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Abstract

BACKGROUND: The Mnemonic Similarity Task (MST) is a popular memory task

designed to assess hippocampal integrity. We assessed whether analyzing MST per-

formance using a multinomial processing tree (MPT) cognitive model could detect

individuals with elevated Alzheimer’s disease (AD) biomarker status prior to cognitive

decline.

METHOD:We analyzed MST data from >200 individuals (young, cognitively healthy

older adults and individuals with mild cognitive impairment [MCI]), a subset of which

also had existing cerebrospinal fluid (CSF) amyloid beta (Aβ) and phosphorylated tau

(pTau) data using both traditional and model-derived approaches. We assessed how

well each couldpredict agegroup,memoryability,MCI status,Aβ, andpTau statususing
receiver operating characteristic analyses.

RESULTS: Both approaches predicted age group membership equally, but MPT-

derivedmetrics exceeded traditional metrics in all other comparisons.

DISCUSSION: A MPT model of the MST can detect individuals with AD prior to cog-

nitive decline, making it a potentially useful tool for screening and monitoring older

adults during the asymptomatic phase of AD.
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Highlights

∙ TheMST, along with cognitive modeling, identifies individuals with memory deficits

and cognitive impairment.

∙ Cognitive modeling of the MST identifies individuals with increased AD biomarkers

prior to changes in cognitive function.

∙ TheMST is a digital biomarker that identifies individuals at high risk of AD.
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1 BACKGROUND

Alzheimer’s disease (AD) is marked by a gradual decline in memory

and cognitive abilities that are often observed only after amyloid beta

(Aβ) and phosphorylated tau (pTau) are already present.1–4 Elevated

levels of Aβ and pTau increase the risk of cognitive decline,5,6 making

this preclinical stage of AD a critical window for early detection and

intervention.7 During this phase, therapies for AD, including, but not

limited to, those targeting Aβ and pTau, could be most effective, prior

to irreversible neuronal loss.8

Measuring Aβ and pTau is possible using positron emission tomog-

raphy (PET) and cerebrospinal fluid (CSF), but both invasive and costly,

limiting their general application in clinical settings.9,10 Recent devel-

opments in blood testing for Aβ and pTau levels show promise in

overcoming thesebarriers,11,12 enabling themtobecomeuseful clinical

tools. The early detection of cognitive impairment via digital biomark-

ers is also showing promise.13–16 These non-invasive assessments,

which can often be remotely self-administered, could complement

blood tests in identifying individuals at future risk of decline, as they

may detect different aspects of AD progression. Supporting this, work

has found that combining blood biomarkers with cognitive tests offers

a more accurate prediction of AD than using either method alone.17

However, traditional cognitive tests havebeen less effective in identify-

ing individuals at high risk of AD before cognitive symptoms appear.18

This underscores the need for refined cognitive tasks that can detect

subtle cognitive changes linked to AD pathology and aid in early

diagnosis when combinedwith biomarker analysis.

The Mnemonic Similarity Task (MST) is a promising tool as it is

designed to tax hippocampal function through its emphasis on pat-

tern separation, a process central to rapidly learning new, arbitrary

information.19–21 Performance on the pattern separation component

of the MST (the Lure Discrimination Index [LDI]) has been associated

with functional and structural changes within the hippocampus and

related structures while the recognition memory aspect (REC) of

the task has not.22,23 Given that the hippocampus (and entorhi-

nal cortex, which serves as a gateway to the hippocampus) is one

of the first affected by aging and AD,24–27 it is unsurprising that

performance declines with age and AD.28,29 Further, work has demon-

strated that the MST can predict early cognitive changes in AD, and

this task has been used in multiple clinical trials, including A4 and

HOPE4MCI.30–33

The MST’s traditional metrics are designed to be simple and robust

but obscure potentially useful aspects of memory performance. Cogni-

tivemodelingof an individual’smemorycangivea richerunderstanding

of mechanisms34 and how these are altered by aging or cognitive

impairments.35–37 Recently we developed a multinomial processing

tree (MPT) cognitive model to analyze performance on the MST using

Bayesianmethods that both fit individual participant performance and

identified individual differences inmemory and response strategies.38

Here, we applied this approach to determine whether it aided

the MST’s ability to discriminate various groups of individuals based

on age, cognitive status, and Aβ/pTau status. We found that the

MPT model was clearly superior to traditional metrics, particularly

RESEARCH INCONTEXT

1. Systematic review: Using traditional sources, such

as PubMed, the authors identified studies linking the

Mnemonic Similarity Task (MST) to Alzheimer’s disease

(AD) risks. Most studies have shown that the MST can

identify individuals with cognitive impairment, yet the

MST’s ability to identify older adults with increased AD

biomarker status remains underexplored.

2. Interpretation: If digital biomarkers can be developed

and validated to reflect AD pathology, they might offer

a non-invasive, cost-effective way to predict Alzheimer’s

risk or monitor disease or treatment progression. We

show how a cognitive-modeling-based analysis method

not only classifies older adults with changes in memory

and cognitive functionbut also identifies older adultswith

increased cerebrospinal fluid Aβ and pTau181 prior to

clinical changes in cognitive ability.

3. Future directions: We encourage future studies to

employ cognitive modeling of the MST as a digital

biomarker to identify individuals at high risk for future

cognitive decline.

with regard to Aβ/pTau status, highlighting the MST’s potential as an

effective digital biomarker for early AD detection andmonitoring.

2 METHODS

Data from this study came from two previously published works. Anal-

yses 1 to 3 used participants from Stark et al. (2013), while analysis 4

used data from Trelle et al. (2021). Both used the same format as the

MST, and bothworks attempted to identify cognitively “healthy” adults

as part of their screening and assessment procedures.

2.1 Analysis 1: Predicting age group from
cognitive modeling of MST

For predicting age group, people who were less than 40 years old

(n = 27, age = 27.41 ± 5.7, 16 females) were classified as young, and

those over 60 (n = 46, age = 71.33 ± 6.4, 28 females) were considered

aged. All individuals were initially screened to be cognitively healthy

without impairment using a battery of cognitive tasks. These include

the Mini-Mental State Exam (MMSE),39 Wechsler Memory Scale Logi-

cal Memory,40 Rey Auditory Verbal Learning Test,41 Verbal Fluency,42

Digit Span,43 Trails A and B,44 and Letter Number Sequencing,43

and the Wechsler Adult Intelligence Scale III.43 All individuals scored

within 1.5 standard deviations of the mean of their age group for all

neuropsychological measures.
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2.2 Analysis 2: Predicting memory deficits in
older adults using cognitive modeling of the MST

Significant work has used the Rey Auditory Verbal Learning Test

(RAVLT) to differentiate older adults into separate groups based on

cognitive function.45,46 The RAVLT consists of learning a list of 15

words and recalling them after a delay of 15 min, and the delay score

ranges from0 to15and reflects thenumber ofwords correctly recalled

after the delay. In the original report, older adults were split into thirds

based on their RAVLT performance to parallel work in rodents that

examined aged unimpaired (AU) and aged impaired (AI) groups.29 It is

important to note that AI individuals (RAVLT of 5 to 8) are still within

their age-based norms and are not clinically impaired. AU individuals

(RAVLT of 12 to 15) have a performance similar to young adults (this

threshold is often used as part of the “SuperAger” criteria). However,

here we used a threshold of 9 on the RAVLT to split older adults into

either individuals with age-related memory deficits (AMD) or no age-

related memory deficits (NMD) since performance above 9 is above

age-matched norms.47 Similar to prior work, individuals who scored

higher than 9 were considered NMD (n = 31, age = 71.29 ± 6.79, 18

females), and those who scored 9 or below, but within normal limits of

their age group, were considered AMD (n = 15, age = 71.40 ± 5.8, 10

females).46-49

2.3 Analysis 3: Predicting cognitive status in
cognitively older adults

To predict whether older adults were cognitively normal (CN) or had

mild cognitive impairment (MCI) using the MST, the same 46 adults

over the age of 60 from the previous two analyses were used for

older adults who are cognitively intact (n = 46, age = 71.33 ± 6.4,

28 females). A further 10 individuals (age = 76.30 ± 6.78, 5 females)

who were diagnosed with amnestic MCI were also included. Individ-

uals with MCI were diagnosed by the University of California, Irvine

(UCI) Alzheimer’s Disease Research Center (ADRC). All individuals

with MCI had a global Clinical Dementia Rating (CDR) of 0.5, a mem-

ory complaint, and impaired memory function on neuropsychological

testing. A final diagnosis of amnestic MCI was reached by neurolo-

gists and neuropsychologists at clinical consensus conferences within

the UCI ADRC. No participants had a history of neurological or psychi-

atric disorders, head trauma with loss of consciousness, drug abuse, or

dependency.

2.4 Analysis 4: Predicting biomarkers of AD in
CN older adults

To predict AD biomarker status, we used previously published data,50

collected as part of the Stanford Aging and Memory Study (SAMS).

One hundred thirty-three older adults (age = 68.8 ± 5.8, 83 females)

wereadministered theMSTandunderwent a lumbarpuncture toquan-

tify AD biomarkers. All individuals had normal or corrected-to-normal

vision/hearing, were right-handed, were native English speakers, and

had no history of neurologic or psychiatric disease. Further, each par-

ticipant had a global CDR score of zero and performance within the

normal rangeona standardizedneuropsychological test battery. Lastly,

all participants were deemed CN during a clinical consensus meet-

ing consisting of neurologists and neuropsychologists. The previously

derived Aβ and pTau181 statuses were used in the present analyses

(see Trelle et al.50 for details). Briefly, individuals with an Aβ42/Aβ40
ratio less than 0.0752 (n = 34, age = 70.33 ± 6.04, 21 females)

were considered A+, and those with an Aβ42/Aβ40 ratio less than

0.0752 (n = 99, age = 68.13 ± 5.60, 63 females) were A−. Individu-
als with pTau181 greater than 42 pg/mL were considered T+ (n = 31,

age = 71.86 ± 6.14, 21 females) with the remaining considered T−
(n= 102, age= 67.73± 5.32, 63 females).

The MST is a widely used cognitive task, that is, thought to criti-

cally tax hippocampal pattern separation (Figure 1A).23,29 Both data

sources used the traditional version of the MST, which consists of an

incidental encoding phase and an explicit test phase. During the encod-

ing phase, individuals made successive indoor/outdoor judgments for

128 images (2 s each, 0.5 ISI, color objects on a white background)

via a button press. Immediately following the encoding phase, partic-

ipants were given instructions for a recognition memory test, where

they were told to identify objects as either “old” (the same picture as

before), “similar” (indicating this is similar but not identical to the stud-

ied item, eg, a different exemplar, a rotation), or “new” via a button

press. Here, participants saw 192 images (2 s each, 0.5 inter-stimulus-

interval (ISI)) and responded to each of these images. Images consisted

of 64 exact repeats from the encoding phase (targets), 64 completely

novel images (foils), and 64 images that were similar but not identical

to images seen during encoding (lures).

Multiple behavioral metrics were extracted from theMST (Table 1),

including the traditional REC and LDI scores. REC is a commonly used

measure of recognition memory test and is the probability of “old”

responses given to the target itemsminus the corresponding probabil-

ity of “old” responses given to the foils (to correct for response bias).

To quantify the ability to discriminate between similar lures, the LDI

is the difference between the probability of giving a “similar” response

to lure items and the probability of giving a “similar” response to the

foils to account for any bias individuals may have in using the “similar”

response overall. For a follow-up analysis, we also quantified the rate of

“old” responses for target trials (hits), the rate of “similar” responses for

lure trials (correct rejections of lures), and the rate of “new” responses

for foil trials (correct rejections of foils). Further, we attempted to

obtain a readout of guessing by calculating the rate of “old” responses

on foil trials, the rate of “similar” responses on foil trials, and the rate of

“new” responses on target trials.

2.5 Cognitive modeling

Cognitive modeling provides a useful tool for inferring latent psycho-

logical variables beyond traditionalmeasurements. Previously,weused

cognitive modeling to model subject-level performance on the MST
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F IGURE 1 Cognitive modeling ofMST. (A) Sample stimuli used during incidental encoding phase and subsequent old/similar/new recognition
task. (B) Probability tree diagrams ofMPTmodel, demonstrating decision-making process utilized within old/similar/new version ofMST.
Responses old (O), similar (S), and new (N) aremodeled to be due to a decision tree. For example, on a repeat trial, themodel assumes there is some
probability, 𝜌, that at least a gist-level successful retrieval is made. If that occurs, themodeled participant will respond “old.” If that fails, the
modeled participant will respond “old,” “similar,” or “new” based on the guessing/bias parameters 𝛾. MST,Mnemonic Similarity Task.

in young adults38 using the MPT framework, a common approach for

cognitive modeling of REC tasks. The MPT framework assumes that

cognitive processes can be divided into discrete categories or decision

points (Figure 1B). Briefly, when a repeated item appears, we assume

there is a probability (ρ) that the item is successfully matched with

memory in at least a basic gist or “familiarity” form, leading to an “old”

response. Failing that, we assume that a guess is made with unique

probabilities (response biases) for each of the three responses. Simi-

larly, when an unrelated foil is present, there is a probability (ψ) that
the lack of a match to memory is sufficiently clear that a “no” response

is made; failing that, a three-choice guess is made.

When a similar lure is presented, there is an initial decision point

involving recognizing some degree of match between the object pre-

sented and the memory of one previously encountered, based on

the same ρ as above. This level of match is modeled to reflect a

simpler item-, gist-, or familiarity-based match (for both lures and

repeated items). If this is unsuccessful, a three-choice guess happens,

as before. If successful, there is a second decision point based on a

set of similarity-based probabilities (δ) capturing whether the memory

retrieval contains the richer details required to reject the item as only

being similar to the studied item. If successful, a “similar” response is

made; if it is unsuccessful, an “old” response is made.

Posterior distributions for metrics within MPT models were esti-

mated at the subject level from trial-by-trial (condition (repeat, lure,

foil), response (old, similar, new), and lure bin (one to five)) experimen-

tal data using Just Another Gibbs Sampler (JAGS), which is a program

designed for Bayesian hierarchical models.51 Models were run with

eight separate Markov chain Monte Carlo chains with 1000 samples

per chain after removing 1000 burn-in samples. We used posterior

means as point estimates for multiple metrics of interest (Table 1).

Thesemetrics include ρ, which reflects the probability of remembering

items, λ, based on δ and designed to capture the ability to discriminate

remembered items from lures, ψ, the probability of remembering that

an item was not studied, γO (probability of guessing “old”), γN (prob-

ability of guessing “new”), and γS (probability of guessing “similar”).

Supplemental information and code to run the model are provided at

https://github.com/mdlee/mpt4mst.

2.6 Statistical analyses

All analyses were done in Python. Logistic regressions were run using

statsmodels52 to predict age group, clinical status, and biomarker sta-

tus, for example, from various sets of metrics. Areas under the curve

(AUC) measures were derived from receiver operating characteristic

(ROC) curves of the logistic regressions. To compare model fits, we

calculated the Bayesian information criterion (BIC) of each model.53

Absolute differences in BICs of greater than 2 were considered reli-

able. Considering metrics in isolation and in combination with other

metrics from the same approach does allow for direct comparisons

https://github.com/mdlee/mpt4mst
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TABLE 1 Descriptions of both traditional andmodel-basedmetrics on theMST.

Metric Type Definition

REC Traditional Recognitionmemory score

LDI Traditional Reflects ability to discriminate between similar lures

p(Old|Repeat) Traditional Probability of responding “old” for repeats

p(Sim|Lure) Traditional Probability of responding “similar” to lures

p(New|Foil) Traditional Probability of responding “new” for foils

p(Old|Foil) Traditional Probability of responding “old” for foils

p(Sim|Foil) Traditional Probability of responding “similar” for foils

p(New|Repeat) Traditional Probability of responding “new” for repeats

𝜌 Modeled Probability of remembering items at a gist level

λ Modeled Ability to discriminate remembered items from lures

𝜓 Modeled Probability of remembering that an itemwas not studied

𝛾
O Modeled Probability of guessing “old”/bias to respond “old”

𝛾
S Modeled Probability of guessing “similar”/bias to respond “similar”

𝛾
N Modeled Probability of guessing “new”/bias to respond “new”

Abbreviations: LDI, lure discrimination index; REC, recognitionmemory.

across the techniques. However, the metrics are not independent of

each other, and the two approaches differ in the number of vari-

ables considered. Therefore, to identify how each variable acts in

conjunction with the others, we performed an 8-choose-4 combinato-

rial analysis and quantified the number of times each metric appeared

in the top third of AUCs from 8-choose-4 analyses. Independent sam-

ple t tests were used to examine group differences in traditional

and model-based metrics.54 To investigate group changes in guessing

strategies, Kolmogorov–Smirnov tests were used because data were

proportioned and therefore not normally distributed. For all analyses,

p< 0.05was considered reliable.

3 RESULTS

To investigate if the Bayesian MPT cognitive model could adequately

fit the observed data, we conducted posterior predictive checks, which

are the standard Bayesian approach to testing the ability of the model

to redescribe the data on which parameter inferences are based, using

the approach developed in Lee and Stark (2023). These checks demon-

strated that the model was able to accurately redescribe the empirical

data.We plotted these posterior predictive checks for each participant

from Stark et al., 2013 (Figure S1A) and Trelle et al., 2021 (Figure S1B).

Also, the measures from the MPT model were precise with the width

of the confidence intervals for all the measures below 0.5. Previously,

we demonstrated that the traditional REC correlated with ρ, while LDI
correlatedwith λ (previously denotedby τ).37 This is becauseRECand ρ
are bothmeasures thought to reflect RECon a task, while LDI and λ are
thought to be related tomnemonic discrimination.Our first goalwas to

assess the relationship between the traditional andmodeledmetrics in

the two datasets.29,50 As in the prior work, we found strong correla-

tions between these variables in both datasets (Stark et al., 2013; REC

vs ρ: r = 0.73, LDI vs λ: r = −0.90, Trelle et al., 2021; REC vs ρ: r = 0.77,

LDI vs λ: r = −0.90). A full correlation matrix for both Stark et al.

(Figure S2A) and Trelle et al. (Figure S2B) revealed similar correlations

between datasets. These results demonstrate that the model-based

metrics derived here are similar to prior findings. With this, we per-

formed four key analyses, using two datasets, to assess if traditional or

model-basedmetricswere superior at identifying individuals at risk for

AD.

3.1 Analysis 1: Traditional metrics and
model-based metrics of MST equally predict age
group status

Given that extensive work has demonstrated that older adults are

impaired on the MST, we assessed whether cognitive modeling could

enhance the ability to differentiate between younger and older

adults.23,29 Considered individually, there was no reliable difference

in REC between age groups, while LDI was significantly lower in older

adults (Figure S3A, REC: t(71) = 1.19, p = 0.28, Figure S3B, LDI:

t(71) = 5.71, p < 0.0001). When examining modeled metrics individu-

ally, ρ showed no reliable age differences, while ψ and λ were lower in
older compared to younger adults (Figure S3C, ρ: t(71)= 0.22, p= 0.83,

Figure S3D, ψ: t(71) = 2.62, p < 0.05, Figure S3E, λ: t(71) = −5.69,
p< 0.0001). Amultiple logistic regression using the traditional LDI and

REC as predictors achieved an AUC of 0.86 (Figure 2A, p < 0.0001).

Model-based metrics, with ρ, ψ, τ, and guessing strategies (γO, γN,
and γS) as predictors, yielded a similar AUC of 0.84 (Figure 2A, top,

p < 0.0001), suggesting that model-based metrics did not outperform

traditional metrics in predicting age group.

To appreciate better the impact each variable might have in con-

junction with the others, we performed an 8-choose-4 combinatorial
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F IGURE 2 Comparison of traditional (blue) toMPTmodel (red) performance in questions 1 to 3. ROC curves (top) demonstrating predictive
value of traditional andmodel-basedmeasures and frequency of presence in top 30 AUCs in 8-choose-4 combinatorial analyses (bottom) are
shown. (A) Comparison of age group predictions showing no significant difference between traditional measures andMPTmodel-basedmeasures.
LDI emerges as themost frequent metric in the top third of AUCs. (B)Metrics derived fromMPTmodel better predict the performance of high-
versus low-performing older adults. The gist-based recognitionmemory signal metric (ρ) is the predominant metric in the 8-choose-4 analysis for
predictive accuracy. (C)MPTmodel-basedmetrics were superior at identifying healthy versusMCI.Within the 8-choose-4 analysis, γO is the
leadingmetric forMCI prediction. AUC, area under a curve; LDI, lure discrimination index;MCI, mild cognitive impairment; MPT, multinomial
processing tree;MST,Mnemonic Similarity Task.

analysis and identified how often each factor occurred in the top third

of the resultingAUCs. This revealed that the LDIwas themost common

metric in distinguishing younger and older adults, appearing in virtually

all the top-performing models and almost twice as often as the most

frequent MPT model-based metric (Figure 2A, bottom). Thus, when

considering the simpler task of predicting age group membership, we

found no evidence that the MPT model was superior to the traditional

approach.

3.2 Analysis 2: Model-based metrics better
identify memory ability of older adults

Aging is often associated with substantial heterogeneity, with a subset

of older adults performing at higher levels onneuropsychologicalmem-

ory assessments compared to their peers. Therefore, we next asked

if performance on the MST along with cognitive modeling could aid

in dissociating across levels of cognitive function in healthy adults by

discriminating NMD versus AMD. Considering each variable individ-

ually, REC and LDI levels were similar in NMD and AMD (Figure S3F,

REC: t(44) = 0.22, p = 0.22, Figure S3G, LDI: t(44) = 1.72, p = 0.09).

When measuring model-based metrics, ρ was significantly higher in

NMDcompared toAMD individualswith no difference inψ or λ (Figure
S3H, ρ: t(44) = 3.10, p < 0.01; Figure S3I, ψ: t(44) = 1.248, p = 0.22;

Figure S3J, λ: t(44) = −0.31, p = 0.76). When LDI and REC were com-

bined, a multiple logistic regression did not successfully distinguish

NMD versus AMD (AUC = 0.65, p = 0.13, Figure 2B). However, mul-

tiple logistic regression with model-based metrics was able to stratify

NMD from AMD with an AUC of 0.80 (p < 0.05). When assessing

combinations of traditional and model-based metrics in an 8-choose-

4 combinatorial analysis, ρ emerged as the most consistent metric in

the top-performingmodels,with LDI appearing as adistant fourthmost

consistent (Figure 2B, bottom). This suggests that theMPTmodel pro-

vides a more accurate identification of memory ability in older adults

than traditional metrics but that this is driven heavily by the model’s

estimate of howwell individuals remember at least the gist of an item.
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3.3 Analysis 3: Model-based metrics better
predict MCI status

We next investigated whether cognitive modeling of the MST could

better identify individuals with MCI compared to traditional met-

rics. We found that individuals with MCI had significantly lower REC

performance compared to CN older adults, but there were no differ-

ences between groups in LDI scores (Figure S3K, REC: t(52) = 4.73,

p<0.0001; Figure S3L, LDI: t(52)=0.77, p=0.44).Wealso found that ρ
decreased in individuals with MCI, but no difference in groups for ψ or

λ (Figure S3 M, ρ: t(52) = 5.51, p < 0.0001; Figure S3N, ψ: t(52) = 0.99,

p= 0.33; Figure S3O, λ: t(52)=−0.16, p= 0.87). In the multiple logistic

regression, we found that the combination of REC and LDI could clas-

sifyMCI status with good accuracy (AUC= 0.81, p< 0.001, Figure 2C).

However, cognitive-model-based metrics offered superior predictive

power, achieving an AUC of 0.94 (p < 0.0001). Permutation analysis

found that γO was the most influential metric, appearing in all the top

third of models (Figure 2C, bottom). This suggests that theMPTmodel

is superior at detecting MCI over traditional metrics largely due to the

ability to derive differences in guessing strategy on the task.

3.4 Analysis 4: Model-based metrics can better
predict Aβ and Tau status in CN older adults

Wenext evaluatedwhether theMPTmodel of theMSTcould detectAβ
status in cognitively healthy older adults, classified as Aβ+ or Aβ− via

CSF Aβ42/Aβ40 ratios. Aβ+ individuals had decreased REC scores but

equivalent LDI performance compared to Aβ− counterparts (Figure

S4A, REC: t(131) = 2.68, p < 0.01, Figure S4B, LDI: t(131) = 0.33,

p = 0.74). Further, ρ was lower in Aβ+ compared to Aβ− older adults

with no group differences in ψ and λ (Figure S4C, ρ: t(131) = 2.54,

p < 0.05, Figure S4D, ψ: t(131) = 1.11, p = 0.27, Figure S4E, λ:
t(131) = −0.53, p = 0.60). Multiple logistic regression with traditional

metrics could modestly predict amyloid status (AUC = 0.64, p < 0.05,

Figure 3A). On the other hand, multiple logistic regression withmodel-

based metrics better predicted amyloid status (AUC = 0.73, p < 0.05).

When conducting an 8-choose-4 combinatorial analysis to investigate

the impact each variable might have in relation to the others, γO was

the most predictive metric among the top third of AUCs. Interestingly,

γO was represented in nearly all the top models and twice as often as

both traditional metrics (Figure 3A, bottom). The model thus better

identifies asymptomatic individuals with elevated amyloid burden due

to its ability to derive differences in guessing “old.”

While both Aβ and pTau are biomarkers for AD, pTau has a stronger

link to cognitive decline and may better predict disease progression.

Somewhat surprisingly, CN older adults with elevated pTau levels did

not differ on either traditional or model-based metrics (REC, LDI, ρ,
ψ and λ) compared to those with normal pTau levels (Figure S4F–J,

all ps > .10). Likewise, a multiple logistic regression with REC and

LDI failed to predict pTau status (AUC = 0.50, p = 0.91, Figure 3B).

Importantly, the logistic regression with the model-based metrics

did predict pTau status (AUC = 0.71, p < 0.05). When conducting an

8-choose-4 combinatorial analysis, the single clearly most reliable

metric was γO, appearing more than twice as much as the next most

important metric (ψ) (Figure 3B, bottom). Further, every metric from

the MPT model was more represented than REC and LDI in the top

third of models. Overall, the cognitive model outperformed traditional

metrics in predictive accuracy, suggesting its effectiveness in early AD

screening.

3.5 Changes in model-derived guessing strategies
with age, cognitive impairment, and biomarker status

Given thatmodeling guessingprobabilitieswas informative for predict-

ing AD biomarker status and cognitive status, we took a deeper dive

into guessing strategies. We first explored how model-based guessing

strategies changed across age groups. Cognitive modeling suggested

that younger adults tended to guess “similar” more frequently and

“new” less frequently than older adults (Figure 4A, Kolmogorov–

Smirnov test; γS: D = 0.37, p < 0.05; γN: D = 0.38, p < 0.05), without

any significant age-related differences for guessing “old” (γO: D = 0.25,

p = 0.20). This pattern suggests an age-related shift from guessing

“similar” to “new.” Interestingly, however, no significant differences

in guessing strategies were found between healthy older adults with

and without memory deficits (Figure 4B, Kolmogorov–Smirnov test:

all p > 0.10). In contrast, older adults with MCI were more inclined to

guess “old” and less likely to guess “similar” or “new” compared to cog-

nitively healthy older adults (Figure 4C, Kolmogorov–Smirnov test; γO:
D= 0.6318, p< 0.01; γN:D= 0.4910, p< 0.05; γS:D= 0.5318, p< 0.05).

These results underscore that aging andMCI distinctly affect guessing

strategies.

We next investigated how guessing strategies on the MST var-

ied with AD biomarker status in older adults. Cognitive modeling

suggested that those with elevated amyloid displayed a tendency to

guess “old” more frequently than their counterparts without elevated

amyloid, but this failed to reach significance. Further, there were no

significant differences in biases toward guessing “similar” or “new”

(Figure 4D, Kolmogorov–Smirnov test; γO: D = 0.24, p = 0.08, γS:
D=0.21, p=0.18, γN:D=0.13, p=0.75).Wenext investigatedwhether

guessing strategies changed as a function of pTau status. We observed

that individuals with elevated pTau levels were more likely to guess

“old” and less likely to guess “similar,” with no change in the likelihood

of guessing “new” (Figure 4E, Kolmogorov–Smirnov test; γO: D = 0.32,

p < 0.05; γS: D = 0.34, p < 0.05, γN: D = 0.19, p = 0.34). These differ-

ences in predicted guessing strategies further highlight the benefits of

theMPT cognitivemodel of theMST.

3.6 Addition of raw metrics of guessing does not
match model-based metrics

Given the differences in guessing across performance ability, impair-

ment level, amyloid, and pTau status in older adults, we next asked

whether we could derive guessing strategies based on response
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F IGURE 3 Utilization of theMPTmodel of theMST for predicting AD biomarker status. (A) Both traditional andMPTmodel-derivedmetrics
can predict Aβ status, with theMPTmodel-basedmetrics showing superior predictive accuracy. Themetric γO is identified as themost frequently
occurringmetric in the top results from n-choose-four analyses for predicting Aβ status. (B) TheMPTmodel-basedmeasures, but not traditional
measures, can successfully predict pTau status. Themetric γO is again highlighted as themost commonmetric in the top 30 AUCs from an
n-choose-four analysis for predicting pTau status. For panels A and B, Traditional measures are in blue, while theMPTmodel-basedmetrics are in
red. Aβ, amyloid beta; MPT, multinomial processing tree;MST;Mnemonic Similarity Task; pTau, phosphorylated tau.

patterns. Specifically, we used the proportion of trials an individual

responded “old” on foils as ameasure of guessing old, the proportion of

trials an individual responded “similar” on foils as a measure of guess-

ing similar, and the proportion of trials an individual responded “new”

on repeats as a measure of guessing new. REC and LDI incorporate

these metrics in their calculations as part of their difference scores,

intended to factor out differences in guessing rates. Any baseline

shift in the probability of guessing “old” or “similar” would presumably

affect both components of the difference metrics, removing what the

model-based analyses suggest could be highly informative. Therefore,

we also added the raw proportion of trials people responded “new”

for foil trials, the proportion of trials an individual responded “old” on

repeats, and the proportion of trials an individual responded “similar”

on lure trials. Using these six new metrics, we asked whether these

metrics could increase the predictive value of the MST to the same

level as that provided by theMPTmodel.

We first asked whether these new behavioral metrics could pre-

dict whether CN older adults exhibited memory deficits. In multiple

logistic regression, we found that while the raw AUC appeared ele-

vated, this model could still not reliably predict performance level

(AUC = 0.78, p = 0.21, Figure 5A). We also investigated whether these

differing models better fit the data by examining their respective BIC,

which is a metric that reflects the goodness of fit of a model.55 Using

this measure, we found that the MPT model-based metrics better fit

the data compared to the probability-based traditional metrics (MPT

model BIC: 76.49, raw traditional BIC: 81.86), suggesting that, despite

the addition of the raw traditional metrics, cognitive modeling bet-

ter predicts memory ability. Next, when assessing whether these new

probability-basedmetrics helpedwith the prediction ofMCI status, we

found that amultiple logistic regressionwith these raw traditionalmet-

rics significantly bolstered the predictive accuracy of theMST, yielding

anAUCof 0.95 (p<0.0001, Figure 5B), which alignswith the predictive
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F IGURE 4 Influence of age, memory ability, cognitive status, and AD biomarker status onmodeled guessing strategies inMST. (A) Compared
to younger adults, older adults exhibit a higher likelihood of guessing “new” and a lower tendency to guess “similar.” (B) Among older adults, those
with no age-relatedmemory deficits show no significant differences in guessing strategies when compared to individuals with age-relatedmemory
deficits. (C) Individuals withMCI demonstrate a greater bias toward guessing “old” and are less inclined to guess “similar” or “new” relative to
cognitively healthy older adults. (D) There are no differences in guessing strategies between Aβ− and Aβ+ older adults. (E) Older adults with
elevated pTau levels display amarked shift from guessing similar toward guessing old compared to pTau-negative older adults. For panels A–E, the
metric for guessing “old” (γO) is represented in yellow, for guessing “similar” (γS) in pink, and for guessing “new” (γN) in blue. Aβ, amyloid beta; AD,
Alzheimer’s disease;MCI, mild cognitive impairment; MST,Mnemonic Similarity Task; pTau, phosphorylated tau.

F IGURE 5 Additional raw-derivedmeasuresmay improve upon traditional metrics but do notmatch theMPTmodel-basedmetrics. (A) Adding
rawmetrics of guessing fails to predict memory ability, in contrast to cognitivemodelingmeasures. (B) In cases of overt cognitive impairment, such
asMCI, raw-derived guessingmeasures show predictive value comparable to that of theMPTmodel. (C) Additional rawmetrics fail to match the
MPTmodel in predicting Aβ status. (D)While the additional rawmeasures improve the predictive ability of traditional approaches for pTau status,
their performance does not exceed chance levels. For panels A–D, traditional measures are depicted in purple, and theMPTmodel-basedmetrics
are illustrated in red. Aβ, amyloid beta; MCI, mild cognitive impairment; MPT, multinomial processing tree; pTau, phosphorylated tau.

strength of cognitive modeling and actually provided a better fit of the

data thanmodel-basedmetrics (MPTmodel BIC: 49.77, raw traditional

BIC: 45.12).

We next evaluated whether raw traditional metrics could match

cognitive modeling in predicting amyloid status. A multiple logistic

regression with these metrics did not match the predictive capacity

of model-based metrics (AUC = 0.68, p = 0.22, Figure 5C). Moreover,

when comparing model fits using the BICs, model-based metrics bet-

ter fit the data (MPT model BIC: 167.18, raw traditional BIC: 177.12).

We next asked if the new probability-basedmetrics could predict pTau

status. These new metrics did show a qualitative improvement in pre-

dicting pTau status, but this was not statistically reliable (AUC = 0.70,

p = 0.08, Figure 5D) Further, model-based metrics better fit the data

compared to probability-based metrics (MPT model BIC: 161.95, raw

traditional BIC: 167.52), reinforcing the superiority of the MPT model

in predicting amyloid and pTau status.

4 DISCUSSION

The MST is a widely used memory test that assesses changes in

hippocampal integrity in various conditions including age-related cog-

nitive decline and AD.23 Given that this task is resistant to practice

effects and can be easily performed remotely, it has emerged as an

ideal candidate for clinical use as a digital biomarker for AD pathology,

but direct tests of its validity are needed.We previously demonstrated

that a MPT model could be applied to the MST, but we did not know

whether this model would aid the predictive value of the MST. In this
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study, we compared the predictive value of traditional metrics versus

model-based metrics for predicting age group, MCI, and AD biomark-

ers. We found that the MPT model enhanced the ability of the MST to

identify older adults at risk of developing AD prior to cognitive decline,

demonstrating that theMSTwaswell suited to enhance early diagnosis

of AD.

4.1 Cognitive modeling of MST identifies differing
cognitive capacities in older adults

A large body of work has demonstrated that advancing age is asso-

ciated with significant impairment on the LDI metric of the MST,

while REC remains stable with age.29,56,57 Similarly, we found that

traditional behavioral metrics of the MST predicted age group with

high proficiency (AUC = 0.85), and the MPT model did not increase

the high predictive value of the MST. In permutation analyses, the

LDI was most prominent, further supporting the hypothesis that age-

related impairments are due in part to deficits in hippocampal pattern

separation.

While age-related impairments are seen on many cognitive tests,

there is typically significant heterogeneity within the aging population,

with a subset of healthy older adults exhibiting AMD and others show-

ing young-like performance (eg, “SuperAgers” or “aged unimpaired”).

Our analyses showed that traditional measures of MST performance

did not readily distinguish these two but that the cognitive model-

ing approach could. This suggests that the MPT model may be more

sensitive to differingmemory abilities in older adults.

MCI, often considered a precursor to or risk factor for AD, is

frequently missed, with perhaps only∼8% of those affected accurately

identified.58 We demonstrated that, like previous work, performance

on the MST predicted MCI with an AUC of 0.81.31,32 However,

cognitive modeling significantly improved the predictive accuracy,

reaching an AUC of 0.94. We note that multiple mechanisms can

cause MCI. While the diagnoses of MCI followed the criterion for

MCI due to AD,59 other mechanisms could have caused the cogni-

tive impairment in a subset of these individuals.60 Here, MCI was

diagnosed using a neuropsychological battery and a clinical consen-

sus. Being another memory test, it is perhaps unsurprising that the

MST predicted MCI. However, the MST was not part of the clinical

diagnosis. Therefore, its accuracy could aid primary care clinicians

who only have access to tests like the MMSE. We hypothesize that

including theMST in primary care could improve cognitive impairment

identification and reduceMCI underdiagnosis. This is, as yet, untested,

and it is not known whether the MST can differentiate subtypes

ofMCI.

4.2 Cognitive modeling of MST predicts AD
biomarker status in cognitively healthy older adults

Recent studies utilized comprehensive cognitive batteries to iden-

tify individuals at higher risk of AD,14,30,61 with longitudinal cognitive

testing used to identify healthy adults with elevated Aβ and pTau

levels.61–63 Several use a shortenedversionof theMST (akaBPSO)61,62

and longitudinal changes on this could better predict memory impair-

ment over 3 months compared to baseline neuropsychological scores.

Importantly, none of the other tasks within the cognitive battery could

exceed baseline neuropsychological scores.

Early detection of AD-related pathology is paramount, but cur-

rent clinical assessments are lagging pathologies, such as cerebral Aβ
deposition by up to 20 years, highlighting the need for more sensitive

tasks.1,4 A recent study demonstrated that combining multiple ver-

sions of the MST could modestly predict amyloid status in CN older

adults.32 Similarly, we found that MST performance modestly pre-

dicted Aβ status (AUC = 0.64), and the MPT model enhanced this

prediction to anAUCof 0.73. Our results affirm thatMST performance

relates to Aβ status and show that inferred cognitive mechanisms

improve its predictive value.

Amyloid accumulation, in the absence of pTau, does not correlate

with cognitive impairment,64 but pTau is associated with hippocampal

hyperactivity, neurodegeneration, and the transition to dementia.6,65

However, it is not known whether increased pTau levels can be pre-

dicted from performance on the MST. We found that, while the

traditional MST metrics could not predict elevated pTau levels, inte-

grating the MPT model improves prediction to an AUC of 0.71. This

suggests that theMPTmodel can distinguish individuals with elevated

pTau, highlighting its potential in identifying early markers of cognitive

impairment associated with AD pathology.

4.3 Changes in guessing strategies as a function
of cognitive impairment and biomarker status

When applying the MPT model to predict AD biomarkers and cogni-

tive status, one emerging theme was the role of guessing strategies.

Guessing strategies, or response biases, change in amnestic patients

and individuals with dementia, so it is worthwhile to investigate how

they change in people at risk of AD. Notably, individuals with increased

biomarker levels tended to shift their guessing bias from “similar” to

“old,” and this was more pronounced among those with MCI, sug-

gesting a continuum of change. This shift toward guessing “old” aligns

with other work demonstrating that MCI is associated with more lib-

eral response biases on REC tasks.66,67 One plausible explanation is

that individuals build up gist representations during a task and, unlike

younger adults, cannot rely on item-level detail memory. Thus, with-

out intact memory for details, individuals with MCI may overly rely on

gist and show amore liberal response bias.67,68 On theMST, this would

cause the observed bias toward responding “old.” One potential expla-

nation for this shift is reduced dentate gyrus-based pattern separation,

which causes a shift toward pattern completion, thereby increasing

false memories.69,70 Notably, these changes were more reliably seen

using the MPT model than with raw traditional metrics. These out-

comes underscore the superiority of cognitive modeling in recognizing

individuals at risk of AD, supporting its utility as a digital biomarker for

early detection of the disease.
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The MST’s three-choice nature precludes the use of cognitive

models like signal detection theory or dual process models, which

assume unidimensionality in latent memory strength. In these mod-

els, responses are treated as arising from memory strengths between

“new” and “old” (too strong to respond “new” but not enough for

“old”). People, however, can actively generate evidence for “similar”

responses (e.g., recognizing a different image of the same object).23

Despite this, work using these approaches on two-choice tasks has also

found a shift toward a bias toward responding old inMCI and AD,71–73

further suggesting that individuals at risk for AD exhibit changes in

response patterns. There is, to our knowledge, one other cognitive

model that has been developed for the three-choiceMST74 which uses

linear ballistic accumulators to avoid theunidimensionality assumption

of theMST.

Interestingly, different measures were important for predicting AD

biomarkers compared to age or memory ability. This supports the idea

that the mechanisms that contribute to pathological cognitive decline

(ie, dementia) are not the sameas themechanisms that explain variabil-

ity in memory ability in healthy older adults. The findings that LDI was

thebest predictor of agegroupandgist-based informationwas thebest

at separating NMD and AMD suggest that these measures are most

related tomemory ability in older adults, but not necessarily related to

AD. Conversely, the shift in structured guessing (ie, response bias) may

bemore directly linked to the pathological processes in AD.

4.4 Limitations and future directions

This study is not without limitations, and several future directions

could be taken to better assess the utility of cognitive modeling of

the MST. One critical aspect to consider is how well cognitive mod-

eling performs relative to other, standard neuropsychological scores.

In prior work using these same data,50 multiple neuropsychological

episodic memory assessments showed no ability to discriminate amy-

loid of pTau181 status. However, this was not a clinical setting, and this

direct comparison was not made.

Futurework is alsoneeded todeterminehowwellMSTperformance

measures could be used to create risk scores in the clinical setting. Ide-

ally, this, combined with other measures, such as plasma, could help

screen high-risk individuals and identify who may need more inva-

sive and costly measures. Future research should address this gap and

explore how theMST can be utilized in clinical settings.

5 CONCLUSION

Here, we askedwhether aMPT cognitivemodel of theMST could aid in

the identification of individuals at risk of AD.We demonstrated that, in

addition to predicting memory deficits andMCI, theMPTmodel of the

MST could predict both amyloid and pTau status with AUCs of greater

than0.7 in older adultswithout signs of cognitive decline. This suggests

that cognitivemodeling of theMST holds significant potential as a non-

invasive, efficient screening tool within the clinical setting.
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