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Abstract

BACKGROUND: Digital cognitive assessments, particularly those that can be done at

home, present as low-burden biomarkers for participants and patients alike, but their

effectiveness in the diagnosis of Alzheimer’s disease (AD) or predicting its trajectory

is still unclear. Here, we assessed what utility or added value these digital cognitive

assessments provide for identifying those at high risk of cognitive decline.

METHODS: We analyzed >500 Alzheimer’s Disease Neuroimaging Initiative partici-

pants who underwent a brief digital cognitive assessment and amyloid beta (Aβ)/tau
positron emission tomography scans, examining their ability to distinguish cognitive

status and predict cognitive decline.

RESULTS: Performance on the digital cognitive assessment was superior to both corti-

cal Aβ and entorhinal tau in detecting mild cognitive impairment and future cognitive

decline, with mnemonic discrimination deficits emerging as the most critical measure

for predicting decline and future tau accumulation.

DISCUSSION: Digital assessments are effective at identifying at-risk individuals,

supporting their utility as low-burden tools for early AD detection andmonitoring.
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Highlights

∙ Performance on digital cognitive assessments predicts progression tomild cognitive

impairment at a higher proficiency compared to amyloid beta and tau.

∙ Deficits in mnemonic discrimination are indicative of future cognitive decline.

∙ Impaired mnemonic discrimination predicts future entorhinal and inferior temporal

tau.
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1 INTRODUCTION

Alzheimer’s disease (AD) pathologies, such as amyloid beta (Aβ) and
tau tangles, develop up to 20 years before overt cognitive decline.1,2

Therefore, identifying individuals before cognitive decline is essential

for the treatment of this disease. While there has been substantial

progress in techniques for treating these pathologies prior to cogni-

tive decline, the development of sensitive cognitive tasks has lagged

behind. Many of the common tasks currently used to assess cognitive

function, such as the Mini-Mental State Examination (MMSE) or Clini-

cal Dementia Rating (CDR) score, are relatively unaffected until late in

disease progression,2,3 with impairments on these tasks lagging years

behind AD biomarkers.4–6 Therefore, it is now common to believe that

cognitive decline occurs well after the buildup of pathology. While this

may be the case for tests designed to measure overt cognitive impair-

ment, there is little reason to assume that this must necessarily be

the case and that pathological load could not be read out in subtle

changes in cognition. If digital biomarkers can be developed and vali-

dated to reflect someaspect ofADpathology, theyoffer a non-invasive,

low-burden way to predict AD risk or monitor disease or treatment

progression.

Recent work has demonstrated that digital cognitive batteries that

tax circuits related to AD can accurately distinguish between individ-

uals with cognitive impairment and cognitively healthy controls.7–9

Further, longitudinal performance on these batteries is related to AD

biomarkers prior to cognitive decline and is predictive of future decline

on standardized cognitive tasks.10,11 However, the tasks in these bat-

teries are not equivalent in predicting AD biomarker status and future

cognitive impairment. Tasks that tax circuits most vulnerable to AD

are the best predictors of future decline. Hippocampus-dependent

tasks, such as the Mnemonic Similarity Task (MST) or list-learning

paradigms, decline early in AD.10,12,13 Conversely, motor speed and

executive function decline later in disease progression.5,14 Further,

work has shown that within cognitive batteries, memory-based tasks

are able to better predict amyloid and tau status in cognitively nor-

mal (CN) older adults.10,15 For example, one study that administered

a series of cognitive tasks that included tasks of memory, attention,

and psychomotor function found the strongest relationships between

amyloid andmemory function compared to attention andpsychomotor

function.16

Substantial progress has been made in understanding the neu-

ral circuits that contribute to differing cognitive functions and which

circuits are particularly susceptible to AD pathologies.17–19 Specif-

ically, the hippocampus, a region critical for memory formation, is

affected (directly and indirectly) early in the disease progression.19,20

This vulnerability makes tasks that tax hippocampal integrity ideal

candidates for detecting early cognitive changes in AD. A primary

mechanism carried out in the hippocampus is pattern separation,

which is used to overcome competing interference between similar

representations.21–23 To this end, it is unsurprising that one of the ear-

liest cognitive changes in AD is the ability to differentiate between

similar events.24,25

RESEARCH INCONTEXT

1. Systematic review: Using traditional sources, such as

PubMed, the authors identified studies connecting digital

cognitive assessments to Alzheimer’s disease (AD) risk.

Prior studies demonstrated that performance on digital

cognitive assessments decreases in individuals with cog-

nitive impairment, yet the ability of these assessments

to identify older adults with increased risk of future

impairment remains underexplored.

2. Interpretation: If digital cognitive assessments can pre-

dict future cognitive decline and AD pathology, they can

serve as low-burden biomarkers with prognostic value.

We demonstrate that digital cognitive assessments iden-

tify individuals at risk of future cognitive decline as well

as, and often reliably better than, Aβ and tau deposi-

tion. We find that deficits in mnemonic discrimination is

particularly indicative of future decline.

3. Future directions: We encourage future researchers to

utilize digital cognitive assessments, which include tasks

that tax mnemonic discrimination, in their investigations

of early pathological changes in AD.

Mnemonic discrimination tasks have been developed to tax hip-

pocampal pattern separation, and they show promise in identifying

individuals at high risk of AD.26,27 Indeed, work has found that per-

formance on these tasks is impaired in individuals with mild cognitive

impairment (MCI) compared to CN older adults.28,29 Further, these

tasks can identify individuals with elevated Aβ and tau prior to cog-

nitive decline.15,30 However, it is not yet fully known if mnemonic

discrimination deficits are predictive of future AD pathology and

cognitive decline.

In this study, we investigated whether subtle cognitive changes

could outperform Aβ and tau at predicting future cognitive decline.

We used the Cogstate Brief Battery data from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) as a testbed to assess the validity of

digital biomarkers and demonstrated that performance on the cogni-

tive battery better predicted conversion to MCI compared to Aβ and
tau deposition. Further, we demonstrated that deficits in mnemonic

discrimination drive this, suggesting that mnemonic discrimination

deficits are an early marker of AD.

2 METHODS

The data used here come from the ADNI database (adni.loni.usc.edu).

The ADNI was launched in 2003 as a public–private partnership, led

by Principal Investigator Michael W. Weiner, MD. The primary goal

of ADNI has been to test whether serial magnetic resonance imaging
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TABLE 1 Demographics.

CN MCI AD

N 338 185 7

Age 71.59 (7.07) 72.45 (8.01) 70.71 (8.64)

Years of education 16.78 (2.24) 15.15 (2.52) 15.14 (3.24)

Percentage female (%) 60.01 40.00 28.57

Race

White 282 (83.43%) 164 (88.65%) 5 (71.43%)

Asian 12 (3.55%) 3 (1.62%)

African American 33 (9.76%) 14 (7.57%) 2 (28.57%)

More than one 7 (2.07%) 2 (1.08%) n/a

Other 4 (1.18%) 2 (1.08%) n/a

Ethnicity

Hispanic or Latino 20 (5.92%) 12 (6.49%) n/a

Not Hispanic or Latino 316 (93.49%) 172 (92.97%) 7 (100%)

Unknown 2 (0.59%) n/a n/a

Abbreviations: AD, Alzheimer’s disease; CN, cognitively normal; MCI, mild

cognitive impairment

(MRI), positron emission tomography (PET), other biological mark-

ers, and clinical and neuropsychological assessment can be combined

to measure the progression of MCI and early AD. For up-to-date

information, see www.adni-info.org.

2.1 Participants

Five hundred and thirty older adults who took the Cogstate Brief Bat-

tery (CBB) and underwent Aβ and tau PET imaging were included in

ADNI3 (Table 1). Participantswhounderwent theCBBand the twoPET

scans within 90 days were included in the study to enable direct com-

parisons between the cognitive assessment and imaging biomarkers.

No participants had a history of major neurological or psychiatric dis-

orders, head trauma, or history of drug abuse or dependency.Diagnosis

as CN,MCI, or ADwas provided by ADNI.

2.2 Digital cognitive battery

The CBB is a brief digital cognitive battery that includes four cogni-

tive tasks, each designed to probe separate cognitive domains.31,32

Subjects completed the battery in one sitting on a computer. All tasks

involve playing cards and require yes or no responses. The four tasks

include a detection task (DET), an identification task (IDN), one-back

task (OBT), and the One Card Learning (OCL) task. Participants had to

complete 75% of trials to be included in the study.

Descriptions of the tasks have been outlined in detail

elsewhere.31,33 Briefly, DET is a task that measures psychomotor

speed where subjects click “Yes” when a playing card turns over.

Psychomotor speed is calculated as the average reaction time over 35

valid trials. Invalid trials (anticipatory responses of less than 250 ms)

were not included in the calculations, and a replacement trial was

added to total 35 valid trials. IDN is a visual attention task in which

either a red or black joker card flips over, and the subject responds

yes if the card is red and no if it is black. The performance outcome of

this task is an average reaction time over 30 valid trials. For the OBT,

individuals are shown a series of playing cards and asked if the card is

the same as the previous card. This task taxes working memory and

performance is quantified as average reaction time over 31 trials. OCL

is a task that taxes hippocampal pattern separation, which is critical for

episodicmemory. In this task, participants are shown a series of playing

cards and are asked if they have seen the playing card previously

during the task. Four cards are randomly selected to repeat eight times

throughout the task. Critically, to perform this task, individuals must

remember details of each playing card (ie, the conjunction of suit and

number) to accurately identify these cards later in the task in the face

of interference from other similar cards. For example, even though

they have seenmany clubs and several jacks, it is only the Jack of Clubs

that are repeating. The task consists of 80 trials, and the performance

outcome is accuracy.

To develop a composite score reflecting overall cognitive perfor-

mance, we standardized the scores from all four tasks using z-scores

and inverted DET, IDN, and OBT so that more negative z-scores cor-

responded to poorer performance. Then we calculated the average of

these adjusted scores across all tasks to obtain the compositemeasure.

2.3 PET imaging

All individuals underwent Aβ PET imaging and tau PET imaging within

90 days of administration of the CBB. Individuals either underwent

flobetapir (FBP) (n = 295) or florbetaben (FBB) (n = 235) imaging

to quantify Aβ standard uptake value ratio (SUVR) and flortaucepir

(FTP) to quantify tau SUVR. Preprocessing of the data was han-

dled by the ADNI PET core. Comprehensive information regarding

the PET processing and acquisition techniques is available on the

ADNI website at https://adni.loni.usc.edu/wp-content/uploads/2012/

10/ADNI3_PET-Tech-Manual_V2.0_20161206.pdf.

Amyloid and tau PET quantification was provided by ADNI. For

amyloid, a cortical composite SUVR was calculated that included the

frontal, anterior/posterior cingulate, lateral parietal, and lateral tem-

poral regions. Individuals who had a SUVR greater than two standard

deviations above young controls (FBP: > 1.11, FBB: > 1.08) were

considered Aβ+.34 For continuous measures, SUVR was converted to

Centiloids to enable comparisons across tracers.35

For assessing longitudinal Aβ and tau deposition, individuals with a

follow-up PET scan after the initial scan were included. Both Aβ and

tau SUVR annual percentage change (APC) was calculated by taking

the difference in uptake (Centiloids for Aβ, SUVR for tau) between the

initial scan and the most recent scan divided by the years between

scans.

http://www.adni-info.org
https://adni.loni.usc.edu/wp-content/uploads/2012/10/ADNI3_PET-Tech-Manual_V2.0_20161206.pdf
https://adni.loni.usc.edu/wp-content/uploads/2012/10/ADNI3_PET-Tech-Manual_V2.0_20161206.pdf


6884 VANDERLIP and STARK

2.4 Statistical analyses

All analyses were done in Python and RStudio. Logistic regressions

were run using statsmodels36 to predict cognitive status and con-

version status. Area under the curve (AUC) measures were derived

from receiver operating characteristic (ROC) curves of the logistic

regressions. Random permutation tests with 1000 permutations

were used to compare AUCs between models. Commonality analy-

ses were performed using the yhat package in RStudio. To identify

how each variable acted in relation to the others, we performed

a 6-choose-3 combinatorial analysis and quantified the number

of times each metric appeared in the top third of AUCs. Pearson

correlations were used to assess the associations between two

continuous variables. One-way ANOVAs with Tukey’s honestly

significance difference (HSD) post hoc tests were used to identify

within-factor differences. For all analyses, p < 0.05 was considered

reliable.

3 RESULTS

3.1 Digital cognitive biomarkers perform as well
as and often better than Aβ and EC tau at
distinguishing between CN, MCI, and AD

Significant research has shown that Aβ and tau levels are elevated in

MCI and AD compared to CN older adults. Consequently, we investi-

gatedwhether digital biomarkers could also differentiate betweenCN,

MCI, and AD statuses. As expected, our findings indicate an increase in

Aβ in individuals with MCI or AD compared to CN older adults with a

marginal increase between MCI and AD (Figure 1A; one-way ANOVA:

F(2) = 12.04, p < 0.0001, Tukey’s HSD: CN vs MCI: p < 0.0001, CN vs

AD: p < 0.0001, MCI vs AD: p = 0.09). Similarly, EC tau was increased

in MCI and further increased in AD (Figure 1B; one-way ANOVA:

F(2) = 39.39, p < 0.0001, Tukey’s HSD: CN vs MCI: p < 0.0001, CN vs

AD: p < 0.0001, MCI vs AD: p < 0.01). Additionally, performance on

the digital cognitive battery was related to cognitive status, with CN

individuals outperforming those with MCI, who in turn outperformed

those with AD (Figure 1C; one-way ANOVA: F(2) = 40.15, p < 0.0001,

Tukey’s HSD:CNvsMCI: p<0.0001, CNvsAD: p<0.0001,MCI vsAD:

p= 0.03).

Given that allmeasures could differentiate individuals basedon cog-

nitive tasks, we explored whether the degree of differences between

groups varied when considering Aβ, tau, or cognitive performance. To

assess this, we computed effect sizes for the differences categorized

by cognitive status. We observed that cognitive performance and EC

tau had roughly equivalent effect sizes for CN versusMCI and forMCI

versus AD (Figure 1D) with cortical Aβ having a smaller effect size (CN

vs MCI: cortical Aβ d = 0.37, confidence interval [CI] = [0.19 0.56],

EC tau d = 0.72, CI = [0.53 0.90], digital cognitive battery d = 0.74,

CI = [0.56 0.93]; MCI vs AD: cortical Aβ d = 0.66, CI = [−0.10 1.43],

EC tau d = 0.89, CI = [0.13 1.66], digital cognitive battery d = 0.92,

CI = [0.16 1.69]). Conversely, EC tau had the largest effect size for

separating AD from CN (cortical Aβ d = 1.36, CI = [0.60 2.12], EC tau

d = 2.64, CI = [1.86 3.41], digital cognitive battery d = 1.80, CI = [1.04

2.57]).

To better understand the sensitivity and specificity of these various

markers, we next performed a set of logistic regression and ROC anal-

yses using cortical Aβ, EC tau, and cognitive performance as variables

to predict cognitive status (Figure 1G-I). Our analysis confirmed that

each of the threemeasures could effectively differentiate between CN

and MCI (Figure 1G). However, performance on the digital cognitive

battery reached a higher AUC compared to either Aβ or tau measures

(cortical Aβ AUC = 0.55, p < 0.0001, EC tau AUC = 0.65, p < 0.0001,

digital cognitive battery AUC= 0.70, p< 0.0001).

We used a permutation test (1000 permutations) to determine

whether any of these AUCs reliably differed. We found that perfor-

mance on the digital cognitive battery and EC tau proved to be more

predictive of diagnostic status than Aβ and performance on the dig-

ital cognitive battery was qualitatively better compared to tau, and

this approached significance (digital cognitive battery vs cortical Aβ
p<0.0001, EC tauvs corticalAβp<0.01, digital cognitivebattery vsEC

tau p= 0.07). Further, all threemeasures could differentiate CN versus

AD (Figure 1I; cortical Aβ AUC = 0.66, p < 0.001, EC tau AUC = 0.80,

p < 0.0001, digital cognitive battery AUC = 0.87, p < 0.0001), with

cognitive performance reaching a qualitatively higher AUC compared

to both Aβ and tau, but a random permutation test (n = 1000) found

no reliable differences between AUCs (all ps > 0.15). Conversely, only

EC tau and cognitive performance could reliably distinguish MCI and

AD, with both measures reaching similar AUCs (Figure 1H; cortical Aβ
AUC=0.64, p=0.10, EC tauAUC=0.69, p=0.04, digital cognitive bat-

tery AUC = 0.70, p = 0.02), with a random permutation test (n = 1000)

finding no reliable differences betweenmodels (all ps> 0.5). Thus, per-

formance on the digital cognitive battery was at least as good as, and

often reliably better than, amyloid and tau at differentiating individuals

based on cognitive status.

3.2 Deficits in mnemonic discrimination is the
best predictor of MCI and AD

Given the high performance of the digital cognitive battery in detect-

ing cognitive impairment, we next askedwhich cognitive domainswere

particularly informative by assessing performance on each of the four

tasks separately. We found that performance on DET differed as a

function of cognitive status with decreased psychomotor speed inMCI

and AD compared to CN (Figure 2A). However, performance was not

reliably different in individuals with AD compared to MCI (one-way

ANOVA: F(2)=13.99, p<0.0001, Tukey’s HSD: CNvsMCI: p<0.0001,

CN vs AD: p < 0.01, MCI vs AD: p = 0.14). Similarly, we found that

visual attention, measured via IDN, was compromised in MCI and AD

compared to CN, but there was no reliable difference on IDN between

MCI and AD (Figure 2B; one-way ANOVA: F(2) = 19.68, p < 0.0001,

Tukey’s HSD: CN vs MCI: p < 0.0001, CN vs AD: p < 0.01, MCI vs AD:

p= 0.21). Next, we found that performance on theOBT,which assesses

workingmemory, declined inMCI andADcompared toCN, butwas not
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F IGURE 1 AD pathologies and digital cognitive assessments differentiate by diagnosis. (A) Cortical Aβ is increased inMCI (yellow) and AD
(red) compared to CN (blue) older adults. (B) EC tau SUVR is increased inMCI compared to CN and further increased in AD compared toMCI. (C)
Performance on digital cognitive battery declines inMCI with further impairment in AD. Effect sizes for cortical Aβ (blue), EC tau (green), and
performance on digital cognitive assessment (maroon) between (D) CN andMCI, (E)MCI and AD, and (F) CN and AD. (G) ROC curves show that AD
pathologies and performance on digital cognitive assessment can each differentiate CN andMCI, but the digital cognitive assessment was reliably
better than the other twomeasures. (H) ROC curves demonstrating that only the digital cognitive assessment and EC tau can differentiateMCI
and AD. (I) Eachmeasure reliably differentiates CN fromAD.

reliably different between AD and MCI (Figure 2C; one-way ANOVA:

F(2) = 17.92, p < 0.0001, Tukey’s HSD: CN vs MCI: p < 0.0001, CN

vs AD: p < 0.01, MCI vs AD: p = 0.21). Finally, we assessed whether

OCL, which measures mnemonic discrimination, declined as a function

of cognitive status. We observed that performance on OCL declined

in MCI compared to CN, and this was exacerbated in AD (Figure 2D;

one-way ANOVA: F(2) = 40.65, p < 0.0001, Tukey’s HSD: CN vs MCI:

p < 0.0001, CN vs AD: p < 0.0001, MCI vs AD: p = 0.048), indicating

that only OCLwas sensitive to the additional decline in AD.

These findings collectively imply that MCI and AD are associ-

ated with widespread cognitive deficits. However, OCL showed the

greatest difference between individuals who were CN compared to

those with MCI (Figure 2E) or AD (Figure 2G) based on the magni-

tude of effect sizes calculated for each cognitive task (CN vs MCI:

DET d = 0.42, CI = [0.24 0.60], IDN d = 0.53, CI = [0.35 0.71], OBT

d = 0.50, CI = [0.31 0.68], OCL d = 0.75, CI = [0.56 0.94], CN vs AD:

DET d = 1.21, CI = [0.45 1.97], IDN d = 1.35, CI = [0.59 2.11], OBT

d = 1.21, CI = [0.45 1.97], OCL d = 1.64, CI = [0.88 2.40]). However,

OCL and DET were roughly equivalent in their effect sizes between

MCI and AD (Figure 2F; DET d = 0.67, CI = [−0.09 1.43], IDN d = 0.52,

CI = [−0.24 1.29], OBT d = 0.59, CI = [−0.17 1.35], OCL d = 0.95,

CI= [0.19 1.72]).

To further investigate how well these tasks separate individuals

based on cognitive status, we conducted separate logistic regressions
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F IGURE 2 OCL is superior to other tasks for differentiating individuals by diagnosis. Violin plots depicting performance differences on (A)
DET, (B) IDN, (C) OBT, and (D) OCL tasks as a function of cognitive status. Individuals withMCI (yellow) or AD (red) are impaired on all four tasks
compared to CN (blue) and individuals with AD are reliably worse onOCL compared toMCI. Effect sizes for IDN (light green), DET (light blue),
OBT (orange) OCL (red) between (E) CN andMCI, (F)MCI and AD, and (G) CN and AD. (H) ROC curves show that each task can reliably
differentiate CN andMCI with OCL performing reliably better than the other measures. (I) Only OCL performance can differentiateMCI and AD.
(J) Performance on each task reliably differentiates CN fromADwithOCL performance reaching the highest AUC.

using performance on each of the cognitive tasks to predict cogni-

tive status. The results demonstrated that all tasks could differentiate

CN from MCI, with OCL reaching the highest AUC (Figure 2H; DET

AUC= 0.62, p< 0.0001, IDNAUC= 0.63, p< 0.0001,OBTAUC= 0.64,

p < 0.0001, OCL AUC = 0.71, p < 0.0001). We next asked which cog-

nitive task was the most predictive of MCI by conducting a random

permutation test and found that OCL better predicted cognitive sta-

tus compared to the other three tasks (OCL vs DET p < 0.01, OCL vs

IDN p = 0.01, OCL vs OBT p = 0.03). Further, the other tasks did not

vary in their predictive power (all ps > 0.28). This pattern held true

when predicting CN versus AD, where again all tasks were effective

(Figure 2J; DET AUC = 0.77, p < 0.01, IDN AUC = 0.73, p < 0.01, OBT

AUC = 0.78, p < 0.01, OCL AUC = 0.92, p < 0.0001), and the models

did not differ in their predictive value (all ps > 0.15). However, when

differentiating MCI from AD, only the OCL task showed reliable pre-

dictive capability, unlike the other tasks (Figure 2I; DET AUC = 0.67,

p = 0.11, IDN AUC = 0.60, p = 0.21, OBT AUC = 0.67, p = 0.14, OCL

AUC = 0.79, p < 0.01). However, a random permutation test found no

reliable differences between models (all ps > 0.16). Given that OCL

better differentiated CN and MCI compared to the other tasks, we

compared the predictive capacity of OCL compared to Aβ and tau. A

random permutation test (n = 1000) found that OCL was superior at

differentiating CN and MCI compared to both cortical Aβ and EC tau

(OCL vs cortical Aβ p< 0.0001, OCL vs EC tau p= 0.049). This suggests

that OCL, which taxes hippocampal pattern separation, is particularly

vulnerable toMCI and AD.
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F IGURE 3 Predicting cognitive decline over 2 years. (A) ROC curves demonstrating that performance on the digital cognitive battery (maroon)
reliably predicts future cognitive decline while cortical Aβ (blue) and EC tau (green) do not. (B) OCL performance reliably predicts future cognitive
decline while IDN (light green), DET (light blue), andOBT (orange) do not. (C) OCL appears nearly twice as often in top third of models from a
permutation analysis, suggesting that OCL performance is most influential in predicting future cognitive decline. (D) ROC curves demonstrate that
cortical Aβ, EC tau, and the digital cognitive assessment could each predict conversion fromMCI to AD. (E) None of the cognitive tasks could
reliably predict conversion fromMCI to AD. (F) A permutation analysis found that EC tauwas themost commonmetric in the top third of models
suggesting that this measure is important for predicting progression fromMCI to AD.

3.3 Deficits in mnemonic discrimination are the
best predictor of progression to MCI, while all
measures predict progression to AD

We next asked whether performance on the digital cognitive assess-

ment could better predict conversion from CN toMCI compared to Aβ
and tau. To explore this, we identified individuals who had a follow-up

visit 2 years after undergoing the digital cognitive assessment and

Aβ and tau PET imaging. All individuals who had a study visit within

1 to 3 years of their digital cognitive assessment were included in

this analysis. For individuals with multiple visits in this timeframe, we

selected the visit closest to 2 years after the assessment. Individuals

who were CN at baseline and remained CN 2 years later were called

non-converters (n = 219, age = 72.37 [7.09], 130F, 16.82 [2.31] years

of education), while individuals who progressed to MCI within 2 years

of baselinewere called converters (n=10, age=72.00 [6.91], 3F, 16.10

[2.47] years of education). We next conducted logistic regressions

using either baseline digital cognitive assessment scores, cortical

Aβ, or EC tau to differentiate converters and non-converters. We

found that performance on the digital cognitive assessment predicted

conversion over 2 years while Aβ and tau could not (Figure 3A; cor-

tical Aβ AUC = 0.57, p = 0.08, EC tau AUC = 0.50, p = 0.24, digital

cognitive battery AUC = 0.74, p = 0.01). A random permutation

test demonstrated that the digital cognitive battery was superior

to EC tau, with no reliable difference between the digital cognitive

battery and cortical Aβ (digital cognitive battery vs EC tau p = 0.04,

digital cognitive battery vs cortical Aβ p = 0.17, EC tau vs cortical Aβ
p= 0.54).

To further assess whether the digital cognitive battery was superior

to cortical Aβ and EC tau, we conducted a multiple logistic regression

with all three measures predicting conversion status. The combined

model was able to reliably predict conversion status (R2 = 0.10,

BIC=95.55, p=0.04), but performance on the digital cognitive battery

was the only predictor that was statistically reliable after controlling
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for the other variables (digital cognitive battery z = -2.25, p = 0.03,

EC tau z = 0.45, p = 0.66, cortical Aβ z = 1.15, p = 0.25). Further,

we conducted a commonality analysis to identify which measure

contributes the most to predicting conversion to MCI. We found that

performance on the digital cognitive battery contributed the most to

the model, explaining 56.2% of the variance. Conversely, cortical Aβ
explained 18.7% and EC tau explained 1.5% of the variance (Table 2).

These results suggest that the digital cognitive measures were supe-

rior to Cortical Aβ and EC tau in predicting short-term conversion

toMCI.

To investigate which cognitive domains were the best indicators of

conversion from CN to MCI, we conducted separate logistic regres-

sions for each task. We found that only OCL could predict conversion

to MCI over 2 years while the other tasks did not reliably predict

converters (Figure 3B; Detection AUC = 0.64, p = 0.11, Identification

AUC = 0.69, p = 0.06, OBT AUC = 0.63, p = 0.17, OCL AUC = 0.74,

p < 0.01). A random permutation test did not find any reliable differ-

ences between models (all ps > 0.32). Notably, the predictive strength

of OCL was comparable to the composite score of the entire digital

cognitive battery.

In a post-hoc analysis using a multiple logistic regression, we found

that the overall model was modestly able to predict conversion status

(R2 = 0.11, Bayesian information criterion (BIC) = 100.25, p = 0.06).

Within the model, OCL was the only statistically reliable predictor

(OCLZ=−2.18,p=0.03,OBTZ=0.08,p=0.94,DETZ=0.29,p=0.77,

IDN Z = 0.42, p = 0.67), demonstrating that mnemonic discrimina-

tion was still a reliable predictor even when controlling for the other

cognitive domains assessed. A commonality analysis found that OCL

explained 54.3% of the variance, far more than any other task, with no

other task explaining more than 5% of the variance. Importantly, only

11% of the variance was shared across all tasks, suggesting that while

the tasks are somewhat related, they each individually contribute to

assessing the risk of progressing from CN to MCI (Table 2). To further

verify that OCL was the superior measure for predicting conversion to

MCI,weperformeda6-choose-3 combinatorial analysis andquantified

how often each measure occurred in the top third of resulting AUCs.

We found thatOCL appeared in all the topmodels and appeared nearly

twice as much as any other measure (Figure 3C). These results collec-

tively suggest that deficits in mnemonic discrimination are predictive

of conversion toMCI.

We next investigated whether these measures could predict pro-

gression from MCI to AD over 2 years. To address this, we first

identified individuals who were initially diagnosed with MCI and

divided them into two groups: non-converters, who remained stable

withMCI (n= 113, age= 73.08 [8.36], 40F, 16.06 [2.69] years of educa-

tion), and converters,whoprogressed toAD (n=17, age=74.82 [7.61],

8F, 16.76 [2.25] years of education). Employing logistic regressions for

each measure, we found that EC tau, cortical Aβ, and the digital cogni-
tive assessmentwere all effectivepredictors of progression (Figure3D;

cortical Aβ AUC = 0.76, p < 0.01, EC tau AUC = 0.79, p < 0.01, digital

cognitive battery AUC = 0.68, p = 0.03). Further, we did not find any

differences between the measures for predicting conversion to AD (all

ps> 0.28).

TABLE 2 Commonality analysis predicting conversion from
cognitively normal tomild cognitive impairment.

ADbiomarkers versus digital biomarkers: cognitively normal tomild

cognitive impairment

Measure Coefficient

Percentage variance

explained (%)

Cortical Aβ 0.00765 18.75

EC tau 0.00063 1.55

Digital cognitive battery 0.02295 56.25

Cortical Aβ and EC tau 0.00289 7.08

Cortical Aβ and digital
cognitive battery

0.00330 8.09

EC tau and digital

cognitive battery

0.00093 2.27

Cortical Aβ and EC tau

and digital cognitive

battery

0.00245 6.01

Digital cognitive tasks: cognitively normal tomild cognitive

impairment

Measure Coefficient

Percentage variance

explained (%)

OCL 0.02195 54.34

OBT 0.00001 0.02

Identification 0.00214 5.30

Detection 0.00008 0.20

OCL andOBT 0.00003 0.08

OCL and Identification 0.00163 4.03

OBT and Identification 0.00082 2.04

OCL andDetection 0.00061 1.52

OBT andDetection 0.00001 0.01

Identification and

Detection

0.00179 4.43

OCL andOBT and

Identification

0.00190 4.71

OCL andOBT and

Detection

−0.00003 −0.07

OCL and Identification

andDetection

0.00355 8.80

OBT and Identification

andDetection

0.00147 3.64

OCL andOBT and

Identification and

Detection

0.00442 10.95

Abbreviations: Aβ, amyloid beta; OBT, one-back task; OCL, One Card

Learning.

Interestingly, in a post hoc multiple logistic regression, we found

that while the overall model was significant (R2 = 0.17, BIC = 102.94,

p<0.001), noneof themeasures could reliably predict conversion from

MCI to AD (digital cognitive battery Z = −1.09, p = 0.28, cortical Aβ
Z=1.48,p=0.14, EC tauZ=2.53,p=0.11). This suggests that themea-

sures likely share varianceand therefore arenot individually significant
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after controlling for the other measures. To this end, we conducted a

commonality analysis and found that nearly half the variance (49.18%)

was shared between cortical Aβ and EC tau and 12.18% of the vari-

ance was explained by EC tau alone. Conversely, cortical Aβ and the

digital cognitive battery each explained less than 10% of the variance

(Table 3).

We next asked which cognitive domains predicted conversion from

MCI to AD.We conducted separate logistic regressions and found that

none of the cognitive tasks could predict progression fromMCI to AD

(Figure 3E; DET AUC = 0.63, p = 0.18, IDN AUC = 0.65, p = 0.13, OBT

AUC= 0.66, p= 0.10, OCL AUC= 0.66, p= 0.11). These measures also

did not statistically differ in predicting conversion status (all ps> 0.70).

A post hoc multiple logistic regression was not able to differentiate

converters and non-converters (R2 = 0.06, BIC= 119.36, p= 0.21), and

none of the individual metrics were able to reliably predict converters

(all ps > 0.12). In a commonality analysis, 39.20% of the variance was

unique to OCL, with no more than 6% of the variance being unique to

any of the other tasks (Table 3). When conducting a 6-choose-3 com-

binatorial analysis with all the measures, we observed that EC tau was

the most represented in the top third of models, with OCL as a distant

second (Figure 3F). This underscores thatwhilemultiplemeasures pre-

dict progression to AD, EC tau may be particularly indicative of future

decline.

In a subset of individuals, we investigated whether OCL perfor-

mance could predict converters aswell as standard neuropsychological

tasks. For predicting thosewho transitioned fromCN toMCI, we found

that OCL performance did as well as performance on the RAVLT, a

gold-standard episodicmemory task that also taxesmnemonic discrim-

ination. Further, OCL did qualitatively better than the trail-making task

(difference in seconds between trails A and B) and the clock drawing

task (Figure S1A; clock-drawing AUC = 0.64, p = 0.24, trail-making

AUC = 0.67, p = 0.01, RAVLT AUC = 0.75, p = 0.02, OCL AUC = 0.76,

p < 0.01). For predicting those who progressed from MCI to AD, we

found the OCL performance did as well as RAVLT performance and

performance on both trail making and clock drawing were not reliable

predictors (Figure S1B; clock-drawing AUC = 0.61, p = 0.26, trail-

making AUC = 0.67, p = 0.44, RAVLT AUC = 0.76, p < 0.01, OCL

AUC= 0.70, p= 0.04).

3.4 Mnemonic discrimination deficits predict
future impairment on MMSE in CN older adults

Given thatOCLwas themost importantmeasure forpredicting conver-

sion toMCI,wenext askedwhether performanceon this task predicted

cognitive changes in CN older adults. To assess this, we asked whether

OCL performance, EC tau, or cortical Aβ predicted decline on the

MMSE, a standard task used to quantify global cognitive ability.We cal-

culated MMSE APC as the difference between the most recent MMSE

score and the MMSE score at baseline divided by the difference in

years. We found that baseline cortical Aβ and EC tau were not asso-

ciated with longitudinal change on the MMSE (Figure 4A; cortical Aβ:
rp = −0.07. p = 0.30, Figure 4B; EC tau: rp = 0.02, p = 0.76). Con-

TABLE 3 Commonality analysis predicting conversion frommild
cognitive impairment to Alzheimer’s disease.

ADbiomarkers versus digital biomarkers: mild cognitive impairment

to Alzheimer’s disease

Measure Coefficient

Percentage variance

explained (%)

Cortical Aβ 0.01313 9.04

EC tau 0.02456 16.90

Digital cognitive battery 0.01164 8.01

Cortical amyloid and EC

tau

0.07165 49.31

Cortical Aβ and digital
cognitive battery

0.00157 1.08

EC tau and digital

cognitive battery

0.00506 3.48

Cortical Aβ and EC tau

and digital cognitive

battery

0.01770 12.18

Digital Cognitive tasks: mild cognitive impairment to Alzheimer’s

disease

Measure Coefficient

Percentage variance

explained (%)

OCL 0.01662 39.30

OBT 0.00279 6.59

Identification 0.00259 6.12

Detection 0.00067 1.59

OCL andOBT 0.00220 5.20

OCL and Identification −0.00091 −2.15

OBT and Identification 0.00371 8.77

OCL andDetection −0.00001 -0.03

OBT andDetection 0.00050 1.19

Identification and

Detection

0.00361 8.55

OCL andOBT and

Identification

0.00036 0.86

OCL andOBT and

Detection

0.00019 0.46

OCL and Identification

andDetection

−0.00083 −1.97

OBT and Identification

andDetection

0.01011 23.91

OCL andOBT and

Identification and

Detection

0.00068 1.61

Abbreviations: Aβ, amyloid beta; OBT, one-back task; OCL, One Card

Learning

versely, we found a reliable positive association between baseline OCL

performance and MMSE APC (Figure 4C; rp = 0.25, p < 0.0001), sug-

gesting that impairments onOCLwere related to longitudinal cognitive

decline. Further, we found that there was no relationship between

baselineMMSE and longitudinal changes in cortical Aβ, EC tau, or OCL
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F IGURE 4 OnlyOCL performance predicts cognitive decline in CN older adults. No relationship was observed between baseline (A) cortical
Aβ or (B) EC tau and longitudinal change onMMSE. (C) Positive correlation with OCL performance and annual change onMMSE suggesting that
lower OCL performance is associated with longitudinal decline onMMSE. No relationship was established between baselineMMSE and
longitudinal change in (D) cortical Aβ (E) EC tau or (F) OCL performance.

performance (Figure 4D; cortical Aβ: rp = 0.08, p = 0.22, Figure 4E; EC

tau: rp = −0.06, p = 0.44, Figure 4F; OCL: rp = 0.06, p = 0.34). This sug-

gests that OCL performance predicts future cognitive decline in CN

older adults.

3.5 Mnemonic discrimination performance
predicts future tau accumulation in entorhinal cortex
and inferior temporal cortex

Given the significance of OCL performance as an indicator of future

cognitivedecline,weproceeded toexplorewhetherperformance could

serve as a predictor of future tau accumulation in EC and Inferior Tem-

poral (IT) cortex. To do this, we correlated baseline performance on the

OCL task with tau SUVRAPC in Aβ− and Aβ+ individuals. Our findings

revealed a significant negative correlation between baseline OCL per-

formance and EC tau accumulation among Aβ+ but not Aβ− CN older

adults (Figure 5A; Aβ+: rp =−0.26, p= 0.03, Aβ−: rp =−0.06, p= 0.55).

Conversely, therewasnoassociationbetweenbaselineOCLandEC tau

SUVR APC in subjects with MCI, regardless of Aβ status (Figure 5B;

Aβ+: rp = −0.04, p = 0.82, Aβ−: rp = 0.17, p = 0.33). When investigat-

ingwhetherOCL related to future tau deposition in IT cortex,we found

a modest relationship between baseline OCL and IT tau SUVR APC in

Aβ+, but not Aβ− CN individuals (Figure 5C; Aβ+: rp = −0.23, p = 0.07,

Aβ−: rp = −0.03, p = 0.76). However, we did observe a significant neg-

ative association between OCL performance and IT tau SUVR APC in

Aβ+ subjects with MCI, but not Aβ−MCI individuals (Figure 5D; Aβ+:
rp =−0.43, p= 0.01, Aβ−: rp = 0.19, p= 0.30).

4 DISCUSSION

There is a critical need for the development and validation of low-

burden biomarkers that identify individuals at high risk of future

cognitive decline.While great strides have beenmadewith biofluid and

imaging biomarkers, less work has identified cognitive biomarkers that

predict future cognitive decline. Here we used the CBB as a testbed

to demonstrate that digital cognitive assessments can predict future

cognitive decline.We found that the digital cognitive battery identified
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F IGURE 5 OCL is related to future tau accumulation. (A) Lower OCL performance is associated with future EC tau in Aβ+ (red), but not Aβ−
(blue) CN older adults. (B) No reliable relationship was observed betweenOCL performance and EC tau regardless of Aβ status inMCI. (C) No
reliable correlation was observed between baseline OCL and IT tau accumulation in either Aβ+ or Aβ−CN older adults. (D) Lower baseline OCL
performance is associated with increased future IT tau accumulation in Aβ+ but not Aβ− (red)MCI older adults.

individuals withMCI and predicted future cognitive decline at a higher

proficiency compared toAβ and tau levels. Further,mnemonic discrimi-

nation deficits weremost predictive of future cognitive decline and are

also related to future tau accumulation in Aβ+ older adults. This work

highlights the valueof digital cognitive biomarkers for identifying those

at high risk of AD.

4.1 Utility of digital cognitive batteries in
identifying individuals with cognitive decline

Prior work demonstrated the ability of digital cognitive batteries to

identify individuals with cognitive impairment.8,9 Specifically, the CBB

can accurately distinguish between CN and MCI states at high profi-

ciency, with each of the four tasks differentiating between unimpaired

and impaired older adults.37 We replicated this in a different cohort

demonstrating that all tasks can distinguish between CN and MCI. In

addition, other cognitive batteries have shown promise in distinguish-

ing between CN andMCI at high proficiency.9,25 Specifically, a battery

including multiple mnemonic discrimination tasks could identify those

with increased AD biomarkers and was informative of future cognitive

decline.38 However, less has been done to assess how digital cogni-

tive assessments compare to Aβ and tau pathology in distinguishing

CN and MCI. We demonstrated that the digital cognitive battery was

superior to both cortical Aβ and EC tau in differentiating CN fromMCI,

reaffirming the benefits of digital cognitive batteries. While our work

suggests that digital cognitive assessments can accurately predict diag-

nosis, futurework is needed to understandwhether these assessments

can aid the diagnosis process in the clinical setting.

Identifying individuals at high risk of future cognitive decline can

increase the therapeutic window for currently approved therapies and

can aid in clinical trial recruitment. Prior work found that Aβ and tau

pathologies were predictive of future cognitive decline.39 However,

the lack of specificity and sensitivity of these AD biomarkers suggests
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that other biomarkers are also needed. We demonstrated that dig-

ital cognitive biomarkers were superior to Aβ and tau in predicting

future cognitive decline. However, one limitation is the relatively short

(2 years) follow-up time between the battery and future diagnosis,

resulting in a limited number of individuals who converted. The dig-

ital cognitive battery was added to ADNI recently, precluding longer

follow-up visits, but futureworkwill need to address how early deficits

emerge on digital cognitive assessments in preclinical AD.

4.2 All biomarkers were predictive of progression
to dementia

The digital cognitive battery was superior to Aβ and tau for predicting
progression to MCI, but we did not see the same pattern in individu-

als progressing from MCI to AD. In these individuals, performance on

the digital cognitive assessment did predict progression, but entorhinal

tau was more indicative of future decline. This aligns with prior work

suggesting that tau accumulation is most rapid during MCI and relates

to neurodegeneration and cognitive decline in MCI.40,41 Importantly,

in a commonality analysis, we found that nearly half of the variance

was shared by cortical Aβ and entorhinal tau,which suggests that these
pathologies are critical for progression to dementia. However, these

biomarkers were not reliably better than the digital cognitive assess-

ments at differentiating MCI from AD or predicting conversion to AD.

Together, these results indicate that cognitive changes are often supe-

rior to AD biomarkers for predicting progression to MCI, but once

individuals exhibit overt cognitive impairment, AD pathologies and

digital assessments are both able to predict progression to dementia.

4.3 Selective vulnerability of mnemonic
discrimination in AD

The digital cognitive battery included tasks across multiple domains

that tap into different neural circuits, so we asked whether one task

was superior to the others in differentiating cognitive impairment and

predicting future decline. We found that performance on the OCL

task was most informative of cognitive status, reaching higher AUCs

compared to the other tasks. Of note, MCI and AD were diagnosed

cognitively, so it is not completely unsurprising that OCL performance

decreased in MCI and AD. Critically, however, we compared this with

other cognitive domains and Aβ and tau. Further, performance on the

digital unsupervised tasks was not used in the diagnosis of MCI or

AD. Rather, a comprehensive in-person gold-standard neuropsycho-

logical testing session was used for diagnosis. The OCL task requires

individuals to remember details of playing cards despite accumulating

interference hindering one from accurately identifying cards later

in the task while rejecting similar playing cards; therefore, prima

facie, it taxes hippocampal pattern separation. This design is similar

to common mnemonic discrimination tasks, such as the MST, which

require individuals to remember the details of everyday objects in

order to identify these objects later in the task and reject similar,

but not identical, lures. Both these tasks are designed based on the

complementary learning systems framework, where it is proposed that

the hippocampus uses pattern separation to rapidly learn details.42

However, future work will need to investigate whether OCL deficits

correlate with deficits on common mnemonic discrimination tasks

such as the MST and whether OCL performance is impaired in indi-

viduals with compromised hippocampal integrity. Therefore, our work

suggests that deficits in mnemonic discrimination were able to reliably

predict impairment across the entire neuropsychological battery

and at a higher proficiency than the other cognitive domains and AD

biomarkers. Further, we demonstrate that OCL performance reliably

predicted progression to MCI over 2 years even when controlling

for performance on the other tasks. Additionally, when comparing

OCL performance to performance on standard neuropsychological

assessments, we found that this task did aswell as RAVLT performance

and was qualitatively better than the clock-drawing and trail-making

tasks in identifying converters. The RAVLT is a gold-standard episodic

memory task that taxes mnemonic discrimination by not only leverag-

ing a traditional list-learning paradigm (requiring quickly learning the

association between the items and the context of being on the study

list) but also leveraging the need to overcome interference. However,

this task is administered by a trained psychometrist in a clinic. There-

fore, not only was OCL task performance capable of predicting those

at risk for future cognitive decline, but it could alsomatch the ability of

traditional in-person assessments.

We hypothesize that hippocampal pattern separation, which

reduces interference between similar representations, is particularly

vulnerable to AD pathology.27,28 Indeed, performance on tasks that

tax hippocampal pattern separation, such as the MST, declines in MCI

and preclinical AD.13,26,43,44 This is likely because the hippocampus

is one of the earliest areas affected (both directly and indirectly)

by AD pathologies.19 Specifically, previous work identified age and

AD-related changes in this circuit, such as perforant path degradation

and CA3 hyperexcitability.28,45–47 However, these pathologies have

not been directly linked to performance on the OCL task. Future work

needs to investigate whether the same hippocampal pathologies give

rise to impairments on theOCL task.

4.4 Hippocampal hyperexcitability as a predictor
of future tau

Recent work has suggested that increasing tau deposition is a criti-

cal predictor of future cognitive decline.48,49 Specifically, it has been

proposed that amyloid deposition is not pathological without tau tan-

gles; however, amyloid can drive accumulation of tau.50–53 While the

mechanism by which this happens is not fully understood, it has been

suggested that hippocampal hyperexcitability may be the mediating

factor.54,55 Increased hippocampal activity is negatively associated

with performance on mnemonic discrimination tasks, and pharmaco-

logically reducing this hyperexcitability increases performance.28,46

Therefore, we propose that tasks that tax hippocampal pattern separa-

tion could serve as an indirect proxy for hippocampal dysfunction and,
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in particular, hippocampal hyperactivity. This would suggest that per-

formanceon theOCLmaybepredictive of future tau accumulation.We

found a negative relationship between OCL performance and future

EC tau accumulation inAβ+CNolder adults. Conversely, we found that

OCL was related to future IT tau accumulation in Aβ+ MCI individu-

als. Some research has revealed that this aligns with prior work finding

that hippocampal hyperactivity was related to future tau accumulation

in both regions,55 but tau accumulates in EC prior to IT.6,17 Further,

the finding that this is selective to Aβ+ individuals aligns with work

finding that Aβ potentiates tau accumulation. While promising, future

workwill be needed to understand the direct connection betweenOCL

performance and hippocampal hyperexcitability.

5 CONCLUSION

In this study, we asked whether digital cognitive assessments could

serve as low-burden biomarkers in AD. We demonstrated that per-

formance on these assessments exceeded Aβ and entorhinal tau in

distinguishing between CN and MCI and predicting progression to

MCI. Further, we demonstrated that deficits in mnemonic discrimina-

tion, which relies on hippocampal pattern separation, were informative

of future cognitive decline and tau deposition. Our work suggests that

digital cognitive assessments are important tools for predicting cog-

nitive decline, and these assessments should include tasks that tax

hippocampal pattern separation.
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