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Abstract

INTRODUCTION:Normal pressure hydrocephalus (NPH) patients undergoing cortical

shunting frequently show early Alzheimer’s disease (AD) pathology on cortical biopsy,

which is predictive of progression to clinical AD. The objective of this study was to

use samples from this cohort to identify cerebrospinal fluid (CSF) biomarkers for AD-

related central nervous system (CNS) pathophysiologic changes using tissue and fluids

with early pathology, free of post mortem artifact.

METHODS: We analyzed Simoa, proteomic, and metabolomic CSF data from 81

patients with previously documented pathologic and transcriptomic changes.

RESULTS: AD pathology on biopsy correlates with CSF β-amyloid-42/40, neurofila-

ment light chain (NfL), and phospho-tau-181(p-tau181)/β-amyloid-42, while several

gene expression modules correlate with NfL. Proteomic analysis highlights seven core

proteins that correlate with pathology and gene expression changes on biopsy, and

metabolomic analysis of CSF identifies disease-relevant groups that correlate with

biopsy data.

DISCUSSION: As additional biomarkers are added to AD diagnostic panels, our work

provides insight into the CNS pathophysiology thesemarkers are tracking.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any
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Highlights

∙ ADCSF biomarkers correlate with CNS pathology and transcriptomic changes.

∙ Seven proteins correlate with CNS pathology and gene expression changes.

∙ Inflammatory and neuronal gene expression changes correlate with YKL-40 and

NPTXR, respectively.

∙ CSFmetabolomic analysis identifies pathways that correlate with biopsy data.

∙ Fatty acid metabolic pathways correlate with β-amyloid pathology.

1 BACKGROUND

Chronic hydrocephalus in the elderly may occur for a variety of rea-

sons, although in the absence of a clear etiology most of these cases

are classified as idiopathic normal pressure hydrocephalus (NPH).1,2

Placement of a ventricular cerebrospinal fluid (CSF) shunt can pro-

vide symptomatic relief for many elderly patients with NPH.3–5 At

some centers, a cortical brain biopsy is sent to pathology, obtained

at the shunt insertion point. Early Alzheimer’s disease (AD) pathology

has been reported in a percentage of these biopsies, with β-amyloid

plaque pathology ranging from 42% to 67%, and tau pathology rela-

tively sparse in NPH cortical biopsies,6 although some studies have

found trace tau pathology at higher levels.7 Perhaps not surprisingly,

AD pathology on biopsy predicts future development of clinical AD,

which suggests that at least a subset of the NPH population is in the

early stages of AD.8,9 For these reasons, AD pathology in NPHpatients

has been studied by several groups as a way to understand early AD

pathophysiology.5,6,8–11 An additional advantage is that biopsy tissue

is free of post mortem changes, and since these are living subjects,

longitudinal follow-up after biopsy is possible.

Our group has recently analyzedRNA-seq data froma cohort of 106

NPH patients with varying degrees of accompanying AD pathology.10

This analysis identified a limited set of genes that correlatedwith quan-

tified histologic measurements of β-amyloid and tau pathology, with

a significant enrichment of immune response genes. Weighted Cor-

relation Network Analysis (WGCNA) identified 4 out of 58 modules

that correlated with AD pathology. Two of the modules were enriched

for microglial genes, and we found that these two modules par-

tially captured the reported downregulation of homeostatic genes and

upregulation of disease-associated microglial (DAM) genes reported

in the mouse AD model literature.12 We also identified an astro-

cytic module and a neuronal module that correlated with quantified

pathology, suggesting that transcriptomic changes accompanying early

AD pathology encompass a multi-cellular response with a prominent

immune response component. We subsequently validated that these

modules correlate with AD pathology in autopsy brain transcriptomic

datasets, although our microglial modules capture the downregulation

of homeostatic genes reported in the mouse AD model literature bet-

ter than several autopsy datasets.10 Our interpretation of these results

is that we are capturing an early response to AD pathology in our data,

and that this may also be partially captured in the mouse ADmodel lit-

erature. Interestingly, recent snRNA-seq data from human tissue with

early pathologic changes have identified a microglial response that is

similar towhatwe reported,11,13 which further validates the relevance

of our data for understanding the early stages of AD.

In summary, our priorwork has produced a useful dataset for under-

standing early transcriptomic changes in AD, and this hasmotivated us

to identify biomarkers that can track these changes. Our study allows

us to ask this question in a unique way, as we are able to obtain CSF

at the same timepoint as brain tissue, free of post mortem artifact. In

the present study, we perform proteomics, mass spectrometry-based

metabolomics, and Simoa AD biomarker measurements on ventricu-

lar CSF that was collected at the same time as the biopsy tissue on

81 NPH patients from our prior study, and analyze these data to iden-

tify biomarkers of disease that correlate with biopsy pathology and

gene expression changes. We identify a number of previously unre-

ported patterns between brain andCSF, which addresses the challenge

of identifying biomarkers for established pathophysiologic central ner-

vous system (CNS) changes that occur in the setting of early AD

pathology.

2 METHODS

This study is a retrospective study that uses tissue and CSF samples

not required for clinical diagnosis and associated clinical and demo-

graphic data. This study was reviewed and approved by the Columbia

University Institutional Review Board (IRB), and all relevant ethical

regulations have been followed. Processing and analysis of brain tis-

sue, including RNA-seq and histologic analysis of β-amyloid and tau,

has been previously reported,10 and is briefly summarized below. Biop-

sies were taken from frontal cortex in two-thirds of the subjects and

parietal cortex in one-third of the subjects in our original cohort, with

the location for a given patient chosen for cosmetic reasons. This ratio

in the subgroup of 81 subjects analyzed in this study is similar. As

noted in ref. [10], changes in gene expression that correlate with AD
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RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the litera-

ture using Pubmed and conference abstracts. While

Alzheimer’s disease (AD) cerebrospinal fluid (CSF)

biomarkers have been extensively studied, no study com-

prehensively relates CSF biomarkers to central nervous

system (CNS) transcriptomic changes and pathology in

subjects with early AD pathology using specimens free of

post mortem artifact.

2. Interpretation: AD CNS pathology and associated tran-

scriptomic changes correlate with CSF AD Simoa mark-

ers, sevenCSF proteins that are supported by prior litera-

ture for AD relevance, and several AD-relevantmetabolic

groups. Notably, we demonstrate specific inflammatory

andneuronal geneexpression changes that correlatewith

YKL-40 andNPTXR, respectively.

3. Future directions: Future directions include replicating

these findings,which is important given theuniquenature

of this study. In addition, ourworkwill help inform the use

of AD biomarkers for tracking pathophysiologic changes

in human brain, and also inform animal models that

study these relationships (such as the interplay between

microglia, astrocytes, and YKL-40).

pathology trend similarly in both regions, andwe combined all subjects

together10 for purposes of analysis. The average age of our original

106 subjects is 74.9 years, and the subgroup of 81 subjects analyzed

in this study (that have both biopsy and ventricular CSF collected) is

74.5 years (see Table S1 for patient demographics). CSF analyzed in

this studywas obtained through the shunt catheter into polypropylene

tubes, and promptly frozen and stored at−80◦C.

2.1 Summary of previously reported data
analyzed in this study

As reported in ref. [10], RNA was extracted from biopsy samples using

miRNeasy Mini Kit (QIAGEN; Cat No./ID: 217004), and samples with

RIN values ≥ 6 were selected for sequencing. RNAs were prepared

for sequencing using the Illumina TruSeq mRNA library prep kit, and

samples underwent single-end sequencing to 30 M read depth. The

quality of all fastq files was confirmed with FastQC v 0.11.8,14 fol-

lowed by variance stabilizing transformation (VST),15 and surrogate

variable analysis (SVA)16 and removeBatchEffect17 were sequentially

used to remove confounding variables in our dataset. To generate

gene expression modules, we utilized Weighted Gene Co-expression

NetworkAnalysis (WGCNA) to identify gene co-expressionmodules.18

As highlighted in ref. [10], four gene expression modules correlated

with β-amyloid and tau pathology on biopsy. In ref. [10], we use the

color-coded names assigned by WGCNA to label these modules (sad-

dlebrown, orange, darkgrey, and mediumpurple3). In ref. [10], we note

that these four modules are enriched for cell-type specific genes, with

saddlebrown enriched for microglial disease-associated (DAM) genes,

mediumpurple3 enriched for microglial homeostatic genes, orange

enriched for astrocytic genes, and darkgrey enriched for neuronal

genes. In this paper,weuse the cell-type specific labelswhendescribing

these modules for easier readability. Note that cell-type specific genes

are from snRNA-seq data and are defined as enriched in a specific cell

type compared to other cell types, which we have previously used to

characterize thesemodules.10

Immunohistochemistry for tau (AT8; Thermo Fisher; Catalog #

MN1020), and β-amyloid (6E10; BioLegend; Catalog # 803003) was

performed using the Ventana automated slide stainer. β-amyloid

plaqueswere counted per squaremillimeters; in slideswith enough tis-

sue, three fields were averaged together, whereas in slides with less

tissue, the largest number of possible fields were counted. For tau

quantification, we devised a rating scale to grade theminimal degree of

tau pathology seen in NPH biopsies (Figure S1). Grade 0 was given to

biopsieswith no tau pathology. Grade 1was given to biopsies that have

any taupathology at all, usually oneormoredystrophic neurites, but do

not make criteria for Grade 2. Grade 2 was given to biopsies that have

at least one tau-positive neuron or neuritic plaque, but do notmake cri-

teria for Grade 3. Grade 3was reserved for biopsieswith tau pathology

evenly distributed throughout the biopsy.

2.2 Enzyme-linked immunosorbent assay (ELISA)
analysis

Simoa technology (Quanterix, Inc., Billerica, MA) on the SR-X platform

was used to measure Aβ−40, Aβ−42, and total-tau with the multiplex

Neurology 3-plex A kit #101995, NfL with the NF-light Advantage kt

(SR-X) kit #103400, and p-tau181 with the p-tau181 Advantage V2

kit #103714. All assays were performed in duplicate for each sam-

ple, using eight calibrators and two positive controls (low and high

concentrations) in 96-well plates. CSF was rapidly thawed, gently vor-

texed, centrifuged, and, diluted as per kit specifications depending

on assay, and added to kit beads (100 μL) by pipette in each well.

Then in succession, plates are incubated for 15 min at 30◦C, shak-

ing at 1000 rpm, magnetic-washing 3× for 5 min total, followed by

addition of SBG reagent (100 μ L), another incubation for 10 min at

30◦C at 1000 rpm, washing again 5× for 7 min total and then reading

on the Simoa SR-X machine. Each plate assays in duplicate 34 sam-

ples. This highly sensitive assay system has lower limits of quantitation

of about 1, 0.1, and 0.1 pg/mL for Aβ−40, Aβ−42, and tau, 0.1 pg/mL

for -p-tau181, and 0.3 pg/mL for NfL; coefficients of variation within

duplicates are between 3% and 10%. Simoa measurements (Aβ−42,
Aβ−40, Aβ−42/Aβ−40 ratio,19 total tau, p-tau181, p-tau181/Aβ−42
ratio) were regressed for age and sex with limma::removeBatchEffect

(version 3.54.2).
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2.3 Proteomics analysis

Proteins from CSF were studied by quantitative measurement of pro-

tein abundance with a mass spectrometry-based proteomic method.

Prior to proteome analysis, depletion of high abundance proteins

was performed with High-Select Top14 Abundant Protein Deple-

tion Resin columns (Pierce/Thermo Fisher Scientific). CSF proteins

were resuspended in 8 M urea, 3 mM dithiothreitol (DTT), 100 mM

ammonium bicarbonate in liquid chromatography/mass spectrometry

grade water, reduced with DDT, and alkylated with iodoacetamide. For

proteolytic digestion, sampleswere diluted five-fold in 100mMammo-

nium bicarbonate and then digested using sequencing grade trypsin

(Promega V511) at a protease/protein ratio of 1:50 at 37◦C for 16 h as

described previously.20 Samples were then desalted with Nest Group

C18 Macrospin columns (Southborough, MA). Peptide concentration

was evaluated by NanoDrop spectrophotometry (Thermo Fisher Sci-

entific) at 205 nm and LC/MS inject loading amounts were adjusted

(normalized) based on peptide concentration. Peptideswere separated

with an acetonitrile/formic acid gradient at 300 nL/min on a 75 μm
ID × 50 cm Acclaim PepMap C18 2 μm particle size column with an

UltiMate 3000 RSLCnano liquid chromatograph. This was coupled to

a Q-Exactive HF mass spectrometer (Thermo Scientific). Data were

acquired in data dependent acquisitionmode (DDA) and proteins were

identified by database search using PEAKS Studio (version 10.6; Bioin-

formatics Solutions Inc.) and aHumanUniProt reviewed databasewith

isoforms (UniProt release 2020_04, August 11, 2020). All raw mass

spectrometry files produced in this work are publicly available at the

MassIVE proteomics repository (https://massive.ucsd.edu).

Protein abundance was measured by label-free quantitation with

PEAKS Studio. Peaks software detected 701,261 features across 81

LC/MS/MS runs. Identifications were returned for 1021 proteins with

a 1% false discovery rate (FDR) by the Peaks program. Of the 1021

proteins, 14 proteins subjected to partial antibody depletion, 394 pro-

teins were represented by a single peptide and 6 added proteins and

lab contaminants were deleted from the analysis. A total of 607 pro-

teins and 528 unique proteins represented by two or more peptides

were included in the analysis. We recorded a total of 49,167 quantita-

tive protein determinationswith only 174missing values (0.4%missing

values= 99.6%data completeness). Thus the number ofmissing values

was so negligible to render statistical “imputation” unnecessary. Batch

correction was achieved using a tunable approach for median polish

of ratio (TAMPOR) algorithm21 for removing technical variance, and

protein abundance values were normalized within each batch with

no Global Internal Standard (GIS) (1). Effects attributable to age and

sex were regressed with limma::removeBatchEffect (version 3.54.2).

Log2 normalized protein abundances of 528 CSF proteins from 81

samples were Spearman-correlated to histologic metrics (β-amyloid

load, tau load, and glial fibrillary acidic protein (GFAP) staining) and

brain transcriptomic eigengenes for WGCNA-inferred modules using

Hmisc::rcorr (version 4.4.2).

The major strength of this study is the paired biopsy data, and as

such we did not approach our data from the standpoint of attempting

to identify novel biomarkers. Instead, our goal was to identify proteins

that have been well validated in prior work and examine how these

markers correlate with our biopsy data. Note that we are not powered

to survivemultiple hypothesis correctionwith our dataset. Power anal-

ysis (using pwr.r.test function in r) suggests that with 81 samples, we

are powered at 0.8 to detect r = 0.3 at p = 0.05, which is similar to

the nominally significant r values seen in our proteomics data (Table

S2). The adjusted p-values using FDR depend on the overall profile of

unadjusted p-values, and in that sense are context-specific.22 Thus, it

is difficult to know a priori what unadjusted p-value will correspond

to an FDR of 0.05 in a given study, which would be necessary to iden-

tify the FDR adjusted p-value we are powered for. However, given that

we are near the threshold of being sufficiently powered for discovery

with unadjusted p-values, it is a reasonable assumption that multi-

ple hypothesis testing will eliminate many if not all of the significant

findings.

Given the above, we started with a recently published analysis of

AD CSF that also included data from four additional published vali-

dation datasets (five cohorts total21,23,24). We focused on proteins in

our own data that significantly increased or decreased in AD in at least

one of the cohorts from this study with a corrected p-value (FDR) of

0.05, and at least nominally (unadjusted p-value less than0.05) trended

in a similar direction in at least one other cohort. This resulted in 45

proteins. We then tested whether any of these 45 proteins were nom-

inally significantly correlated with either the histologic measurements

of β-amyloid or tau on biopsy or any of our four gene expression mod-

ules. For module correlations, we only considered CSF proteins that

were significantly correlatedwith amodule eigengene if the same gene

also correlated significantly and in a similar direction with the module

eigengene in the brain RNA-seq data, as this would suggest that the

CSF protein correlation is reflective of underlying CNS biology. Using

these thresholds, we focused on seven proteins from the proteomics

data for further analysis. Note that all seven CSF proteins that passed

our criteria are correlating with our biopsy data in a similar direction

to the reported correlations in the AD literature (i.e., if a CSF protein

is reported to increase in AD, in our data, it positively correlates with

either AD pathology or a module that increases in AD, and vice versa).

We did not apply an explicit threshold that this be the case in our fil-

tering, and this supports the idea that our filtering has focused on CSF

biomarkers of disease relevant for AD. We also tested whether pro-

teins that are nominally insignificant (unadjusted p-value > 0.05) in all

of the above five AD cohorts (115 proteins total) are nominally sig-

nificant with any of the NPH biopsy variables; see the Results section

for discussion of this analysis. Similar analysis among the above five

AD cohorts to identify proteins nominally significant in one cohort and

nominally insignificant in the other four cohorts revealed the following

(cohorts labeled using names assigned in ref. [24]): four significant pro-

teins in the CSF discovery cohort, two proteins in replication cohort 1,

one protein in replication cohort 2, two proteins in replication cohort

3, and one protein in replication cohort 4.

In an effort to further reinforce our findings, we identified commer-

cially available ELISAs that have been used extensively in the literature

for two proteins of interest (YKL-40 and NPTXR).25–30 We performed

ELISAmeasurements for these twoproteinsonCSFaliquots fromall 81

https://massive.ucsd.edu
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subjects for ELISA validation, according to the manufacturers’ instruc-

tions. Levels of NPTXR (#ELH-NPTXR; Ray Biotech, GA, USA), and

YKL-40 (# DC3L10; R&D systems, MN, USA), were assessed using a

1:10 and 1:100 dilution, respectively.

2.4 Metabolomics analysis

Thedetails on theacquisitionof theuntargetedmetabolomics hasbeen

previously described.31,32 Briefly, themetaboliteswere extracted from

plasma using acetonitrile and the extracts were injected in triplicate

on two chromatographic columns: a hydrophilic interaction column

(HILIC) under positive ionization (HILIC+) and a C18 column under

negative ionization (C18-), to obtain three technical replicates per sam-

ple per column. Data were collected in full scan mode for molecules

within 85-1250 kDa on a ThermoOrbitrapHFXQ-Exactivemass spec-

trometer. The untargetedmetabolomic datawere processed through a

computational pipeline that leverages open source feature detection

and peak alignment software, apLCMS33 and xMSanalyzer.34 Correc-

tion for batch effects was performed using ComBat, which uses an

empirical Bayesian framework to adjust for known batches in which

the samples were run.35 Metabolic features detected in at least 70%

of the samples were retained, leaving 3638 features from the HILIC+
column and 4532 features from the C18- column for further analy-

sis. Zero-intensity values were considered below the detection limit

of the instrument and were imputed with half the minimum intensity

observed for each metabolic feature. The intensity of each metabolic

feature was log10 transformed, quantile normalized, and auto-scaled

for normalization and standardization. Normalized feature values for

HILIC+ and C18- columns were regressed for sex and age and Spear-

man correlated with each variable of interest (histological β-amyloid,

tau, and GFAP, and the four modules). Correlation values of metabolic

features with each variable of interest from each column were com-

bined and fed into mummichog (MetaboAnalyst version 5.0)36 to

highlight significantly enriched metabolomic pathways (Gamma FDR

adjusted p < 0.05). For the mummichog algorithm parameters, only

pathways containing at least five metabolites were considered.

2.5 Statistics

All statistical analyses were performed in R (version 4.3.0), except

those conducted with ELISA data which were performed using Graph-

Pad Prism software (version 9.4.1). All correlations were performed

using Spearman’s rank correlation coefficient, and p-values are two-

tailed (null hypothesis r = 0). Correlations for metabolomics and

proteomics were assessed using the rcorr function as implemented

in the Hmisc package (version 4.4.2) in R. FDR correction was used

to adjust p-values for multiple comparisons where indicated. Hub

genes were identified using the intramodularConnectivity function as

implemented in WGCNA (version 1.72.1).18 The TAMPOR algorithm

used for batch correction for the proteomics data can be downloaded

from https://github.com/edammer/TAMPOR. Regressions for the pro-

teomics and simoa data were performed using the function remove-

BatchEffect (version 3.54.2) as implemented in the package limma in

R. Regressions for the metabolomics data were performed using the

function ComBat as implemented in the package sva in R. Pathway

enrichment analysis for the metabolomics data was conducted by the

Mummichog algorithm in MetaboAnalyst (version 5.0). Of the 81 CSF

samples, all analyses were performed successfully on the full set of 81

with the following exceptions; 80 have CSFAβ−40 values, 78 have CSF
Aβ−42 values, 78 have CSFAβ42/40 values, 80 have CSF ptau 181 val-
ues, 77 haveCSFptau181/Aβ42values, 80 haveCSF tau values, and80
have immunohistochemical GFAP values.

2.6 Immunohistochemistry

Immunohistochemistry for GFAPwas performed on sections of forma-

lin fixed, paraffin embedded tissueusing the rabbitmonoclonal EP672Y

antibody run on the Ventana Ultra platform. Brightfield microscopy

was used to capture images of the GFAP stained slides at 4× mag-

nification. Images were processed with CellProfiler v4.2.5.37 Tis-

sue region within each image was distinguished from slide back-

ground through global minimum cross entropy thresholding, excluding

objects below 50 pixels and any object that did not overlap with a

manually drawn outline of the tissue region. Regions of histologi-

cal artefact to exclude from tissue regions such as folded sections

were identified through the global robust background thresholding for

pixels over two standard deviations above the mean after discarding

85% of the bottom intensity pixels. Average GFAP intensity was then

measured over the entire thresholded tissue area for each case. We

were able to performGFAP staining on 80 of the 81 specimens.

3 RESULTS

3.1 Study overview and review of cohort biopsy
data

This study involves comparisons across a range of datatypes, summa-

rized in Figure 1A. Patients undergoing shunt surgery for NPH had

biopsy tissue removed at the shunt insertion point, and in a subset

of these patients ventricular CSF was banked at the same time (see

theMethods section). Comparison of RNA-seq analysis and quantified

β-amyloid and tau pathology from biopsy tissue has previously been

reported on 106 patients.10 This prior analysis identified four key gene

expression modules that correlate with AD pathology. These modules

consist of two microglial modules, one of which is enriched for DAM

genes and positively correlates with AD pathology on biopsy, and one

of which is enriched for microglial homeostatic genes and negatively

correlates with AD pathology on biopsy. We also identified an astro-

cytic module that positively correlates with AD pathology on biopsy,

and a neuronal module that negatively correlates with AD pathology

on biopsy (see ontology analysis for these modules reproduced from

ref. [10] in Table S3, and Table S4 for reproduced module genes). In

https://github.com/edammer/TAMPOR
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F IGURE 1 Study overview and review of cohort biopsy
data. (A) Schematic for the NPH study in this paper (see text
for details). (B) Our four modules correlate with quantified
β-amyloid and tau pathology on the 81 biopsies with CSF
similarly to the correlations reported in ref. [10]. For this
study, we also added quantified GFAP staining, and
correlations with the four modules are shown (*= FDR
adjusted p-value< 0.05, see Table S5 for numbers used in this
figure). (C) Schematic for our filtering of proteins for
proteomic analysis.We selected proteins that passed an FDR
of 0.05 in at least one previously published study and trended
in the same direction (i.e., up or down in AD) with an
unadjusted p-value of 0.05 in at least one other study, and
which also correlated with one of our pathology variables or
gene expressionmodules with an unadjusted p-value of 0.05.
(See theMethods section for all details of our filtering steps,
cohorts labeled using names assigned in ref. [24]). AD,
Alzheimer’s disease; NPH, normal pressure hydrocephalus.

Figure 1B, we show that all four modules originally identified in ref.

[10], significantly correlate with previously quantified β-amyloid and

tau pathology in the subset of 81 subjects with banked CSF used in this

study, similarly to theoriginal groupof106 (seeTable S5 for valuesused

in this figure; note that in ref. [10] we use the WGCNA assigned color

names for thesemodules – herewe use names that reflect the predom-

inant cell type genes in these modules for simplicity – see theMethods

section for details on prior color code assignments from ref. [10]). In

this study, we have added quantified GFAP staining as a measure of

astrogliosis in order to assess how this metric might also relate to our
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CSF analysis. Here,wenote thatGFAPstaining correlates not onlywith

the astrocytic module, but also with the neuronal module, suggesting

that neuronal functionmay decline in tandemwith astrogliosis.

Eighty-one of the 106 subjects from the previous study had banked

CSF that was available for the present study. We analyzed this CSF

using three methods: (1) Simoa measurement of CSF for β-amyloid-

42 and−40, total tau, phospho-tau-181 (p-tau181), and neurofilament

light chain (NfL); (2) proteomic analysis of CSF; and (3) metabolomic

analysis of CSF. Note that we are not powered to perform multiple

testing correction in our proteomic mass spectrometry data (see the

Methods section), and the major strength of this study is the paired

biopsy data.With this inmind, we did not approach our proteomic data

from the standpoint of attempting to identify novel biomarkers, and

instead used our data to study proteins that have beenwell validated in

prior work and examine how these proteins correlate with our biopsy

data. Specifically, we selected proteins that passed an FDR of 0.05 in

at least one study and trended in the same direction (i.e., up or down

in AD) with an unadjusted p-value of 0.05 in at least one other study,

and which also correlated with one of our pathology variables or gene

expressionmoduleswith an unadjusted p-value of 0.05. (Figure 1C; see

the Methods section for all details of our filtering steps). We focused

on seven proteins from the proteomics data that passed these thresh-

olds for further analysis, which are highlighted below. Our approach

parallels other groups that have reported unadjuted p-values and used

alternate rationales for validation (see the Discussion section) and we

also validate two key proteins with ELISAs. Nevertheless, this lack of

statistical power is a weakness of our study, which we further discuss

in detail in the Discussion section.

3.2 Histologic measurements of AD pathology
correlate with CSF biomarkers

We first determined how histologic measurements of β-amyloid, tau,

and GFAP on biopsy relate to CSF data (Figure 2A). Quantified β-
amyloid plaques and tau pathology on biopsy negatively correlate with

Simoa measurements of the β-amyloid-42/40 ratio, and tau pathology

also correlates significantly with NfL. Both β-amyloid plaques and tau

pathology trend positivelywith p-tau181 but are not significant, and p-

tau181/β-amyloid-42 positively correlates with both. GFAP negatively

correlates with both β-amyloid-40 and β-amyloid-42, and is not sig-

nificantly associated with the β-amyloid-42/40 ratio, suggesting that

this metric is less disease-specific than histologic measurements of β-
amyloid and tau pathology for AD. Of note, GFAP staining on biopsy

does correlate with quantified β-amyloid plaque pathology on biopsy

(Spearman’s r = 0.22, uncorrected p-value = 0.047) and tau pathology

on biopsy (Spearman’s r = 0.32, uncorrected p-value = 0.0044), sug-

gesting that astrogliosis in these biopsies is at least partially reflective

of AD pathology, particularly tau pathology. Along the same lines, the

concordance between quantified β-amyloid plaques and tau pathology

and AD CSF Simoa markers supports the view that the CSF of these

patients partially reflects the ongoing AD-related disease captured on

biopsy. Also encouragingly, this suggests that analysis of a very small

piece of cortical tissue can give information that is partially predictive

of CSF analysis. This should not immediately be assumed, as the CSF

presumably captures changes found throughout the neuraxis, andmay

not correspond to the highly local analysis seen in a small piece of tis-

sue. The logical reciprocal argument is that the findings in our biopsies

are in fact reflecting similar biology seen in other areas of cortex.

As noted above, we focused on seven key proteins from the pro-

teomics data that are previously validated in theADCSF literature. Tau

pathology on biopsy is the primary histologic measurement that cor-

relates with selected proteins, with three proteins showing nominally

significant trends, andGFAP shows a nominal inverse relationshipwith

VGF (Figure 2B). Finally, we analyzed our CSFwithmass spectroscopy-

based metabolomics to identify any biological pathways that may

correspond to early AD pathology in brain tissue using mummichog,

an analysis pipeline that identifies metabolic pathways enriched in

metabolome correlations with variables of interest (see the Methods

section). Pathways from several metabolic processes that have previ-

ously been reported in AD are also predicted to be altered in our CSF

(Figure 2C; see Table S6 for all pathways identified and the Discussion

section for commentary).

3.3 Biopsy gene expression modules correlate
with CSF biomarkers

We next determined how the four gene expression modules identi-

fied in our prior work relate to CSF data. All four modules have trends

with β-amyloid-42/40, p-tau181, and p-tau181/β-amyloid-42 in direc-

tions consistentwith themodules’ relationshipwithADpathology,with

modules that positively correlate with pathology having trends simi-

lar to β-amyloid plaque and tau pathology, and modules that decline

with increasing pathology showing opposing trends (Figure 3A). The

neuronal and microglial homeostatic module both significantly corre-

late with β-amyloid-42, and trend positively with β-amyloid-40, with

the neuronal module achieving significance at a weaker correlation

(see Table S7 for all values). Correlations with NfL pass significance

with three of the modules, with the microglial (DAM) module and

astrocytic modules positively correlating with NfL, and the neuronal

module negatively correlating with NfL. Proteomics analysis shows a

range of relationships between the four gene expression modules and

our seven proteins of interest (Figure 3B). Three neuronal proteins

(NPTXR, SCG2, and VGF) all positively correlate with the neuronal

module, and the microglial homeostatic module (which negatively cor-

relates with AD pathology) also positively correlates with two of the

neuronal markers. YKL-40 correlates with the astrocytic module and

the microglial (DAM) module, suggesting that a multicellular response

accompanies YKL-40 upregulation in CSF.

Although we are guiding our proteomic analysis by proteins that

are significant in more than one published dataset, one could also ask

the converse question (i.e., Are proteins that are consistently not asso-

ciated with AD in the literature also not significant in our data?). To

address this, we returned to the five published proteomic datasets

that informed our selection criteria, and identified CSF proteins that
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F IGURE 2 Histologic measurements of AD pathology correlate with CSF biomarkers. (A) Correlations of histologic data with CSF Simoa
measurements of AD biomarkers. All correlations shown in this figure are Spearman’s rank correlation coefficient. The n for each Simoa analysis is
variable due to some sample failure. In summary, 80 samples have CSF Aβ40 values, 78 samples have CSF Aβ42 values, 78 samples have CSF
Aβ42/40 values, 80 have CSF ptau 181 values, 77 have CSF ptau 181/Aβ42 values, 80 have CSF tau values, and all 81 have CSFNfL values. GFAP
staining was also only achieved on 80 samples. All other analyses here and in the rest of the study are completed on all 81 samples. (B) Spearman’s
correlations of the seven core proteins highlighted in this study with quantified β-amyloid, tau, and GFAP on biopsy. (C) Biological pathways
highlighted bymummichog analysis of metabolite correlations with histologic variables (see theMethods section); *FDR adjusted p-value< 0.05 in
panels A and C, *p-value< 0.05 in panel B. See text for details, and Tables S2, S6, and S7 for numbers used in this figure. AD, Alzheimer’s disease;
CFS, Cerebrospinal fluid.

were not nominally significantly associated with AD (unadjusted p-

value > 0.05) in all five datasets and that were also present in the

NPH CSF proteome (115 proteins total). Of these 115 proteins, we

found that at a nominal, unadjusted p-value threshold of 0.05, one

protein significantly correlates with quantified tau pathology, one pro-

tein significantly correlates with quantified β-amyloid pathology, six

proteins significantly correlate with GFAP staining, no proteins signifi-

cantly correlatewith the astrocytemodule, three proteins significantly

correlate with the microglial (DAM) module, 24 proteins significantly

correlate with the microglial homeostatic module, and 18 proteins
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F IGURE 3 Biopsy gene expressionmodules correlate with CSF biomarkers. (A) Correlations of gene expressionmodules from Figure 1Bwith
CSF Simoameasurements of AD biomarkers. All correlations shown in this figure are Spearman’s rank correlation coefficient. (B) Spearman’s
correlations of the seven core proteins highlighted in this study with gene expressionmodules. (C) Spearman’s correlation across 81 CSF samples
of YKL-40 ELISA values versus microglial (DAM) and astrocytic module eigengenes andNPTXR ELISA values versus neuronal andmicroglial
homeostatic module eigengenes. r- and p-values indicated. (D) Biological pathways highlighted bymummichog analysis of metabolite correlations
with gene expressionmodules (see theMethods section); *FDR adjusted p-value< 0.05 in panels A andD , *p-value< 0.05 in panel B. See text for
details, and Tables S2, S6, S7, and S9 for numbers used in this figure. AD, Alzheimer’s disease; CFS, Cerebrospinal fluid; DAM, disease-associated
microglia.
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significantly correlate with the neuronal module (see Table S8). For

comparison, we then did an analysis among the five published datasets

themselves to seehowmanynominally significant proteins (unadjusted

p-value<0.05) in eachdataset arenotnominally significant in theother

four datasets. All of the published datasets had low numbers of nom-

inally significant proteins that were not significant in the other four,

ranging from one to four proteins across the different datasets (see

the Methods section). In our own data, the neuronal module and the

microglial homeostatic module are the two biopsy signals that stand

out as having a relatively high number of significant proteins (18 and

24, respectively) that are not significant in the AD CSF literature we

reviewed. Note that these are the two modules that decline in AD,

whereas the other twomodules and all three histologic measurements

(β-amyloid, tau, and GFAP) are low at baseline and increase in AD. One

could therefore speculate that one reason why a large number of non-

AD related CSF proteins correlate with the neuronal and microglial

homeostaticmodules is because thesemodules represent homeostatic

functionsof neuronsandmicroglia respectively, andmaybe responding

to a variety of signals at baseline in addition to AD-associated patho-

physiology. Although we cannot definitively say why these modules

associate with a large number of non-AD associated proteins, these

CSF associated proteins could be a useful starting point to explore the

normal CNS biology represented by thesemodules in a future study.

In an effort to further reinforce our findings, we identified commer-

cially available ELISAs that have been used extensively in the literature

for twoproteins of interest (YKL-40 andNPTXR).WeperformedELISA

measurements for these two proteins on CSF aliquots from all 81

subjects in order to test the reliability of our proteomics data using

a method orthogonal to mass spectrometry (in this case, sandwich

ELISA). In Figure 3C, we show that ELISAmeasurements for these two

proteins demonstrate a similar correlational profile to the proteomics

data (additional correlations not shown are not significant—see Table

S9). Intriguingly, YKL-40 does not appear to correlate with AD pathol-

ogy on biopsy. Although the lack of a significant correlation between

CSF YKL-40 and AD pathology in biopsy tissue may be a power

issue, at minimum it appears that in our cohort, CSF YKL-40 corre-

lates more strongly with gene expression changes than AD pathology

or traditional measures of astrogliosis (i.e., GFAP staining). Finally,

metabolomic analysis (Figure 3D) identified enrichment for many of

the same pathways that are enriched in the metabolite correlations

with AD histologic measurements (Figure 2C).

Our previous publication highlighted the immune response-

associated transcriptomic signature in these biopsy samples,10 and so

we were particularly interested in the relationship seen in this study

between CSF YKL-40 and the microglial (DAM) and astrocytic mod-

ules. In Figure 4, we show hub genes for both of these modules, with

microglia and astrocytic genes highlighted in the microglial (DAM) and

astrocytic modules respectively (see theMethods section for hub gene

and cell type specific gene definitions and Table S10 for lists of hub

genes and connectivity values). Mean gene expression vectors com-

posed of only cell-type specific genes from these modules correlate

as well with CSF YKL-40 as the module eigengenes themselves. This

suggests that the cell-type specific changes reported by thesemodules

are correlating with CSF YKL-40, which raises the possibility that

CSF YKL-40 may be a useful marker for disease-relevant interactions

between these cell types (see the Discussion section).

4 DISCUSSION

The goal of this study is to address the major challenge of identi-

fying biomarkers for established pathophysiologic CNS changes that

occur in the setting of early AD pathology. Of particular interest is our

finding that CSF YKL-40 protein correlates primarily with two biopsy

RNA-seq modules enriched for astrocytic and microglial genes, and

not with quantified biopsy AD pathology. YKL-40 (otherwise known

as CHI3L1) is a well-established marker of inflammation, and is widely

studied in AD.38,39 The interaction between microglia and astrocytes

in AD is also an area of active research, and recent work suggests

that this interplay may contribute to neurodegeneration.40,41 YKL-40

is secreted by astrocytes, although its secretion is thought to be in

part modulated through activated microglia,42,43 which further sup-

ports our data showing that specific gene expression changes relating

to these two cell types correlate with CSF YKL-40. Of note, our astro-

cytic andmicroglial (DAM)modules are also highly correlated (r= 0.47,

unadjusted p-value= 5.07x10-07). One could speculate that wemay be

partially capturing a disease-relevant interplay between these two cell

types in our data, and YKL-40may be a useful marker to track this pro-

cess. Future work could use these findings to examine this hypothesis

in AD model systems. It should also be noted that our work identi-

fies trends in several neuronal markers of neurodegeneration. Three

neuronal proteins that have been shown to decrease in AD (NPTXR,

SCG2, and VGF),38 all positively correlate with the neuronal module,

which is also consistent with this module declining in tandem with AD

pathology on biopsy. Interestingly, GFAP staining also (inversely) cor-

relates with our neuronal module as well as VGF (a well-documented

biomarker that declines in AD44), and themicroglial homeostatic mod-

ule declines in parallel with some of the neuronal CSF proteins. This

also points to aspects of themicroglial/astrocytic response thatmay be

most proximal to early neuronal dysfunction.

Metabolomics analysis identified several processes that have pre-

viously been linked to AD that are also predicted to be altered in

our CSF. Interestingly, fatty acid oxidation is predicted to be altered

in tandem with β-amyloid pathology. Fatty acid oxidation has previ-

ously been linked to AD though several lines of investigation (reviewed

in ref. [45]). Fatty acid oxidation is relatively limited in neurons, in

contrast to astrocytes, which metabolize fatty acids transported from

neurons in apolipoprotein E (ApoE) -positive lipid particles as a protec-

tivemechanism in the setting of lipid peroxidation.46,47 Lipoic acid is an

antioxidant and cofactor for several metabolic enzymes, and similarly

to fatty acid oxidation, is linked to the generation of acetyl-CoA,48,49

suggesting that there may be alterations in oxidative metabolism

across multiple pathways as β-amyloid accumulates in the brain.

Additional findings in our metabolomics data are alterations in

aspartate and asparagine metabolism; marked alterations in aspar-

tate metabolism have recently been found in AD brain tissue using
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F IGURE 4 CSF YKL-40 correlates withmicroglial and astrocytic genes. Shown are the hub genes for the astrocytic andmicroglial (DAM)
modules, with astrocytic genes highlighted for the astrocytic module andmicroglial genes highlighted for themicroglial (DAM)module. Both
modules correlate with CSF YKL-40. Themean gene expression vector of the astrocytic genes from the astrocytic module andmicroglial genes
from themicroglial (DAM)module also correlate with YKL-40, supporting a role for these genes in the relationship between brain pathophysiology
and CSF YKL-40. See, Table S10 for hub gene analysis. DAM, disease-associatedmicroglia.
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metabolomics analysis.50 N-glycan degradation is also significantly

affected. Glycosylation abnormalities are common in AD, and a variety

of abnormalities have been described.51,52 Tau undergoes glycosyla-

tion in AD brain tissue and not in control brain tissue, and this has

been shown to be important for maintenance of paired helical filament

structure.53 In summary, several metabolic pathways that are relevant

to AD are predicted to be altered in our CSF analysis, and suggest

future avenues for investigating how these changesmay correlatewith

AD pathophysiology.

Although this study offers a unique opportunity to correlate anal-

ysis of CSF and brain tissue taken at the same timepoint from living

patients, there are important limitations. First of all, unlike some large-

scale studies21,24 we are not powered to perform multiple hypothesis

testing on our proteomics data. The variability of the CSF proteome

is well documented,54 and it has been noted that the uncritical appli-

cation of multiple hypothesis testing for some datasets will result in

a failure to detect any true positives even when many exist.55 Along

these lines, other groups have reported unadjuted p-values and used

alternate rationales for validation,38,55–59 including significant protein-

protein interactions,56 coherent ontology groupings,59 and utility with

predictive algorithms.57,58 Here, we have relied on prior validation in

AD CSF in at least two other studies, as well as ELISA validation for

two of our markers. We consider the two proteins validated by ELISA

(NPTXR and YKL-40) to be the proteins where we are able tomake the

strongest argument concerning relationshipswithbrain transcriptomic

data. The other findings from our proteomics data are trends we con-

sider reportable, but requiring additional validation in a future study.

To our knowledge, this is the first study to directly link CSF biomarkers

and AD-related changes in CNS gene expression in the same patients.

While this certainly lends novelty to our findings, it also limits us in

options to validate our results. As NPH cohorts are increasingly stud-

ied by AD researchers, there will hopefully be more reports where

cross-comparision with the data presented here is possible.

In addition, all of the patients in this study have the comorbitidy

of hydrocephalus. Although it is not easy to disentangle what effect

this might have on the data presented here, it should be noted that

AD is usually accompanied by co-morbid neurologic disease, and that

“pure AD” actually constitutes a minority of AD cases.60–62 Thus, pure

AD is actually less common among patients with dementia than mixed

pathology, and there is no a priori reason to expect hydrocephalus to

uniquely affect our analysis more than other common confounders

found in various autopsy and clinical cohorts. Although the interaction

of NPH and AD is an area of ongoing research,5,8,9 the fact that we

find correlations between AD pathology on biopsy and AD biomark-

ers in CSF taken at the same timepoint is itself internal validation that

aspects ofADpathophysiology canbe studiedusingour approach, even

in the presence of potential confounders.

Finally, it should be noted that, in the United States, patients

presenting with NPH are disproportionately white and middle/high

income which likely reflects disparities in healthcare delivery.63 In

the retrospective study reported here, we were not able to recover

race/ethnicity for all subjects, although 52 out of 60 patients with

available racial information were white/caucasian, consistent with

national trends for patients treated for NPH. The results reported

here should therefore also be examined in the future in a multi-ethnic

population, in order to determine how applicable they are to other

demographic/ethnic groups.

In summary, we show for the first time how CNS transcriptomic

changes (and accompanying early AD pathology) are related to CSF

biomarkers. As new disease-modifying therapies are developed target-

ing specific physiologic aspects of AD (such as synaptic dysfunction or

the immune response), biomarkers that track these changeswill be cru-

cial. The data presented here offer both biomarkers that can be used

for these purposes as well directions for future work.
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