure 1, in the workflow, it is necessary 
to process CT data, generate mask data, extract radiomics 
features, and compute reference organ doses before training 
and evaluation of the FCN organ dose prediction model. 
In this section, the first part introduces the patient data 
collection and data processing. The second part shows the 
technical workflow for radiomics feature extraction and 
selection. The third part outlines the calculation of the 
reference organ doses for head, chest, and abdominal CT 
data using a GPU-based MC. The fourth part explains how 
we constructed, trained, and evaluated the FCN model.

Data collection

We selected 237 head, 247 abdominal, and 723 thoracic CT 
cases from the Shanghai Zhongye Hospital. The inclusion 
criteria were as follows: age between 18 and 75 years, no 
history of surgery or trauma, and no contraindications 
to a CT scan. The exclusion criteria were incomplete or 
corrupted CT images, the presence of metal implants or 
foreign bodies in the abdomen, and severe motion artifacts. 
The CT images of the selected patients were exported to 
DeepViewer autosegmentation system (22), which is a deep 
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Figure 1 General workflow for training and evaluating the FCN model to predict patient-specific organ doses for the head, chest, and 
abdomen in patients. CT, computed tomography; DICOM, Digital Imaging and Communications in Medicine; GPU, graphics processing 
unit; MC, Monte Carlo; ROI, region of interest; Dw, water diameter; RRMSE, relative root mean squared error; MAPE, mean absolute 
percentage error; R2, R-square is the coefficient of determination.

learning-based software that can automatically segment 
regions of interest (ROIs) from CT images. The ROIs 
segmented by DeepViewer were the body, liver, stomach, 
bowel, left kidney, right kidney, pancreas, and spinal cord. 
The CT images and corresponding ROIs of each patient 
were converted from Digital Imaging and Communications 
in Medicine (DICOM) format to the Neuroimaging 
Informatics Technology Initiative (NIfTI; nii) format using 
“dcmstruct2niiz’ (23), a Python package that converts 
DICOM RT-Struct files to NIfTI masks. Conversion was 
necessary to generate CT and mask data for radiomics 
feature extraction. The scan voltage of the CT machine was 
set to 120 keV for the head and chest patients and 100 keV 

for the abdomen.
The study was conducted in accordance with the 

Declaration of Helsinki (as revised in 2013) and was 
approved by Institutional Review Board of Shanghai 
Zhongye Hospital (No. LS0001). Individual consent for this 
retrospective analysis was waived.

Radiomics feature extraction

The purpose of this study was to use radiomics features 
extracted from CT images and ROIs to train an FCN 
model that can predict patient-specific organ doses from 
CT scans. The Pyradiomics module (24) was used to extract 
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radiomics features from each patient’s CT scans and ROIs. 
The Pyradiomics module is a Python library that calculates 
various radiomics features from medical images and masks. 
The main procedures of the feature extraction and selection 
process included image preprocessing, feature calculation, 
and feature selection.

In the first step, we performed image preprocessing to 
standardize the radiomics feature calculation and enhance 
the robustness of the FCN model. We resampled the spatial 
resolution of the CT and masks for each patient to 1, 1, 
and 5 mm, respectively, using the Pyradiomics parameter 
“resamplePixelSpacing”. The “resamplePixelSpacing” 
parameter in Pyradiomics resamples the entire image volume, 
including all voxels, by interpolating the intensity values 
based on the specified spacing. This interpolation process 
inherently takes into account all voxels, including those at 
the boundaries of different structures (e.g., organs) within 
the image. We also performed data augmentation (25-27) to 
increase the size and diversity of the training data.

In the second step, we calculated 107 radiomics features 
for each organ of the patient without using filters that 
preprocess medical images to emphasize specific patterns, 
textures, or structures. The radiomics features were divided 
into seven types: gray-level co-occurrence matrix, first-
order statistics, neighboring gray-tone difference matrix, 
gray-level dependence matrix, gray-level run-length matrix, 
shape-based, and gray-level size zone matrix. These features 
can capture the texture, shape, and intensity characteristics 
of the ROIs and reflect their correlation, homogeneity, 
contrast, and intensity distribution. The features were 
stored in a CSV file and used as input data to train the FCN 
model.

In the third step, we selected the relevant features to 
avoid overfitting (28,29) and enhance the robustness of the 
FCN model. Overfitting is a problem that occurs when the 
model learns excessively from the training data and fails to 
generalize to new data. We used the f-regression function 
from the scikit-learn library (30,31) to select features that 
had a high correlation with the output variables (age and 
gender). The f-regression function can compute the F 
value and P value for each feature and output variable pair 
and rank the features accordingly. The top 100 features for 
each output variable were selected and used to train the 
FCN model according to F values. Feature extraction and 
selection were performed using double AMD EPYC 7,551 
CPUs from Advanced Micro Devices, Inc. in the United 
States, in the Anaconda 3 (32) environment. Anaconda 3 is 
a platform that provides various Python packages and tools 

for data science and machine learning.

Reference organ dose calculation

Organ doses are the amount of radiation absorbed by the 
organs during the CT scan and are important for assessing 
the radiation risk and optimizing the scan parameters. To 
train the FCN model, we obtained the reference organ 
doses for each patient, which were calculated using a GPU-
based MC particle transport code, GGEMS (33).

GGEMS is software that can simulate the interaction 
of photons and electrons with matter, and it can handle 
complex geometries, heterogeneous materials, and multiple 
radiation sources. GGEMS can run on GPUs, which are 
specialized hardware devices that can perform parallel 
computations much faster than CPUs. By using GPUs, 
GGEMS can process MCs much faster than can CPU-
based MC codes almost without sacrificing organ dose 
calculation accuracy. GGEMS has been applied to compute 
dose distributions in brachytherapy (34).

To carry out organ dose simulation, SPEKTR3.0 
software was used to generate the energy spectrum of X-ray, 
and the equivalent spectrum was validated by measuring the 
half-value layer (HVL) method. The equivalent spectrum 
was then randomly sampled with an interval of 1 keV 
for further simulations of the X-ray spectrum (35). Tube 
Current Modulation (TCM) information was extracted 
from the DICOM image headers to generate the number 
of source particles of each slice. The tube current was 
proportional to the number of photons in the simulation. 
In order to obtain the real CT dose. We obtained the 
conversion coefficient by the ratio of the CTDI value 
measured under a 100-mAs tube current and a CTDI value 
calculated in the MC. Finally, the coefficient was applied 
to the MC module dose. No secondary particles were 
simulated during the simulation since the mean free path of 
secondary particles were considered smaller than the size of 
voxels of CT images.

For each patient, we used GGEMS to calculate the 
organ doses of the brain, eyes, lens, optical nerves, pituitary, 
lungs, heart, esophagus, trachea, liver, stomach, bowel, left 
kidney, right kidney, pancreas, and spinal cord from the 
CT image and masks. We also considered autotube current 
modulation, which is a technique that can adjust the tube 
current according to the patient’s anatomy and reduce the 
radiation dose. We performed GPU-based MC simulations 
using two Nvidia RTX-4090 graphics cards from Shenzhen 
Colorful Technology and Development CO., LTD., which 
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are high-performance GPUs that can support large-scale 
simulations. We obtained the slice-wise dose distribution 
for each patient, with an error of less than 2% in each 
voxel. A voxel is the smallest unit of volume in a three-
dimensional (3D) image and contains the intensity value of 
the image. The GPU-calculated organ doses were used as 
the reference organ doses when training the FCN model to 
predict organ doses from radiomics features.

Organ dose prediction model

The FCN is an effective machine-learning algorithm that 
can provide an efficient solution to regression problems by 
learning the complex nonlinear relationship between the 
input and output variables. A regression problem is a type 
of supervised learning problem that involves predicting a 
continuous value based on the input features. The FCN 
model consists of multiple layers of artificial neurons 
that can process and transform the input data. The FCN 
model can maximally reduce the loss by modulating the 
weighting matrix according to the reference y-values. The 
loss function is a measure of how well the model fits the 
data, and the weighting matrix is a set of parameters that 
determines how the neurons are connected and activated. A 
well-trained FCN model can achieve better performance in 
terms of speed, accuracy, and interpretability as compared 
to traditional regression methods. The trained FCN 
regression model could reflect the relationship between the 
input radiomics features and the reference organ doses and 
accurately predict personalized organ doses. 

The FCN structure used in this study contained six 
dense layers: an input layer, an output layer, and four hidden 
layers. A dense layer is a type of layer that connects every 
neuron in the previous layer to every neuron in the current 
layer. The input layer receives the radiomics features as 
input data, and the output layer produces the organ doses 
as the output data. We split each of the head, chest, and 
abdomen datasets into training and test sets at a ratio 
of 0.8:0.2 using the “train_test_split” function from the 
scikit-learn module. The hidden layers perform nonlinear 
transformations and learn high-dimensional features 
from the input data. For each dense layer, we applied 
regularization techniques by using batch normalization and 
“dropout” to improve the generalization and robustness. 
Batch normalization is a technique that can normalize 
the input data for each layer and reduce the internal 
covariate shift. The internal covariate shift occurs when 
the distribution of the input data changes owing to updates 

of the parameters in the previous layers. Meanwhile, the 
dropout technique can randomly drop out some neurons 
during the training process and prevent overfitting. 
Overfitting is a problem that occurs when the model learns 
excessively from the training data and fails to generalize to 
new data. We set the dropout parameter to 0.2, meaning 
that 20% of the neurons were removed for each layer.

The performance of the trained FCN model was assessed 
using the regression metrics of the RRMSE, MAPE), and 
R2 on the test sets for the ROIs, including the head, chest, 
and abdomen. The test set was a subset of the data that was 
not used for training the model and was used to evaluate 
how well the model could predict new data. Regression 
metrics are numerical measures that can quantify the 
accuracy and goodness of fit of the model. RRMSE is the 
ratio of the root mean square error to the mean value of the 
output variable and indicates the relative error of the model. 
MAPE is the average absolute value of the difference 
between the predicted and reference values divided by 
the reference value for all predictions, and it indicates the 
overall error of the model. R2 is the proportion of variance 
in the output variable that is explained by the input variable, 
and it indicates the strength of the relationship between the 
input and output variables. The mathematical equations for 
RRMSE, MAPE, and R2 are as follows:
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where, n is the number of patients, iy  is the reference organ 
dose, ˆiy  is the predicted organ dose, and y  is the mean value 
of reference dose. The robustness of the model was verified 
by the random assignment of patient samples to the training 
and test sets, with the ratio of the two sets being maintained 
at 0.8:0.2, and through the comparison of the regression 
metrics of different patient sample assignment strategies. 
The robustness of a model is its ability to maintain its 
performance under different conditions and scenarios. 
Residual network 50 (ResNet50) models were employed on 
the CT images datasets to assess the accuracy and generality 
of CNNs in predicting patient-specific organ doses from 
CT scans.
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Results

In this section, the first part reports the mean predicted 
and reference organ doses as the standard deviation (SD). 
The second part lists the computed regression metrics of 
the FCN prediction model. The third part contains the 
regression metrics for different patient sample allocation 
strategies on the training and test sets for evaluation of the 
robustness of the FCN prediction model.

Predicted organ doses on the test sets

Tables 1-3 list the FCN-predicted organ doses for the head, 

chest, and abdomen. Table 1 shows the comparison of the 
reference and predicted doses, indicating good agreement. 
For the investigated head organs, the mean reference doses 
ranged from 20.43 mGy (pituitary) to 39.79 mGy (right 
lens), while the mean predicted doses closely matched these 
values. The SD were generally low, ranging from 2.61 to 
7.82 mGy for the reference doses and 2.10 to 7.01 mGy 
for the predicted doses. The agreement between reference 
and predicted doses, coupled with low SDs, supported the 
accuracy of the FCN model.

As seen in Table 2, the mean reference doses varied 
across organs, from 9.43 mGy (trachea) to 16.44 mGy 
(right lung), while the mean predicted doses closely tracked 
these values. The SDs ranged from 3.71 to 7.39 mGy for 
reference doses and 2.70 to 6.08 mGy for predicted doses. 
Despite interorgan differences, the agreement between the 
reference and predicted doses remained consistently robust.

As seen from Table 3, the mean reference doses ranged 
from 17.06 mGy (spinal cord) to 30.25 mGy (liver), with 
the mean predicted doses being closely aligned with these 
values. The SDs ranged from 3.04 to 6.26 mGy for the 
reference doses and 2.51 to 5.11 mGy for the predicted 
doses across these organs. The close concordance between 
the reference and predicted doses, along with the relatively 
low SDs, indicates the accuracy of the FCN for a diverse set 
of abdominal organs.

Computed regression metrics on the test sets

As observed in Table 4, the RRMSE for various head organs 
ranged from 3.89% for the brain to 11.24% for the right 

Table 1 Mean predicted and reference doses for the head CT scans 
on the test sets

Organ
Mean 

reference 
dose (mGy)

SD of the 
reference 

dose (mGy)

Mean 
predicted 

dose (mGy)

SD of the 
predicted 

dose (mGy)

Brain 26.94 2.61 26.89 2.89

Eye_L 33.28 6.97 33.22 7.01

Eye_R 32.25 4.85 32.34 4.19

Len_L 38.87 5.95 38.93 6.41

Len_R 39.79 7.82 39.25 7.90

Nerve_L 23.42 2.70 23.25 2.10

Nerve_R 24.29 4.23 23.71 3.51

Pituitary 20.43 4.31 20.49 4.26

CT, computed tomography; SD, standard deviation; Eye_L, left 
eye; Eye_R, right eye; Len_L, left lens; Len_R, right lens; Nerve_L, 
left nerve; Nerve_R, right nerve.

Table 2 Mean predicted and reference doses for chest CT scans on 
the test sets

Organ
Mean 

reference 
dose (mGy)

SD of the 
reference 

dose (mGy)

Mean 
predicted 

dose (mGy)

SD of the 
predicted 

dose (mGy)

Lung_L 16.31 7.39 16.49 6.08

Lung_R 16.44 6.74 16.54 6.05

Heart 13.86 5.53 13.38 4.34

Spinal cord 11.51 3.71 11.19 2.70

Esophagus 13.41 4.81 13.011 3.85

Trachea 9.43 4.17 9.04 3.52

CT, computed tomography; SD, standard deviation; Lung_L, left 
lung; Lung_R, right lung.

Table 3 Mean predicted and reference doses for abdominal CT 
scans on the test sets

Organ
Mean 

reference 
dose (mGy)

SD of the 
reference 

dose (mGy)

Mean 
predicted 

dose (mGy)

SD of the 
predicted 

dose (mGy)

Bowel 25.28 5.01 25.14 4.66

Kidney_L 26.16 4.62 25.89 3.91

Kidney_R 26.21 5.12 25.84 4.34

Liver 30.25 6.26 29.57 5.11

Pancreas 24.19 4.19 24.34 3.15

Spinal cord 17.06 3.04 17.08 2.51

CT, computed tomography; SD, standard deviation; Kidney_L, 
left kidney; Kidney_R, right kidney.
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eye. The MAPE results indicate the FCN model was 
effective, with values ranging from 1.68% for the brain to 
5.19% for the pituitary gland. The R2 values showed strong 
correlations between the predicted and reference organ 
doses, with the brain yielding an R2 score of 0.93. 

As seen in Table 5, the RRMSE values, ranging from 
8.15% for the left lung to 10.58% for the heart, attest to the 
ability of the FCN model to minimize the prediction errors 
across various chest organs. Meanwhile, the MAPE, ranging 
from 11.42% for the spinal cord to 15.18% for the trachea, 
provides insights into the prediction bias, with relatively low 
values indicating favorable predictions. Notwithstanding 
some variations, the R2 values were between 0.74 and 0.86.

As evidence from Table 6, the RRMSE values ranged 
from 7.71% for the bowel to 11.90% for the right kidney. 
Meanwhile, the MAPE ranged from 5% for the bowel to 
8.34% for the right kidney, indicating a low incidence of 
errors and high accuracy in the prediction of patient-specific 
abdominal organ doses. Finally, the R2 values, which ranged 
from 0.74 to 0.89, confirm the strength of the correlation 
between the predicted and reference doses. 

Robustness of the FCN model

The patient samples in the training and test sets were 
randomly reallocated 20 times with the ratio being 
maintained at 0.8:0.2. The RRMSE, MAPE, and R2 values 
were computed for each training-test split. For the head, 
chest, and abdomen, the organ doses of different training-test 
splits are plotted as box charts for each organ in Figures 2-4.

As seen in Figure 2A, the brain had the highest precision 
with the lowest median RRMSE (9.62) and interquartile 
range (IQR) (1.89), indicating more accurate predictions. 
The pituitary showed a lower accuracy, with the highest 
median RRMSE (11.23) and IQR (3.16). Eyes, lenses, 
and nerves exhibited median RRMSE values from 10.2% 
to 11.3%. The brain exhibited high accuracy with a low 
MAPE of approximately 1.8% and a narrow IQR, reflecting 
consistent predictions (Figure 2B). Meanwhile, the eyes and 
lenses exhibited higher MAPE values, ranging from 4.5% 
to 7.4%, and their IQR values had modest data variability. 
Similarly, the nerves and the pituitary had high MAPE 
values (approximately 4.6–8.3%). These findings emphasize 
the overall effectiveness of the FCN model in predicting 
patient-specific head organ doses.

As can be surmised from Figure 2C, the FCN model 
demonstrated good accuracy, as indicated by R2 values 
exceeding 0.7 for all organs. The brain, left eye, and 

Table 4 Regression metrics for the head CT scans on the test sets

Organ RRMSE (%) MAPE (%) R2

Brain 3.89 1.68 0.93

Eye_L 5.04 4.66 0.90

Eye_R 11.24 4.92 0.84

Len_L 8.15 4.61 0.88

Len_R 5.44 5.13 0.89

Nerve_L 8.21 4.22 0.80

Nerve_R 5.66 4.68 0.86

Pituitary 5.24 5.19 0.89

CT, computed tomography; RRMSE, relative root mean squared 
error; MAPE, mean absolute percentage error; R2, R-square is 
the coefficient of determination; Eye_L, left eye; Eye_R, right 
eye; Len_L, left lens; Len_R, right lens; Nerve_L, left nerve; 
Nerve_R, right nerve.

Table 5 Regression metrics for the chest CT scans on the test sets

Organ RRMSE (%) MAPE (%) R2

Lung_L 8.15 14.38 0.86

Lung_R 8.23 13.52 0.85

Heart 10.58 14.19 0.75

Spinal cord 8.83 11.42 0.74

Esophagus 9.86 12.97 0.77

Trachea 9.71 15.18 0.78

CT, computed tomography; RRMSE, relative root mean squared 
error; MAPE, mean absolute percentage error; R2, R-square is 
the coefficient of determination; Lung_L, left lung; Lung_R, right 
lung.

Table 6 Regression metrics for abdominal CT scans on the test sets

Organ RRMSE (%) MAPE (%) R2

Bowel 7.71 5.0 0.89

Kidney_L 10.4 6.38 0.78

Kidney_R 11.9 8.34 0.75

Liver 9.93 7.97 0.78

Pancreas 11.73 7.06 0.74

Spinal cord 11.53 7.47 0.75

CT, computed tomography; RRMSE, relative root mean squared 
error; MAPE, mean absolute percentage error; R2, R-square is 
the coefficient of determination; Kidney_L, left kidney; Kidney_R, 
right kidney.
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Figure 2 Box charts of (A) RRMSE, (B) MAPE, and (C) R2 for the head doses of 20 random patient allocation strategies. Eye_L, left eye; 
Eye_R, right eye; Len_L, left lens; Len_R, right lens; Nerve_L, left nerve; Nerve_R, right nerve; RRMSE, relative root mean squared error; 
MAPE, mean absolute percentage error; R2, R-square is the coefficient of determination.

right eye exhibited particularly strong fits, with R2 values 
ranging from approximately 0.70 to 0.92, indicating good 
predictive performance. The left lens, right lens, left nerve, 
right nerve, and pituitary also maintained high R2 values, 
indicating robust model fit. The IQR values for these head 
organs suggested stable and consistent predictions, further 
emphasizing the ability of the FCN model to provide 
precise estimates of patient-specific head organ doses.

Meanwhile, the heart yielded the lowest precision 
(Figure 3A), with the highest median RRMSE (10.5%) 
and IQR (1.34). The esophagus showed similar accuracy, 
with a median RRMSE of 10.5% and an IQR of 1.7. The 
predictive performance for the lungs, spinal cord, and 
trachea was better than for the heart and esophagus, with 
median RRMSE values ranging from 8.6% to 10.1%.

Figure 3B shows that both the left and right lungs 

exhibited low MAPE values of approximately 13.5%, 
indicating highly accurate prediction. The IQR values 
for the chest organs, while showing some variability, 
reflected a consistent model performance. Similarly, the 
heart maintained a low MAPE of approximately 15.7%, 
suggesting accurate predictions. The spinal cord, esophagus, 
and trachea yielded MAPE values ranging from 11.1% to 
14.6%, indicating effective prediction accuracy.

As can be observed from Figure 3C,  the model 
demonstrated robust accuracy, with R2 values exceeding 0.65 
for all organs. The left lung, right lung, and heart showed 
strong fits, with R2 values ranging from approximately 
0.76 to 0.86, highlighting the model’s excellent predictive 
performance for the chest organs. The spinal cord, 
esophagus, and trachea maintained high R2 values, verifying 
the reliability of the FCN model. The IQR values for these 
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Figure 3 Box charts of (A) RRMSE, (B) MAPE, and (C) R2 for the chest doses of 20 random patient allocation strategies. Lung_L, left lung; 
Lung_R, right lung; RRMSE, relative root mean squared error; MAPE, mean absolute percentage error; R2, R-square is the coefficient of 
determination.

organs suggest consistent and stable predictions.
As seen in Figure 4A, the liver exhibited the highest 

accuracy, with a low median RRMSE (11.83) and IQR (2.39), 
indicating precise prediction. The bowel displayed a lower 
accuracy, with the highest median RRMSE (10.47) and 
IQR (2.51). The kidneys, pancreas, and spinal cord yielded 
median RRMSE values ranging from 8.5% to 8.9%. 

Figure 4B shows that the bowel, left kidney, and right 
kidney had effective prediction accuracy, with MAPE values 
ranging from 6.3% to 7.2%. These values suggest that the 
FCN model provides precise estimates for these abdominal 
organs. The liver, pancreas, and spinal cord also exhibited 
MAPE values of approximately 8.7%, indicating reliable 
prediction.

As seen in Figure 4C, the FCN model showed solid 
predictive accuracy, with R2 values exceeding 0.6 for the 
examined abdominal organs. Particularly noteworthy are the 
bowel, left kidney, right kidney, and liver, which exhibited 
strong fits, with R2 values ranging from approximately 0.7 

to 0.83. This indicated the effectiveness of the FCN model 
in accurately predicting abdominal organ doses. 

Discussion

This study aimed to explore a novel and robust for 
accurately predicting a personalized organ doses when the 
resources for prediction are minimized to a single CPU 
core. A CPU core is the basic unit of processing power in a 
computer that can execute one task at a time. Minimizing 
the resources for prediction means that the prediction 
method can be run on a low-end computer with limited 
computational power and memory. Unlike previous studies, 
we investigated personalized organ doses by training the 
FCN prediction model based on radiomics features and 
GPU-calculated organ doses. Radiomics features are 
quantitative features that can describe the texture, shape, 
and intensity characteristics of ROIs in medical images. The 
GPU-calculated organ doses were the reference organ doses 
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Figure 4 Box charts of (A) RRMSE, (B) MAPE, and (C) R2 for the abdominal doses of 20 random patient allocation strategies. Kidney_L, 
left kidney; Kidney_R, right kidney; RRMSE, relative root mean squared error; MAPE, mean absolute percentage error; R2, R-square is the 
coefficient of determination.

obtained using a GPU-based MC particle transport code. 
A GPU is a specialized hardware device that can perform 
parallel computations much faster than can a CPU. The 
MC particle transport code is a software that can simulate 
the interaction of radiation with matter.

The performance of the radiomics feature-based FCN 
model was assessed using the regression metrics RRMSE, 
MAPE, and R2 on the test set for the ROIs in the liver, 
stomach, bowel, left kidney, right kidney, pancreas, and 
spinal cord. Regression metrics are numerical measures that 
can quantify the accuracy and goodness of fit of a model. 
The results of this study suggest that radiomics features can 
reflect the head, chest, and abdominal organ features (e.g., 
geometric shape, size, tissue, and anatomy). We further 
found that the FCN model could accurately and robustly 
predict patient-specific organ doses based on radiomics 
features.

In previous studies (13,14) that adopted size-specific dose 

estimates (SSDEs), NNs, CNNs, etc., only patient size, tube 
voltage, or some other simple features were considered, and 
the robustness of these models was not validated via random 
assignment of patient samples to the training and test sets. 
These methods have certain limitations; for example, they 
ignore the patient’s anatomy, tissue, and geometry and 
are sensitive to data distribution and quality. In previous 
MC studies, a massive amount of computing resources 
of multiple CPUs or GPUs was required for using MC 
to calculate personalized organ doses. MC is the gold 
standard method for accurately simulating the interaction 
of radiation with matter, but it is also very time-consuming 
and complex to implement.

In this study, we proposed a novel method to predict 
patient-specific organ doses using an FCN prediction model 
based on radiomics features and GPU-calculated organ 
doses. Radiomics features are quantitative features that can 
describe the texture, shape, and intensity characteristics of 
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ROIs in medical images. The GPU-calculated organ doses 
were the reference organ doses obtained using a GPU-based 
MC particle transport code. The FCN model is a machine 
learning algorithm that can learn the complex nonlinear 
relationship between the input and output variables. The 
trained FCN model only requires a simple Python script to 
predict organ doses in one second, with minimal computing 
resources, even a single CPU. Thus, this study represents 
a significant advance in the development of a fast, accurate, 
and easy-to-use organ dose prediction method.

To assess the accuracy and generality of CNNs in 
predicting patient-specific organ doses from CT scans, we 
employed ResNet50 models on the datasets for head, chest, 
and abdomen CT images. The ResNet50 models achieved 
the following MAPE values: 5.56%, 6.03%, 5.49%, and 
5.88% for the left eye, right eye, left lens, and right lens, 
respectively; 14.31% and 13.16% for the left lung and right 
lung, respectively; and 12.27% and 13.01% for the left 
kidney and right kidney, respectively. The corresponding 
R2 values were 0.68, 0.71, 0.72, and 0.74 for the left eye, 
right eye, left lens, and right lens, respectively; 0.75 and 0.81 
for the left lung and right lung, respectively; and 0.38 and 
0.26 for the left kidney and right kidney, respectively. The 
ResNet50 models likely demonstrated worse generality (R2) 
for kidneys because the limited abdomen data set was not 
adequate for achieving sufficient predictive generality with 
ResNet50. The maximum predictive discrepancy between 
the radiomics-based models and the ResNet models was 
within 3% for MAPE and 0.5 for R2. The radiomics-based 
models slightly outperformed the ResNet50 models, likely 
due to the generalized features from radiomics and simpler 
FCN structure being better suited to the smaller dataset 
compared to the complex ResNet50 models, which require 
training on a larger number of parameters.

This study had several limitations that should be 
addressed. First, we only trained the FCN prediction model 
using the radiomics features of patients diagnosed at our 
institution. The accuracy and robustness of the model 
can vary across institutions owing to different patient 
populations, scan protocols, and image quality. Therefore, 
collaboration with multiple institutions is necessary to 
verify the effectiveness of the proposed method. Second, 
the GPU-calculated reference organ doses were only 
validated using the CTDIvol of the CT device at our 
institution. The CTDIvol is a standardized measure of the 
radiation dose output of a CT scanner; however, it does not 
reflect the reference organ doses of the patients. It is also 
possible that different types of CT devices have different 

radiation characteristics and dose distributions. Therefore, 
it is necessary to train the FCN model for multiple CT 
device types and compare the GPU-calculated organ doses 
with the reference organ doses measured by dosimeters. 
Third, we did not include other tissues or organs, such as 
the skin and spleen, in this study. The skin and spleen are 
also exposed to radiation during the CT scan, and they may 
have different radiomics features and organ doses compared 
to other ROIs. Therefore, it is necessary to develop a 
predictive model for these tissues and organs in the future. 

Conclusions

This study found a correlation between radiomics features 
and personalized organ doses using a well-trained FCN 
prediction model. The range of MAPE was from 1.68% to 
5.2% for head organs, 11.42% to 15.2% for chest organs, 
and 5.0% to 8.0% for abdominal organs; the maximal 
R2 values were 0.93, 0.86, and 0.89 for the head, chest, 
and abdominal organs, respectively. Good accuracy and 
robustness were achieved by the FCN in 1 second with a 
single CPU core for organ dose prediction. This suggests 
a new direction for predicting organ dose from CT 
examinations through building FCN models that combine 
radiomics features and GPU-calculated organ dose.
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