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SUMMARY

Representation of the environment by hippocampal populations is known to drift even within 

a familiar environment, which could reflect gradual changes in single-cell activity or result 

from averaging across discrete switches of single neurons. Disambiguating these possibilities is 

crucial, as they each imply distinct mechanisms. Leveraging change point detection and model 

comparison, we find that CA1 population vectors decorrelate gradually within a session. In 

contrast, individual neurons exhibit predominantly step-like emergence and disappearance of place 

fields or sustained changes in within-field firing. The changes are not restricted to particular 

parts of the maze or trials and do not require apparent behavioral changes. The same place fields 

emerge, disappear, and reappear across days, suggesting that the hippocampus reuses pre-existing 

assemblies, rather than forming new fields de novo. Our results suggest an internally driven 

perpetual step-like reorganization of the neuronal assemblies.

In brief
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Zheng et al. systematically analyze drift in hippocampal place fields and show that, while the 

population-level representation gradually drifts, the peak firing rates of individual place fields are 

better described by abrupt changes. The step-like changes are not driven by measured behavioral 

variables and are biased by the pre-existing assemblies.

Graphical Abstract

INTRODUCTION

Balance between stability and flexibility is crucial for hippocampal function. Although 

hippocampal place cells have long been assumed to be stable within the same 

environment,1,2 recent studies have found that population-wide representations become 

progressively dissimilar as time lapses, without external perturbations.3–5 These gradual 

changes, termed “representational drift,” have timescales ranging from minutes to weeks. 

They have also been reported in the piriform cortex6 and several neocortical areas,7 although 

Jensen et al.8 reported the lack of drift in single neurons in the motor system.

While representational drift is often defined as the “gradual” decorrelation in the population 

over time, it remains an unresolved question regarding whether the mechanism is “gradual” 

or “discrete” at the level of single neurons. This distinction is crucial for a mechanistic 

understanding of the phenomenon. Hebbian spike-timing-dependent plasticity (STDP)9,10 

is expected to change synaptic strength over many repetitions and, thus, gradually. On 
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the other hand, behavioral timescale synaptic plasticity11–15 (BTSP) provides a mechanism 

for abrupt changes in neural firing rate. Intracellular and imaging experiments in vivo 
have demonstrated that spontaneously emerging ON fields often coincide with dendritic 

“plateau potentials” in CA1 pyramidal neurons, attributed to the temporal coordination of 

their entorhinal and CA3 inputs.12,16 Thus, representational drift in the hippocampus could 

conceivably consist of either gradual or discrete changes in single-neuron activity patterns.

Studies of BTSP focus on the emergence of place fields (also translocation, i.e., emergence 

in one and abolishment in another field, see Milstein et al.14) but not disappearance 

(note: spontaneous emergence and disappearance of place fields within session is visible 

in a previous paper17). Furthermore, it is unclear whether neurons exhibit other forms 

of spontaneous abrupt changes, such as up- or down-modulation of firing rate (or “rate 

remapping”18,19). The apparent lack of evidence could be due to difficulties in detecting 

abrupt changes. The emergence of place fields is relatively well defined and can be detected 

by looking at when the within-field activity goes above thresholds.15,20 Similarly, rate 

remapping is often induced by changing some experimental condition (e.g., the wall color 

of the maze) and studied in a trial-averaged fashion.18,19 On the other hand, spontaneous 

rate remapping is difficult to study without an unsupervised method for detecting abrupt and 

sustained changes on a single-trial level.

We developed a statistical framework that allowed us to detect, determine, and link the 

type of changes occurring on the single-cell and population levels. By analyzing large 

datasets of simultaneous recordings of the hippocampal CA1 pyramidal neurons, we show 

that population vectors of the CA1 pyramidal cells are decorrelated as a function of elapsed 

trials gradually, akin to the gradual drift view. In contrast, changes at the individual place 

cell level are better characterized by step-like emergence and disappearance of place fields 

or steep changes in within-field firing, which we call “switching.” We found that, although 

spatial position, trial number, and novelty may modulate the probability of place field 

turnover, switching can happen on every trial and in all parts of the test environment without 

apparent behavioral changes. Switching is not a single-cell property: neurons with multiple 

place fields can sustain stability in one field and change in another field, and neurons 

with switching fields in one environment may remain stable in another. Instead, switching 

appears to be driven by circuit dynamics, as place fields co-switch together on the same 

trial more than expected by chance. Finally, the spontaneous emergence of place fields 

on one day does not mean a de novo formation of a place field but rather a “reuse” of 

pre-existing assemblies, as emerging/disappearing fields on one day could pre-exist/reappear 

on the previous/next day. These findings bridge together single-cell and population features

—the step-like and gradual views—and illustrate that pre-existing cell assembly blocks 

continuously reorganize themselves without external perturbations.

RESULTS

We examined the stability of single units and populations of hippocampal CA1 pyramidal 

cells while mice performed a spontaneous alternation task in a figure-8 maze in either 

a familiar or a novel environment21 (schematics in Figure 4K; see STAR Methods). For 
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multiple-day comparisons, CA1 neurons detected by two-photon imaging were used as mice 

traversed a 1D virtual hallway.22

Within-session representational drift is driven by discrete switching of place fields

As animals traversed the figure-8 maze, the dorsal CA1 population activity exhibited largely 

similar sequential firing over the entire session (Figure 1A; place cells with place fields1). 

Yet, a subset of neurons changed their firing rates substantially from the beginning to the 

end of the session (Figure 1B). To relate our initial observations to previous reports, we first 

analyzed the correlation between population vectors (PVs) as a function of trial lag (Figure 

1C). The correlation decreased as a function of the lag between trials, suggesting drift within 

both the familiar and the novel environment (Figure 1D). Linear regression revealed that 

drift was significantly faster in novel environments (larger negative slope) within the first 

1–10 trial lags, but we failed to detect a significant difference between novel and familiar 

environments over a range of 11–20 or 21–30 trial lags (Figure 1E). Thus, our analysis 

supports the idea that novelty destabilizes the network15,23,24 but also highlights a surprising 

degree of spontaneous drift that persists in familiar environments.

In principle, representational drift could be driven by a change in place field location or its 

firing rate, among other possibilities (Figure 1F). We found the vector of the peak firing 

rate of all place fields decorrelated as a function of trial lag, whereas the vector of the 

field locations remained stable (Figures 1G and 1H). We emphasize, though, that the lack 

of decorrelation does not mean the field locations do not change as a function of trial. In 

fact, the average squared Euclidean distance as a function of trial lag increased significantly 

(Figure 1I). We focus on the decorrelation due to changes in firing rate for the rest of this 

paper.

The decorrelation of the population vectors could arise from either a gradual change (as 

implied by the term “drift”3,4) or a relatively sudden (“quantal”) jump11 at the single-cell 

level. Qualitative inspection suggested discrete and sustained changes in the within-field 

firing rates (quantal change; Figures 2A and 2B). We refer to such step-like increases/

decreases in firing rates as “switching ON/OFF.” To investigate switching quantitatively, 

we leveraged a change-point detection model to fit a piece-wise constant function to the 

peak within-field firing rates across trials. The trials at which these step functions change 

values are determined to be change points25 (see STAR Methods). To select the numbers 

of change points objectively, we compared the observed fit to models fit on shuffled data 

where trial order was randomly permuted (Figure 2C). To rule out changes that were too 

small, we required change points to result in at least a 40% change in firing rate (relative 

to the maximum). This restriction ruled out only 7% of the putative switching fields (n 
= 212/3,184). The combination of the shuffle and the criteria on the magnitude ruled out 

99.9% of the false positives in simulations from a null model using a homogeneous Poisson 

process (Figures S13F and S13G), demonstrating the robustness of our framework. Figures 

2A and 2B show examples of switching ON and switching OFF fields. Importantly, the 

switching includes not only a sudden appearance or disappearance of place fields but also 

drastic changes in firing rates of existing fields (see examples in Figures S3 and S10C). 

Overall, 19% (2,310/12,311) of the place fields showed significant switching (14% ON, 9% 
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OFF) in the familiar environment (Figure 2D) and 31% (662/2,127; 25% ON, 18% OFF) in 

the novel environment (Figure 2D), echoing the finding of a higher rate of BTSP in novel 

environments.15 Furthermore, a subgroup of animals exposed to both familiar and novel 

environments had less training than the animals exposed to only the familiar environment. 

These animals had higher fractions of switching fields (“Familiar” in Figure 2E) than the 

“Familiar only” animals (see caveats in the discussion). Thus, novelty seemed to induce 

instability in the network in a graded way.

A potential artifactual source of these observations is electrode drift in the tissue, resulting 

in the spurious appearance/disappearance or changing firing rates of the recorded neurons. 

Several observations and control analyses mitigate against such an explanation. First, the 

majority of place fields were stable across the entire session, and the switching neurons were 

embedded among them (Figure 1A). Second, comparison of the spike amplitudes during 

pre-experience and post-experience sleep demonstrated that the firing waveforms across the 

two sleep sessions did not vary differentially between switching and stable neurons (Figure 

S1A). Third, neurons with multiple place fields simultaneously showed stable and switching 

place fields (see examples in Figure 5E; Figure S1C). Finally, neurons recorded on the same 

site with a switching neuron had unchanged waveforms before and after the switch (Figures 

S1D–S1H), a strong support for the recording stability despite switching fields. Furthermore, 

switching was not related to the expression of channelrhodopsin (ChR) in a small subset of 

the neurons in the dataset (Figure S2).

To demonstrate the accuracy of the change-point model in capturing the firing-rate dynamics 

across trials, we compared it to an alternative model, which poorly captures abrupt, step-

like changes in firing rate, but which can accurately describe the gradual emergence or 

disappearance of place fields. Specifically, we ran a polynomial regression on each place 

field’s firing rate with the trial number as the independent variable. Importantly, we matched 

the number of free parameters between the change point and the polynomial regression 

models. For instance, a one-change-point model has two parameters specifying the means 

of the two segments and was compared with a linear regression model (which also has 

two parameters: slope and intercept). An N-change-point model has N + 1 parameters and 

was compared with a regression model with Nth order polynomial (Figures 3A–3C; more 

examples in Figure S3). The change-point models explained more variance for more than 

96% of the place fields across all model complexities (Figures 3D–3F, left column). In 

contrast, polynomial regression explained more variance than the change-point model for the 

population vector decorrelation (Figures 3D–3F, right column). Altogether, these analyses 

revealed that individual place fields tend to exhibit discrete and step-like changes in contrast 

to gradual and continuous changes in the population-level representation.

One might object that averaging across trial pairs might smooth out potential “jumps” in 

the population vector. We therefore applied the model comparison to the population vectors 

themselves (instead of the correlations previously) (see STAR Methods). We found that 

the two models were largely comparable at explaining the data, with more sessions (60%–

70%) better explained by the gradual model and the distribution of R2 significantly biased 

toward continuous models (Figure S4G). These analyses confirmed that overall, the change 
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in population was relatively gradual, but did not rule out the possibility of occasional jumps 

that were difficult to distinguish from gradual (e.g., Figures S4A–S4C).

A change-point model stipulates an instantaneous “step-like” change in firing rate. Are these 

changes really abrupt, or do they emerge over a small number of trials? We reasoned that if 

the firing rate were slowly ramping up (resp. down), it would take multiple trials to move 

above (resp. below) the model’s predicted firing rate after a change point (Figure 3H, left). 

Alternatively, if the firing rate were an abrupt step, the first passage time above or below the 

predicted firing rate would be quicker (Figure 3H, right). Indeed, assuming that trial-to-trial 

firing-rate fluctuations following an instantaneous step up/down are symmetric around the 

mean, the distribution of first passage times follows a negative binomial distribution (see 

STAR Methods). Empirically, we found that 75%–77% of first passage times happened 

in fewer than two trials, and the distribution of passage times resembled the expected 

negative binomial distribution (Figures 3I–3K). Therefore, calling the changes “discrete” or 

“step-like” is warranted.

We have so far shown that a continuous drift model better characterizes the population 

change within a session, whereas a discrete step model better describes the changes of the 

individual place cells. We next sought to establish a relationship between the two. In other 

words, how much does switching contribute to the drift of the population vector? Even 

though it is intuitive that switchers should contribute to the drift of the population vector, 

it is still conceivable that non-switchers could exhibit other forms of variability and play 

a larger role in the observed continuous drift of the population. To answer this question, 

we grouped the place cell population into the “switchers” (cells with at least one switching 

field) and “non-switchers” (cells with no switching fields). The population vector of the 

switching population decorrelated faster than that of the non-switching population in both 

familiar and novel environments (Figure S5).

Factors that affect the rate of switching

Are “switches” in place field activity affected by sensory, cognitive, or behavioral factors? 

To investigate, we used a Poisson generalized linear model to predict the number of place 

field switches per trial within five distinct segments of the maze (delay zone, central arm, 

left/right choice arm, return side arm, and pre-delay zone; Figure 4K). The number of 

switches was predicted from four categorical variables—animal identifier, maze segment 

(“position”), current trial correct/incorrect, and previous trial correct/incorrect—and three 

numeric variables: trial number, average speed, and number of active place fields. The 

model explained 20% of the deviance for switching ON and 14% for switching OFF. We 

examined the importance of each predictor by leaving it out and computing the decrease in 

cross-validated explained deviance compared to the full model. We found that the variables 

that explained most of the variance were the animal labels (i.e., individual differences), the 

maze corridors, and the number of place fields, for both switching ON and switching OFF 

fields (Figures 4A–4C, 4F, and 4G). Trial numbers (Z scored within a session) contributed 

less to switching ON but more to switching OFF. The contribution from position and trial 

suggested that the occurrence of switching was not homogeneous across space and time. 

Although the distribution of switching across arms was variable across sessions and animals 
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(Figure S6), consistently more ON/OFF switching occurred in the delay zone (Figures 4B–

4G, 4E, and 4J). However, we did not find any reliable behavioral signature (average speed, 

variability of speed, or fraction of time spent locomoting; see STAR Methods) or neural 

signature (average pyramidal cell or interneuron activities or excitation/inhibition [E/I] ratio) 

that separated the delay zone from other parts of the maze (Figure S7). As expected, 

switching probability decreased as a function of the trial number, reflecting the graded 

influence of novelty discussed above15 (Figures 4D and 4I). By contrast, average locomotion 

speed did not change as a function of trial (Figure S8C). Correct or incorrect arm choice 

on the current or previous trial did not predict the occurrence of switching (Figures 4C and 

4H). Leaving out locomotion speed or coefficient of variation (CV) of speed did not reduce 

the model’s ability to predict held-out data (Figures 4A and 4F). Nor did we find a clear 

linear relationship between speed and the normalized (i.e., divided by the number of fields) 

switching count (Figures S8A and S8B). We note that even though space and time made 

significant contributions, the effect sizes were small, suggesting these behavioral correlates 

were not determining factors of switching.

Although we failed to find generic behavioral correlates of place field switching, it is 

possible that some specific behaviors could induce novel place fields or make them 

disappear. Indeed, it has been reported that exploratory head scanning in rats was predictive 

of the emergence of novel place fields.26 In our experiments, most head scans were detected 

in the reward area (position 50, between green and red sections), while head scans in the 

central arm were rare (Figures 4N and 4O). We found no reliable relationship between field 

switching and incidence of head scanning (Figures 4O and 4P). Thus, even without behavior 

triggers, discrete drift continues to occur.

Field switching was not restricted to spatial tuning. The firing rates within place fields can 

vary substantially in the central arm of the maze, depending on the animal’s future choice 

in the coming turn, known as “splitter fields.”27,28 We found that the splitter feature of 

hippocampal neurons could also switch ON and OFF at any trial of the session, similar to 

place fields (Figure S9). Thus, field switching is not confined to space but appears to be a 

generic property of hippocampal neurons.

Switching exhibits signatures of BTSP

We next tested whether switching exhibits signatures of BTSP. Some signatures have been 

shown in intracellular recordings11,12 and calcium imaging15,20,29 during rapid place field 

formations. We observed a significant correlation between the place field width and the 

running speed on the trial when the field switched ON (Figure S13A), after controlling for 

the spatial inhomogeneity of place field width (Figure S13B). The shift of the place field 

peak on the trial after the switch-ON trial could be backward or forward (relative to the 

animal’s motion), but the distribution skewed toward backward (Figure S13C), although it is 

not significant in the novel environment. Dong et al.20 found that CA1 place fields tended 

to shift forward in the first few trials and then revert to backward. It could be that in novel 

contexts switch-ON happened more in early trials (Figure 4D), resulting in larger fractions 

of forward shifting fields.
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Intracellular recordings showed burst firing associated with the plateau potential as a 

signature for BTSP.11,12 We did not find higher within-field peak firing rate (which strongly 

correlates with burst probability) on the switch trial (Figure S13D) relative to the trial after 

the switch trial. This could be a limitation of extracellular recording or could have occurred 

because both BTSP- and non-BTSP-mediated sudden potentiations were present in the data. 

Interestingly, there was a significant ramp before the switch-ONs not present in the null 

simulation consisting of homogeneous Poisson firing across trials (Figures S13D and S13E), 

suggesting a preparatory potentiation before the large jump in firing rate.

Switching: Neuron or circuit property?

Is switching an intrinsic property of the neuron or is it controlled by the circuit in which the 

neuron is embedded? If switching were an intrinsic property, we would expect each neuron 

to exhibit the property consistently (i.e., switch or not switch) in different environments. We 

observed individual neurons with a switching field in a familiar context and a stable field 

in a novel context and vice versa, suggesting switching might not be intrinsic to the neuron 

(e.g., Figures 5A and 5B). To quantify this observation, we developed a continuous metric 

to measure the extent to which the trial-to-trial variability of the neuron is dominated by 

discrete switching (see STAR Methods). We found no correlation of the switchiness across 

the two contexts (i.e., familiar and novel; Figure 5C, left). In contrast, two other measures 

of variability were correlated across environments (Figure 5C, right two columns): (1) the 

CV of the mean within-field firing rate across trials, which measures how noisy the within-

field firing is, and (2) the lap-to-lap correlation of the firing-rate maps, which measures 

how jittery the spatial tuning is (examples in Figure S10). To be sure that the results are 

not affected by the conservation of firing rates across contexts,30 the correlations were 

performed on the residual of the metrics, after the mean firing rate during non-rapid eye 

movement (NREM) sleep was regressed out (Figures 5C and 5D). Overall, these findings 

suggest that some forms of firing variability, but not switchiness, are intrinsic to individual 

neurons.

Switching appeared to stabilize within-field firing rates for the new place fields. Specifically, 

switch-ON fields had lower CV of firing rates within the five trials after the switch, 

relative to trial-to-trial variability in non-switching fields over five trials taken either from 

the beginning or from the middle of the session (Figures S12A and S12D). Further, we 

observed neurons with two or more place fields whose individual fields switched ON/OFF 

independent of one another. In some cases, one field was stable while the other field 

switched (Figure 5E, left and middle; quantifications in Figures S11A–S11D). In other 

cases, switching in one field occurred on different trials compared with switching in another 

field (Figure 5E, right). Of 781 place field pairs that belonged to the same place cell and 

both switched, only 41 (5%) switched on the same trial. Together, these results suggest that 

switchiness is not an intrinsic property of individual neurons.

If switching is not a cell-intrinsic property, it may be driven by a circuit-level mechanism. 

For example, BTSP-induced plateau potentials may co-occur in multiple neurons in the 

same trial, suggesting the possibility that groups of neurons “co-switch” ON. We found 

that in each trial, a small subset of the place fields (up to 5%) switched ON/OFF and 
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sometimes tiled the track (see example in Figures 6A–6C). We examined whether these 

fields switched together in the same trial (which we call “co-switching”) or by chance. We 

created a null distribution for the number of pairs of place fields that co-switched ON/OFF 

on at least one trial by circularly shifting the switch trials for each field independently by 

a random amount (Figure 6D). We then tested whether the number of pairs of fields that 

co-switched exceeded the shuffled pairs and found that 17% (20%) of the familiar sessions 

and 57% (29%) of the novel sessions showed at least one trial with significant co-switching 

ON (OFF) (Figure 6E). The pairwise test was chosen because it had a higher power of 

detecting potential interactions among the neurons. The small fraction of place fields that 

switched together suggests that switching is largely asynchronous (Figure 6F), thus creating 

a perpetually changing population. Yet the shuffle test highlights the non-independence 

of switching. Together, these findings suggest that the switching feature of a field is not 

an intrinsic property of the neuron. The non-independence of switching could reflect the 

flexible partnership between the neuron and the different assemblies or the non-stationarity 

in the rate of switching in the population.

Pre-existing dynamics bias switching

Can a spontaneously emerging place field emerge anywhere on the track? BTSP induction 

experiments suggested that a place field could form anywhere on the track, if enough 

current is injected into the cell to form a plateau potential.11 Other place field induction 

experiments stimulating a larger number of neurons simultaneously failed to induce place 

fields in a highly localized manner,31,32 highlighting how the network can limit the degrees 

of freedom on the formation and remapping of place fields.33 We therefore hypothesized that 

pre-existing dynamics, reflected through the subthreshold activities before the formation, 

could bias the formation of place fields. Further, the disappearance of place fields should not 

eliminate the spatial bias in the subthreshold activities post-disappearance.

To examine the spontaneous emergence and disappearance of place fields, we focused on 

the subset of switching fields whose average within-field peak firing rate pre-switch-ON/

post-switch-OFF was below the threshold of place field detection (60% of the switching ON, 

20% of the switching OFF). Indeed, we found that, even before the emergence of the new 

place field, the firing rates within the future place fields were already elevated relative to the 

mean rate recorded outside of the future place field for the majority of the neurons (Figures 

S14A, S14C, and S14E). Similarly, the firing rates remained elevated within the previous 

place field after the field had switched OFF (Figures S14B, S14D, and S14F). Thus, within-

session switching seems to reflect “unmasking”/“masking” of pre-existing/persisting place 

fields.34,35

A natural next question regards the timescale at which place fields pre-exist/persist. 

Spatial representation drifts across days,36 and place fields can form spontaneously via 

BTSP.11,12,15 It is therefore plausible that place fields that emerged during the experiment 

were “brand new” and did not exist on the previous day, reflecting drift across days. 

However, we found the opposite. We examined a two-photon calcium imaging dataset,22 

where mice ran on a virtual linear track for multiple days. Every 5–10 trials, the mice were 

teleported between a familiar environment and an environment that was novel on the first 
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day of the experiment (Figures 7A and 7B). In many cases, we observed that place fields 

that switched within session made repeated appearances across multiple days, suggesting a 

pre-existing bias on where place fields can be expressed for a given place cell. For example, 

a place field that switched ON on day 2 could be found stably on day 1 (Figure 7C). In 

another example, a field switched OFF on day 1 and reemerged on day 2. Overall, we found 

that even on the day before the emergence of the new place field, the firing rates within 

the future place fields were already significantly elevated relative to the mean rate recorded 

outside of the future place field (Figures 7E and 7G). Similarly, the firing rates remained 

elevated on the next day within the previous place field after the field had switched OFF 

(Figures 7F and 7H). Thus, even when the place fields are silent for an extended period 

(i.e., before switching ON or after switching OFF), they are still subject to the biasing effect 

imposed by the network.

A potential caveat is that a shift in the imaging plane could lead to a coordinated 

change (some increase and some decrease) in the fluorescent calcium indicator GCaMP 

fluorescence, resulting in an appearance of switching. Such shift would cause a large 

absolute change in the baseline GCaMP on trials where many neurons switched. We 

therefore correlated the average absolute change in baseline fluorescence (see methods in 

Hainmueller and Bartos22) across cells in a given image field with the number of switching 

fields per trial but did not observe a significant correlation (Figure S15). This result indicates 

that there was no relationship between the trial-to-trial image stability and place field 

switching, making image drift an unlikely confounder.

DISCUSSION

We found that hippocampal place fields can abruptly and spontaneously appear, disappear, 

or change firing rates over the course of a recording session, resulting in consistent trial-to-

trial turnover and gradual population-level drift in the spatial representation. These switches 

in individual place fields occurred in any part of the maze without apparent behavioral 

correlates. Switching was not exclusive to place fields, as choice-predicting (splitter) fields 

also showed regular turnover. The rate of drift was accelerated by novelty. Switching was 

not an intrinsic property carried by single neurons: different place fields belonging to 

the same neuron could have independent switching properties. But pairs of place fields 

from different neurons switched on the same trial more often than by chance, reflecting 

population-level coordination. Finally, when place fields formed spontaneously, the locations 

were constrained by the pre-existing spatial bias in the subthreshold activities before the 

formation. The bias also persisted after the disappearance. These biases extended beyond 

single sessions into multiple days.

Robustness of the change-point model

Representational drift is often studied in a trial-averaged manner and described as “gradual” 

in both population activity and single neurons3,4,6,36–40 (but see Marks and Goard7 and Eliav 

et al.17). However, these reports relied on qualitative reports of aggregated statistics and 

did not explicitly model the drift dynamics of single neurons. We leveraged change point 

detection, shuffle tests, and comparison to polynomial regression to rigorously arbitrate the 
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issue of gradual vs. sudden change. Decorrelations of population vector averaged across 

trial pairs were gradual, while changes in the peak within-field firing rate were sudden, 

highlighting the necessity of careful model comparison with single-cell and single-trial 

resolution. Our modeling framework also allowed us to detect changes in within-field 

firing rates beyond simple emergence of place fields, which was the focus of studies of 

BTSP.11,12,15 By expanding our analysis to a broader variety of firing-rate changes, we 

gained a more complete picture of the sudden and persistent changes of place field features. 

They also gave us the power to determine the contribution of the switchers to the population 

level drift and to examine the coordination of switching in the population. More generally, 

leveraging rigorous model comparison to determine whether neural activities are gradual 

or discrete has been fruitful in deepening our understanding of the neural mechanism of 

perceptual decision making in macaque lateral intraparietal cortex (LIP).41

Interpretations of representational drift

The term “representational drift” refers to the changing relationship between external 

variables (image, odor, space, etc.) and neuronal activity. One interpretation hypothesized 

the homeostatic readjustment of synapses and firing rates42,43 as a driver for drift. An 

implication is that the longer the elapsed time between retesting, the larger the drift. In 

support of this hypothesis, longer testing intervals lead to larger decorrelation.4,36 However, 

recent experiments showed a greater role of the amount of awake experience in the degree 

of drift than time per se.38,39 The within-session drift we observed is consistent with these 

observations.

Another potential driver for drift could be changing attentional and behavioral states. The 

implicit assumption of drift is that spiking patterns correspond to or “represent” some 

external physical features.1,44 Thus, the spiking patterns can change when the animal attends 

to different external features.45–47 Consequently, drift could be induced by changes in an 

animal’s behavior or attentional states.48–51 In particular, Monaco et al.26 reported that 

exploratory head movement can reliably induce novel place fields in rats. We found, though, 

that such “stereotypical” behavior was not necessary to induce firing-rate changes in mice. 

In addition, switching could occur everywhere and all the time, suggesting that it is not 

induced by particular events.

Here, we offer an alternative explanation for the drift and suggest the neuronal circuits 

are perpetually reorganized through their internal dynamics.52,53 Fluctuations in the 

nervous system may trigger spontaneous plateau potentials that induce BTSP and change 

the tuning,11 corresponding to the switch-ONs. Alternatively, Kispersky et al.54 showed 

in a biophysical model that small changes in α-amino-3-hydroxy-5-methyl-4-isoxazole-

propionic acid (AMPA) conductance could lead to an abrupt increase in firing rate due 

to the dynamic properties of the ionic currents. Switch-OFFs (which were not explicitly 

described via BTSP) might be triggered by the switch-ONs in other pyramidal cells via 

interneurons to maintain E/I balance.55,56 In support of this interpretation, optogenetic 

stimulation of hippocampal pyramidal cells led to the appearance and disappearance of 

place fields (“remapping”) both inside and outside the stimulated part of the maze, by 

affecting monosynaptic drive of interneurons.31,33,57 Similarly, long-term potentiation of the 
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CA3-CA1 connections both induced and abolished place fields transiently but reverted to 

their default fields with extended time.55

Our postulation that perpetual changes in neuronal dynamics are internally organized does 

not diminish the role of behavioral effects and external inputs. Indeed, we showed that 

place fields in the delay zone had a higher rate of switching ON/OFF, and place fields 

tended to switch more frequently in earlier trials, which could be due to different behavioral, 

attentional, and motivational states at particular places and times. Head scanning, active 

exploration, and attention to novel and salient cues may effectively trigger instantaneous 

or slow modification of firing patterns and/or affect the temporal rate of population vector 

decorrelations. Thus, STDP-induced slow and BTSP-induced quantal plasticity mechanisms 

likely co-exist and combine the advantages offered by each mechanism.

Consistent with previous reports that novelty induces instability in the network,15,17,23 we 

showed higher probability of switching in novel contexts. Even in the familiar context, 

animals exposed to both familiar and novel (“Familiar”) had more switching than animals 

exposed to only the familiar context (“Familiar only”). We caution, though, that the higher 

fraction of switching in the “Familiar” sessions compared to the “Familiar only” sessions 

could be due to multiple reasons, (1) exposure to novel contexts, (2) less training, and (3) 

additional experience, as opposed to not novelty per se. Furthermore, increased experience 

with the novel environment,23,58 especially when structured attention is required,51 stabilizes 

the representation and reduces drift,59 an avenue that we did not explore in our current work.

Properties of the pre-existing bias

The presence of subthreshold place fields in “silent” neurons has been shown by unmasking 

their spiking fields by sustained or transient depolarization.34,60 These subthreshold fields 

are hypothesized to reflect pre-existing bias imposed by hippocampal cell assemblies. 

Consistent with this hypothesis, we observed persistent place fields that spontaneously 

formed and disappeared across multiple days. Given that switching comprises pre-existing/

persistent place fields, it is possible that fluctuations of excitation and inhibition could 

unmask the place field even without the need for BTSP or other forms of drastic 

plasticity34,54,60 by moving population activity from one attractor to the next. The attractor 

dynamics does not require recurrent excitation,61 and the attractor property of CA1 has been 

demonstrated in Zutshi et al.,62 where momentary silencing of the medial entorhinal cortex 

led to an instantaneous but reversible reconfiguration of the place field sequences without 

the need for plasticity.62

Given the biasing effect on place field locations that we observed across 2 days, how could 

large changes in population-level representation happen across many weeks4? We emphasize 

that the pre-existing bias does not fully determine the expression of place fields. On a 

timescale of 2 days, place fields exhibit mostly ON and OFF switching in a fixed range 

of locations. On a slower timescale, however, we hypothesize that the tendency of ON 

and OFF switching could change. For instance, a neuron might switch ON less frequently 

and eventually develop a new place field in a different location. The bias itself reflects 

the population activity and connectivity and therefore could also slowly change as the 

population drifts, making it easier for cells to develop place fields in new locations. Our 
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findings and explanation are consistent with work from Geva et al.,38 which finds that place 

field location shifts over days are not random but become progressively larger over longer 

time intervals. We find that this bias is present even for unstable fields that emerge and 

disappear on the timescale of trials.

Limitations of the study

The present study focuses on the change in the peak firing rate of the place fields, while 

changes in location of the place fields have also been shown to play a role in representational 

drift38 across days. Furthermore, higher-resolution behavior tracking might reveal subtler 

behavior correlates of switching in future experiments.

RESOURCE AVAILABILITY

Lead contact

Requests for further information and resources and reagents should be directed to and will 

be fulfilled by the lead contact, György Buzsáki (gyorgy.buzsaki@nyulangone.org).

Materials availability

This study did not generate new unique reagents.

Data and code availability

• The electrophysiological dataset analyzed for the present study has been made 

publicly available in the Buzsáki lab repository (https://buzsakilab.nyumc.org/

datasets). The calcium imaging dataset that supports the findings of this study 

is available from Marlene Bartos (bartos@physiologie.uni-freiburg.de) upon 

request.

• All original code has been deposited at Zenodo and is publicly available as of the 

date of publication. DOIs are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

STAR★METHODS

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

We refer to Huszár et al.21 and Hainmueller & Bartos22 for details on the mice used for 

the electrophysiological dataset and the two-photon calcium imaging dataset, respectively. 

For the electrophysiological dataset, time-pregnant C57BL/6J female mice were either 

bred in-house or obtained from Charles River Laboratory. The animals were manipulated 

with in utero electroporation (see Methods in Huszár et al.21). For the calcium imaging 

dataset, B6;129P2-Pvalbtm1(cre)Arbr/J mice (PV-Cre; The Jackson laboratory) crossed with 

B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J mice (Ai9-reporter; The Jackson laboratory) 

were used for all experiments at an age of 7–15 weeks. Mice were housed on a 12-h light–

dark cycle in groups of 2–5 mice. After the start of the post-window-implantation training 

and food restriction, mice were housed individually.
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METHOD DETAILS

Datasets—For details on animal surgery, training, recording, data preprocessing, and spike 

sorting / cell body segmentation, we refer to Huszár et al.21 and Hainmueller & Bartos22 for 

the electrophysiological dataset and the two-photon calcium imaging dataset, respectively. In 

brief, for the electrophysiological dataset, we used the chronic silicon probe recordings from 

hippocampal CA1 region in n=11 mice. The animals were trained on a spatial alternation 

task on a figure-eight maze. Animals were water restricted before the start of experiments 

and familiarized to a customized 79 × 79 cm2 figure-eight maze raised 61 cm above the 

ground. Over several days after the start of water deprivation, animals were shaped to 

visit alternate arms between trials to receive a water reward. A 5-s delay in the start area 

(delay area) was introduced between trials. The position of head-mounted red LEDs (light-

emitting diodes) was tracked with an overhead camera at a frame rate of 30 Hz. Animals 

were required to run at least ten trials along each arm (at least twenty trials total) within 

each session. In all sessions that included maze behavior, animals spent ~120 min in the 

homecage before running on the maze and another ~120 min in the homecage afterward for 

sleep recordings. All behavioral sessions were performed in the mornings (start of the dark 

cycle). A subset of n=3 mice were exposed to novel environments in addition to the familiar 

figure-eight maze. After the shaping phase described above, animals underwent recording 

sessions consisting of a ~120-min homecage period, running on the figure-eight maze, 

~60-min homecage period, running in a never-before experienced environment, followed 

by a final ~120-min homecage period. The novel environments included two distinct linear 

mazes and a different figure-eight maze. Mazes were placed in distinct recording rooms, or 

in different corners of the same recording room, with distinct enclosures to ensure unique 

visual cues. We required that the familiar sessions had no fewer than 20 trials in total and 

7 trials per turn, and no fewer than 50 putative pyramidal cells. Overall, we included 46 

familiar sessions and 8 novel sessions. For the co-switching analysis, we further excluded a 

novel session because it had too few trials.

Identification of light responsive pyramidal neurons was performed as described in Huszár 

et al., 2022. Briefly, ChR2 was introduced into hippocampal pyramidal neurons via in-

utero electroporation to achieve a sparse expression profile. ChR2 expressing pyramidal 

neurons were identified via trains of 2ms pulses of blue light delivered at 5Hz. Stimulation 

was performed at the end of each recording session following a prolonged rest period 

in the homecage. Light was never delivered during behavior on the figure-8 maze. Light-

responsive, putatively ChR2-expressing neurons were identified by their reliable and short-

latency spiking following light pulse offset (see Methods in Huszár et al.21). Pyramidal 

neurons were subselected based on their waveform shape.

For the calcium imaging dataset, mice were injected with AAV1.Syn.GCaMP6f.WPRE.SV4 

to express the calcium indicator GCaMP6f pan-neuronally in the dorsal CA1. The mice 

were then implanted with a 3 mm diameter transcortical window over the external capsule 

after aspiration of the overlying cortex and imaged with a resonant-scanning two-photon 

microscope (for details see Hainmueller and Bartos22). For imaging experiments, the mice 

were head-fixed and ran in a virtual environment resembling a linear track. The track 

consisted of textured walls, floors and other 3D rendered objects at the tracks sides as visual 
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cues. Potential reward locations were marked with visual and acoustic cues, and 4 μl of 

soy milk was gradually dispensed through a spout in front of the mouse as long as the 

mouse waited in a rewarded location. The forward gain was adjusted so that 4 m of distance 

travelled along the circumference of the ball equaled one full traversal along the linear track. 

When the mouse had reached the end of the track, screens were blanked for 5–10 s and 

the mouse was ‘teleported’ back to the start of the linear track. The virtual environment 

was displayed on four TFT monitors (19″ screen diagonal, Dell) arranged in a hexagonal 

arc around the mouse and placed ~25 cm away from the head, thereby covering ~260° of 

the horizontal and ~60° of the vertical visual field of the mouse. Mice were first trained in 

the familiar virtual environment for 4-5 days. After the window implantation surgery, mice 

were re-habituated in the familiar virtual environment until consistent reward licking. From 

the first day of the imaging session, mice were introduced to a novel context. which had 

different visual cues, floor and wall textures but had the same dimensions as the familiar 

context including the four marked reward locations. On the novel track, two of these reward 

sites were disabled (that is, the auditory cue was still given, but no reward was dispensed). 

Mice alternatingly ran on the two tracks for a total of 15–30 runs on each track and day. 

The mice made 1–5 runs on one track and then an equal number of runs on the other. The 

length of these trial blocks was randomly varied. Imaging was performed in the same set of 

contexts for two to five consecutive days. We only considered the CA1 recording for two 

days, 14 experiments in 11 animals, with 9828 pyramidal cells (150-1765 per session).

Significant calcium transients were identified, which mainly reflect burst firing of principal 

cells. In brief, calcium traces were corrected for slow changes in fluorescence by subtracting 

the eighth percentile value of the fluorescence-value distribution in a window of ~8 s around 

each time point from the raw fluorescence trace. We obtained an initial estimate on baseline 

fluorescence and standard deviation (s.d.) by calculating the mean of all points of the 

fluorescence signal that did not exceed 3 s.d. of the total signal and would therefore be 

likely to be part of a significant transient. We divided the raw fluorescence trace by this 

value to obtain a ΔF/F trace. We used this trace to determine the parameters for transient 

detection that yielded a false positive rate (defined as the ratio of negative to positive 

oriented transients) <5% and extracted all significant transients from the raw ΔF/F trace. 

Definitive values for baseline fluorescence and baseline s.d. were then calculated from all 

points of this trace that did not contain significant transients. For further analysis, all values 

of this ΔF/F trace that did not contain significant calcium transients were masked and set to 

zero.

Behavior segmentation—From the 2D position tracking, we computed the velocity in x 

and y directions within each time bin and smoothed it with a gaussian filter (std = 10 bins), 

and then computed the speed using v = vx
2 + vy

2. We categorized the animal’s behavior on 

the maze into forward locomotion, immobility, and headscan. We first defined immobility 

as times when the speed was <1cm/s. We then detected headscan using a simplified version 

of the method used in Monaco et al26. Headscan events were detected by first finding times 

when the distance between the animal’s head position (reflected by the LED tracking) and 

the track was above a threshold of 3 cm. We then extended the time both forward and 

backward till when the head position was “on-track”, distance < 1 cm. Both thresholds were 
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manually adjusted to minimize type I and type II error. Among these putative events, those 

that were shorter than 0.4s in time, and those whose start and end locations had a distance 

greater than 20 bins were excluded. The rest of the events were merged if the end of one and 

the start of the next were within 0.4s in time. We computed the distance to the maze from 

one point by first sampling positions that were on the maze, and then calculated the smallest 

Euclidean distance from that point to the position samples. We sampled positions on the 

maze by: 1) selecting the time points where the speed was > 10cm/s; 2) using these points 

to construct a map from the linearized coordinates back to the 2D coordinates using linear 

interpolation; 3) evenly sampling 200 linearized coordinates; and 4) mapping them back to 

the 2D coordinates. Excluding the times of immobility and headscan, as well as occasional 

backtracking, the rest was considered forward locomotion.

Ratemap calculation—Only time points when animals were moving forward were 

included. Spikes were binned by bins of 2.2cm. The spike counts and occupancies within 

each bin were smoothed by a gaussian filter with standard deviation of 2.5. We obtained 

ratemaps per trial by dividing the smoothed spike counts by smoothed occupancies. We then 

averaged over trials to obtain a trial-averaged ratemap. For the imaging dataset, we first 

mask the dF/F traces and performed the same operations on the masked traces in place of 

spikes.

Place field detection—For the electrophysiological dataset, we circularly shuffled 

animal’s positions in time and constructed trial-averaged ratemaps 1000 times to obtain a 

null distribution of the average ratemaps per neuron. Place fields were defined as contiguous 

chunks of positions where: 1) the empirical average ratemaps were above the 95th percentile 

of the null distribution; 2) the size was between 4 and 30 bins; and 3) the peak firing rate 

within the field was above 1Hz. For the imaging dataset, we circularly shuffled the animal’s 

position labels in the ratemaps per trial and then averaged to obtain a null distribution of the 

average ratemaps per neuron. Place fields were defined as contiguous chunks of positions 

where: 1) the empirical average ratemaps were above a threshold. The threshold for each 

neuron was computed as: 0.25 times the difference between the peak of the average ratemap 

and the baseline. The baseline was defined as the 25th percentile of the activity rate among 

all the positions and trials. The baseline was either defined using the current session or 

all days, giving rise to a threshold and a “pooled” threshold. The final threshold was the 

maximum between the threshold and 0.6 * pooled threshold. Including a pooled threshold 

ensured that small fluctuations on one day would not be classified as place field activity if 

the neuron had high activity on the other day. 2) The in-field gain, measured by the average 

within-field activity/average outside activity had to be >3.3) The peak within-field activity 

rate had to be higher than the 80th percentile of the null distribution. After detecting the 

place fields, we computed the peak within-field firing rate per trial and the peak locations 

per trial. For the analysis of preexisting fields, we obtained the outside region for each place 

field by extending the field in both directions, each for 10% of the track length, until it hit 

the boundary of the maze or another field.

For the figure 8-maze data, we separated place fields into fields that were common for both 

turns (on the central arm) and fields that were specific for one type of turn (on non-central 
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arms or splitter cells on the central arm). The field was determined to be common to both 

turns if the peaks detected from both turns were less than 5 bins apart and lied on the central 

arm, and that the peak firing rates per trial were not significantly different between two turns 

(using independent t-test). If they were, then the field was deemed a splitter field. Analysis 

on the place field parameters (firing rate, location) were performed using all trials for the 

turn-common fields, and only trials for one turn for the turn-specific fields.

Detection of discrete switching—We used a change point detection algorithm called 

optimal partitioning25. Given the number of change points (K), it searches for K changes 

points τ1, …, τK:1 < τ1 < … < τK < τK + 1 = T  that partitions the time series x1:T into K + 

1 segments, where T is the length of the signal. Each segment is associated with a cost. 

In our case the cost was the sum of squared error of fitting a constant function within 

a segment: C1(u, v) =
i = u

V
xi − xu:v

2, where xu:v is the average of x within u and v. The 

objective is to find change points that minimize the total cost: CK + 1(1, T ) = i = 1
k + 1 C1 x τi + 1 :τi + 1

where the left hand side denotes the minimal cost from 1 till T given K change points (K 
+ 1 segments). At its core, the search utilizes a recursive relation that relates the optimal 

value of the cost function within a segment given m change points to the optimal cost 

within a subsection from the start of the segment to the last change point (given m − 1 

change points): Cm + 1(u, v) = Cm(u, t) + C1(t + 1, v) .. Starting from C1(u, v) for all pairs of u, 

v, it recursively computes Cm(u, v) for K + 1 ≥ m ≥ 2. Finally, it backtracks to find the 

set of change points: starting from τK + 1 = T, given τm + 1, τm = \argminτmCm − 1 1, τm + C1 τm, τm + 1 .
The time complexity is O(KT2), compared to O(TK) in the naïve way. For a more detailed 

description we refer to Truong et al.63 for a review. We used the Python package ruptures63 

to perform change point detection on the time series of within-field peak firing rate over 

trials. We set the parameter of the minimal segment length to be two.

To determine the significance of the change points and further determine the number of 

change points that suited the data the best, we noticed that if a step-function like structure 

existed in the data, shuffling the data would break the structure and incur a higher cost from 

the change point model than in the original data. This observation allowed us to determine 

whether there was any significant discrete jump in the data. We could further determine the 

optimal number of change points by selecting the number that led to the highest increase 

in cost in shuffle compared to data. This way, overfitting with many change points was 

avoided, because increasing the number of change points would also decrease the cost in 

the shuffle, counterbalancing the decrease in the cost of the data. In practice, for each place 

field, we shuffled the within-field peak firing rate over trials 1000 times and fit each shuffle 

with change point models from one change point up to min(5, ⌋ num. trials / 4 ⌊) and 

obtained the costs. The empirical costs were compared against the shuffle to compute the 

P-values. We then performed a Bonferroni corrected test (with a P-value threshold of 5%) 

to determine whether a field had any significant change points. Next, the optimal number of 

change points to each field that had significant change points was determined to be the one 

whose empirical cost had the lowest percentile in shuffle. Finally, we filtered change points 

whose step sizes were < 40% of the max firing rate across trials to include only relatively 
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large changes. Although the shuffle test already tended to favor large and sustained changes, 

the final filter filtered out only a small fraction of events.

Metrics of variability—We used two traditional metrics of variability: CV of the firing 

rate (“noisy”) and the lap-to-lap ratemap correlations (“shifty”), plus one new metric based 

on the change point detection (“switchy”), to measure the variability of the space-related 

activities of the place cells. The “noisiness” measured the total amount of fluctuations of 

the within-field peak firing rate and was computed as the standard deviation divided by the 

mean of the within-field peak firing rate across trials. We then averaged them across fields 

to get one measure for one neuron. The shiftiness was the Pearson correlation between the 

ratemaps from a pair of trials, averaged over all pairs of trials, and primarily measured the 

shift in the location or distribution of the ratemap. Neither of these metrics captured the 

degree of step-function like switching, which we called switchiness and defined to be the 

fraction of variance of the within-field peak firing rate explained by the change point model 

with one change point. (Fixing one change point is to make place fields that have different 

optimal numbers of change points comparable). We then average the switchiness per field to 

assign a score to each neuron.

Continuous model of trial-dependent change—We compared the discrete switching 

model with a continuous model for explaining both the change in single place field’s activity 

over trials and also the decay in the population vector correlations as a function of trial lags. 

The continuous model was a polynomial regression y(t) ~ b0 + b1t + b2t2 + …bktk, where 

y(t) was either the peak within-field firing rate of one place field in trial t or the population 

vector correlation averaged over all trials pairs t trials apart, bis were the coefficients and k 
was the order of the model. The fitting was done using the Python library statsmodels64.

Model comparison applied to the population vectors—To further determine 

whether the population vectors evolve gradually or abruptly while ruling out the effect 

of trial averaging, we apply the change point or regression models to the population 

vectors themselves (instead of the correlations previously). To simultaneously speed up 

the computation and reduce the noise, we first reduced the dimensionality of the matrix 

of population vectors (n_trial-by-(n_neuron x n_position)) to n_trial-by-n_feature, where 

n_feature is chosen to preserve just above 95% of the variance, usually n_trial-2. Now the 

fitted piece-wise constant function from the change point model are vector-valued functions, 

with change points shared across the feature dimensions. The cost for one section is now 

the sum of the cost over all dimensions. The polynomial regression models are fitted to 

each feature dimension independently. This choice is justified since gradual changes of 

each dimension would add up to a gradual change of the population, whereas if sudden 

changes occur at different times across each dimension, we would not necessarily regard the 

population as having jumps. The explained variance ratio can be obtained as usual.

Switch duration quantification and comparison—If the trial-to-trial firing rate 

fluctuations before and after an instantaneous step up/down are symmetric around the mean, 

the distribution of first passage times (FPTs) follows a negative binomial distribution. The 

negative binomial distribution models the number of tails in a sequence of coin tosses 
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before k heads occur. In our case, the coin was fair (p = 0.5). We defined thresholds 

as the firing rates (FRs) predicted by the change point model. For switch-ONs, the first 

threshold crossing post-switch was defined as the first trial when the actual FR went above 

the predicted FR after the switch. The first threshold crossing pre-switch was the first trial 

(counting backwards from the switch) when the actual FR was below the predicted FR 

before the switch. Vice versa for switch-OFFs. The FPTs were defined as the number of 

trials between the post/pre-switch trial and the first threshold crossing. The post-switch trial 

was the change point given by the change point detection, while the pre-switch trial was 

the trial before the post-switch trial. For each switching, we summed the FPTs pre- and 

post-switch to get the switch duration. Since each of the FPT was expected to follow a 

negative binomial distribution with k = 1, the switch duration was compared with a negative 

binomial distribution with k = 2, i.e. the sum of two independent negative binomial variables 

with k = 1.

Contribution of switching neurons to drift—We grouped the place cell population 

into the “switchers” (cells with at least one switching field) and “non-switchers” (cells 

with no switching fields). To ensure the sizes of the groups were comparable, we sampled 

non-switchers to match the size of the switchers for each session ten times and averaged the 

analysis results for Figures 4A and 4B. For each subpopulation, we computed the population 

vector correlation and took the median across all trial pairs given a trial lag for each session. 

We next measured the magnitude of decorrelation per session by fitting a linear regression 

on the population vector correlation, using trial lag as the regressor.

Generalized linear model of switching—We used a generalized linear model (GLM) 

to predict the number of switching ON/OFF per trial and arm (familiar maze only). The 

relevant variables were aggregated per trial and arm for each session and concatenated 

across sessions and animals. The full model was log(y) ~ C(Animal) + C(Position) + N_field 
+ Trial + Speed + CV_speed + C(Correct) + C(Prev_correct), where y was the number 

of switching C(·) indicates categorical variables. “Position” refers to the arm of the maze. 

“N_field” refers to the number of fields whose peak lied in that arm. “Trial” and “Speed” 

were z-scored within session to aid comparison across sessions and animals. “Speed” refers 

to the average speed within the arm at the trial. “CV_speed” refers to the coefficient of 

variation of the speed within the arm at the trial. “Correct” refers to whether the animal 

made the correct turn on the current trial, and “Prev_correct” whether the previous trial was 

correct. We used a Poisson likelihood function. The variable selection was performed by 

repeating a 5-fold stratified cross-validation 10 times (grouped by animal to make sure the 

relative sample size for different animals were maintained). The fitting and cross-validations 

were done via the Python library sklearn.

Quantification of pre-existing constraint—To quantify the extent to which the place 

field preexisted (before switch-ONs) or persisted (after switch-OFFs), we computed the 

difference between the mean within-field firing rate (or dF/F for imaging) and the mean 

outside-of-field firing rate (or dF/F). The “outside” was defined by extending the field 

boundary in both directions by 10% of the track length, until it hit the end of track or the 

onset of another place field. This way we ensured that the quantification was not obfuscated 
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by the existence of multiple fields. We then took the median across trials for each neuron 

and plotted the distribution in Figures 7E–7H (left panels). To make sure the result is robust 

across sessions, we also averaged the within and outside dF/F across all fields within a 

session (Figures 7E–7H, right panels).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical details, including the specific statistical tests, are specified in the 

corresponding figure legends. In general, for one sample and paired two samples we 

performed two-sided Wilcoxon signed rank tests. For unpaired two samples we performed 

two-sided Wilcoxon rank sums test. We used the Pearson correlation coefficient to measure 

linear correlation. Effect sizes were reported using Cohen’s d. All statistical analyses were 

conducted using Python.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Hippocampal neurons exhibit representational drift within a session

• Step-like switches in individual firing rates underlie gradual population drift

• Pre-existing assemblies bias spontaneous (dis)appearance of fields across 

days
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Figure 1. Stability and change of single units and population activity
(A) Population rate maps of hippocampal place cells during early and late trials. Place cells 

were sorted by the peak of the place fields on trial 1. (When there were multiple fields, we 

used the fields with the largest within-field peak firing rates. Only place cells with spatial 

information larger than 1 bit/spike are displayed here for ease of visualization; n = 114 of 

264 place cells for one direction of turn in the figure-8 maze.) Color represents normalized 

firing rate.

(B) Rate maps of three example neurons, marked by red arrowheads in (A), showing place 

field emergence (left), stable firing (middle), and place field disappearance (right).

(C) Schematic for constructing the population vectors (PVs) in (D). The rate maps for all 

neurons were concatenated on a given trial to form a PV. The Pearson correlation between 
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PVs from a pair of trials was computed. All trial pairs with lag k were averaged to produce 

the mean PV correlation per trial lag.

(D) Population rate map correlations as a function of trial lag (only place cells are included). 

Blue and orange correspond to familiar and novel sessions, respectively. Shaded area 

corresponds to 95% confidence interval, where each data point is the correlation between 

two trials within one session. The numbers of included sessions for blocks of trials are 

indicated in parentheses.

(E) Comparing the slope of PV correlation decay between familiar and novel environments 

in three ranges of trial lags. Trial lag 1–10, n = 106, Wilcoxon rank-sum test, p = 0.02, 

Cohen’s d = 0.58; trial lag 11–20, n = 26, p = 0.3, Cohen’s d = 0.54; trial lag 21–30, n = 8, p 
= 0.68, Cohen’s d = −0.35. Asterisks indicate the significance level for all figures (*0.01 < p 

≤ 0.05; **0.001 < p ≤ 0.01, ***0.0001 < p ≤ 0.001; ****p ≤ 0.0001). We note that the lack 

of significance could be due to fewer sessions present at the later ranges.

(F) Schematics of different hypothetical mechanisms inducing a population-level 

decorrelation. Each Gaussian bump represents the tuning curve of one place cell. The 

Pearson correlation r is taken between the black (current trial) and red (next trial) curves.

(G) Schematics for how the within-field peak firing-rate vector and place field location 

vector were constructed in (H) and (I).

(H) Correlation of within-field peak population firing rate (left) and peak location (right) of 

place cells as a function of trial lag.

(I) Similar to (H), but instead of correlation, the normalized squared Euclidean distance 

(equivalent to mean squared error, MSE) is shown as a function of trial lags.
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Figure 2. Place cells exhibit discrete switching of firing rate
(A and B) Examples of place cells with place fields that switched ON (A) or OFF (B). 

Bottom right is the rate map, i.e., firing rate (color) as a function of position (x axis) and trial 

(y axis). Vertical lines mark the boundary of the place fields. The horizontal line marks the 

switch trial. Bottom left is the peak within-field firing rate across trials. The red arrow in (A) 

highlights the reconstruction error. The blue line is the fitted step function. Top right is the 

trial-averaged rate map.

(C) Peak within-field firing rate from (A), with the trial label shuffled.

(D) Explained variance ratio from the best change-point model, data vs. shuffle. Each dot is 

a place field, colored by whether the field had significant switching.

(E) Each dot is the fraction of switching fields from one session, grouped by whether the 

session came from an animal that experienced only the familiar environment (“Familiar 

only,” n = 34, median = 0.15), the session was a familiar-environment session but came 

from an animal that also experienced the novel environment on that day (“Familiar,” n = 

12, median = 0.22), or the session was a novel environment (“Novel,” n = 8, median = 

0.3). Horizontal bars are the medians. Two-sided Wilcoxon rank-sum test: Familiar only vs. 

Familiar, p = 4 × 10−5; Familiar vs. Novel, p = 0.01; Familiar only vs. Novel, p = 1.7 × 10−5.
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Figure 3. Discrete and continuous models of the trial-to-trial changes of within-field firing rates 
and population vectors
(A–C) Example neurons illustrate the comparison between change-point model and a 

continuous polynomial regression model. Left: gray, within-field peak firing rate as a 

function of trial; blue, fitted change-point model (i.e., a step function); orange, fitted 

polynomial regression. Right: rate maps of the selected neuron. The vertical lines mark 

the boundary of the place field, while the horizontal lines mark the detected change points. 

Neurons A, B, and C have one, two, and three change points/polynomial order, respectively.

(D–F) Explained variance ratio of the change-point model vs. that of the polynomial 

regression for each place field (left) and the population vector from each session (right, 
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different turns of the T maze and different directions of the linear maze were treated 

separately). For individual place fields, the models are fitted to the within-field firing rate 

across trials. For population vectors, the models are fitted to predict population vector 

correlation (averaged across trial pairs) using trial lag.

(G) Example of the comparison between a discrete change-point model and a continuous 

polynomial regression model (CPM) for the population vector correlation as a function of 

trial lag.

(H) Schematics demonstrating the differences in first passage time (FPT) of threshold 

crossing in data better characterized as a “ramp” (left) vs. a “step” (right). Threshold 

crossing is defined as above the predicted firing rate by the step model post-switch-ON and 

below the predicted pre-switch-ON firing rate and vice versa for OFF. Post-switch trial is the 

change point given by the change point detection, and pre-switch trial is one trial before.

(I and J) Examples demonstrating switching with different switch durations, measured by 

the number of trials between the first pre-switch and the post-switch threshold crossing trial 

(red circle) minus one.

(K) Distributions of the switch durations for switch-ON and -OFF (blue), compared with a 

negative binomial (p = 0.5) with two successes (gray).
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Figure 4. Spatial-temporal and behavioral modulation of switching
(A–C) Poisson generalized linear model (GLM) predicting the number of switch-ON 

occurrences per arm and trial within one session (n = 5,131 arms × trials from 46 sessions 

from 11 animals). (A) Drop in explained deviance relative to the full model when one 

predictor is removed in the GLM. Each dot is one random split in the 5-fold cross-validation. 

(B) Spatial regression coefficients, in standardized units: each variable represents the gain in 

the probability of switching when the animal is in one arm relative to the delay zone. Error 
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bars reflect 95% confidence intervals (CIs), based on asymptotic standard errors from the 

Fisher information matrix. (C) The rest of the regression coefficients.

(D) The number of switch-ON occurrences normalized by the number of fields as a function 

of trial (Z scored within each session for comparison across sessions with different numbers 

of trials). Blue, familiar; orange, novel (familiar: n = 1,029 trials, Pearson r = −0.15, p = 1.3 

× 10−6; novel: n = 281 trials; Pearson correlation r = −0.23, p = 1.3 × 10−4).

(E) The number of switch-ON occurrences normalized by the number of fields as a function 

of the arms. Each data point is one session. Shaded region reflects the 95% CI.

(F–J) Similar to (A)–(E), but for switching OFF occurrences. (I) Familiar: Pearson r = −0.2, 

p = 3.3 × 10−11; novel: Pearson r = −0.18, p = 2.7 × 10−3).

(K) Schematic of the maze, with each arm colored differently.

(L) Detected head-scanning events projected onto the maze.

(M) Distribution of the head scans and switches on the maze for one example session.

(N and O) Top: the ratio as a function of position between the number of trials when 

switch-ON (N)/-OFF (O) occurs and the number of trials when head scans occur. Bottom: 

the number of trials when switches (green or purple)/head scans (pink) occur as a function of 

position.
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Figure 5. Switching is not a single-neuron property
(A) Example neuron with no switch-ON field in the familiar and with switch-ON field in the 

novel maze. R2: explained variance ratio of the one-change-point model. Vertical lines mark 

the field boundary and the horizontal line marks the switch trial.

(B) Example neuron with switch-ON field in the familiar but no switch-ON field in the novel 

maze.

(C) For each neuron (per dot, n = 955), the relationship between familiar and novel maze 

for each metric of variability (per column) is shown, after regressing out the effect of firing 
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rate during NREM sleep. The firing rates were first log-transformed. The residuals are 

significantly correlated across environments for CV of within-field peak firing rate (left, 

standardized linear regression coefficients t = 4.8, R2 = 0.02, p < 10−5) and lap-lap rate map 

correlation (middle, t = 7.9, R2 = 0.06; p < 10−14), but not for the explained variance ratio 

from the change-point model (right, t = 0.9, R2 = 0.0008, p = 0.37). The error bands show 

95% CI for the regressions.

(D) For each neuron (per dot), the relationship between each metric of variability (per 

column) and its log-firing rate during NREM sleep. Blue and orange: familiar and novel 

environments, respectively. (Standardized linear regression coefficients and p values: noisy: 

familiar, t = −11.1, p = 3.6 × 10−27; novel, t = −12.6, p = 1.5 × 10−33; shifty: familiar, t = 

−0.8, p = 0.4; novel, t = −3.6, p = 0.000326; switchy: familiar, t = 0.9, p = 0.4; novel, t = 

−0.6, p = 0.5).

(E) Examples of subfields of a neuron showing different switching behavior.
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Figure 6. Network coordination of switching
(A) Activities of example neurons whose fields co-switched ON in the vicinity of the co-

switching trial. Each heatmap is the rate map for different neurons (row) for one trial. The 

rows are sorted by the locations of the place fields that switched together. The color reflects 

the normalized firing rate. The x axis is position. The emerging sequence is highlighted in 

red ellipsoids.

(B) Similar to (A), but for fields that switched OFF together. The fading sequence is 

highlighted in red ellipsoids.
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(C) Within-field peak firing rates per field across trials (normalized across all trials), for the 

same set of neurons as in (A). Each row is a field. Above the orange lines are the fields 

that co-switched ON at the trial marked by the green vertical lines, whereas below are the 

randomly selected fields that did not switch ON that trial. Left contains the fields of the 

neurons shown in (A) and right contains the fields of the neurons shown in (B).

(D) Shuffle test result for the number of pairs of fields that co-switched ON on some trials, 

for the sessions in (A) (left) and (B) (right).

(E) For each session, the number of co-switching pairs vs. shuffle median. The error bars 

mark the 95% CI from shuffle tests. Red dots are sessions with significant co-switching 

of neurons. Circles and crosses correspond to co-switching ON and cross OFF fields, 

respectively. Top, familiar, and bottom, for novel context.

(F) Histograms of the fraction of switching fields for ON (left) and OFF (right) in each trial 

(excluding the first and last two trials). Blue is familiar and orange is novel context. Vertical 

lines mark the means.
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Figure 7. Switching is biased by pre-existing fields
(A) Experimental setup of the imaging experiment.

(B) Behavior timeline.

(C and D) Example neurons that had a place field that switched ON on day 2 (C) or was 

OFF on day 1 (D). Top: trial-averaged rate map in blue, with field mask in dotted red 

line. Bottom left: rate map; red vertical lines mark the boundary of the fields, while orange 

vertical lines mark the “outside” region for the quantifications in (E)–(H). White horizontal 

line marks the change in the day. Bottom right: binary variable of whether the within-field 
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activation is above the place field detection threshold at each trial. Arrow in (D) (top) marks 

the place field of interest among the two fields. Note: (D) (bottom) is an example for both 

scenarios in (C) and (D).

(E–H) Quantifications of within- vs. outside-of-field activation (n = 14). For fields that 

switch ON (E and G) on the second day, the quantification is done on the first day using 

the field detected on the second day. The opposite is true for fields that switch OFF (F and 

H), i.e., detected on the first day and quantified on the second day. Left: median dF/F across 

trials, averaged across all fields within one session, separated into within vs. outside of 

the place fields. Right: histogram of within minus outside-of-field dF/F of all fields pooled 

across sessions. Wilcoxon rank-sum tests and Cohen’s d are used for significance test and 

effect size.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

AAV1.Syn.GCaMP6f.WPRE.SV4 University of Pennsylvania 
Vector Core

Addgene plasmid #100837

Deposited data

High density CA1 recordings on a figure-8 maze (Huszár et al., 2022)21 https://doi.org/10.48324/
dandi.000552/0.230630.2304

Experimental models: Organisms/strains

Mouse: C57BL/6J Charles River Laboratory or in 
house

RRID:MGI:3028467

Mouse: B6;129P2-Pvalbtm1(cre)Arbr/J The Jackson Laboratory RRID:IMSR_JAX:017320

Mouse: B6.Cg-Gt(ROSA)26Sortm9(CAG-
tdTomato)Hze/J

The Jackson Laboratory RRID:IMSR_JAX:007909

Software and algorithms

Python N/A https://www.python.org/

Ruptures (Truong et al., 2020)63 https://centre-borelli.github.io/ruptures-docs/

Statesmodels (Seabold and Perktold, 2010)64 https://github.com/statsmodels/statsmodels/

Custom analysis scripts This paper https://doi.org/10.5281/zenodo.13247193

Matlab 2019 MathWorks https://www.mathworks.com/matlabcentral/
answers/601606-download-matlab-2019a

Custom Matlab algorithms for image analysis (Hainmueller and Bartos, 
2018)22;

https://github.com/ThomasHainmueller/
HainmuellerCazala_et_al_2023
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