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ABSTRACT 
A im: A ssess if c or d blood differ en tially methyla t ed reg ions (DMRs) r epr esenting human metastable 
epialleles (MEs) associate with offspring adiposity in 588 ma ternal-infan t dy ads from the Colorado 
Health Start Study. 
M aterials & metho ds: DNA methyla tion w as assessed via the Illumina 450K array ( ∼439,500 CpG 

sites). Offspring adiposity was obtained via air displacement pleth ysmograph y. Linear r egr ession 
modeled the association of DMRs potentially r epr esenting MEs with adiposity. 
Results & conclusion: We identified two potential MEs, ZFP57 , which associated with infant adiposity 
change and B4GALNT4 , which associated with infancy and childhood adiposity change. Nine 
DMRs annotating to genes that annotated to MEs associated with change in offspring adiposity 
(false disc overy rat e < 0.05). Methyla tion of approxima tely 80% of DMRs iden tified associa ted with 
decreased change in adiposity. 
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. I ntro duction 

pproximately one in five children and adolescents
ged 2–19 years in the United States has obesity [ 1 ],
ighlighting a major public health problem. Equally
 onc erning is the sharp increase in the prevalence of
lass I obesity among 2- to 5- year -olds that has been
ot ed sinc e the 2013–2014 National Health and Nutri-

ion Examination Survey (NHANES) and has continued
hrough at least NHANES 2015–2016 [ 1 ]. Research sug-
ests that obesity in infancy predicts obesity in later
hildhood and adolesc enc e [ 2 , 3 ] and port ends increased
isk of psy chosocial pr oblems, high blood pr essur e,
yslipidemia and abnormal glycemic status, including

ype 2 diabetes mellitus [ 4 ]. Differences in obesity risk
ay appear as early as infancy [ 2 ], which could suggest

hat the developmental factors driving obesity oper-
te very early in life [ 5–7 ]. Genome-wide association
tudies have not been able to fully explain the total
ar iance in r isk confer red in childhood adiposity [ 5 , 8 ],
nd there is emerging evidence from human studies
f the potential for epigenetic signatures, namely DNA
ONTACT Stephanie W Waldrop Tel.: + 1 303 724 5850; stephanie.waldrop@cu

Supplemental data for this article can be accessed at https:// doi.org/ 10.1080/ 17
2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 

his is an Open Ac c ess article distributed under the terms of the Cr eativ e Commons A ttribution
 http:// creativecommons.org/ licenses/by- nc- nd/ 4.0/ ), which permits non-commercial re-use, d
ited, and is not alter ed , transformed , or built upon in any wa y. T he t erms on which this article h
uthor(s) or with their c onsent . 
methylation (DNAm), to serve as predictive biomarkers of
obesity risk [ 9–12 ]. Although such studies are limited in
their assessment of the downstream transcriptomic and
prot eomic functional out c omes, they do indicat e early life
developmental factors may be significant in contributing
to phenotypic v aria tion and identifying disease risk. 

Human metastable epialleles (MEs) are unique
genomic regions established during early embryogenesis
that show sy st emic int er individual var iation and stability
acr oss differ ent tissues and may be influenced by
prec onc eptional exposures [ 13 , 14 ]. Previous studies
suggest that DNAm of these regions may partially
explain interindividual phenotypic variability in disease
risk that begins in utero [ 15–17 ]. In addition, DNAm
of MEs has been suggested to play a role in energy
balance and has previously been associated with obesity
in adult and pedia tric popula tions [ 18–21 ]. These key
characteristics make MEs relev an t as poten tial early
life biomarkers for assessing risk of obesity and its
relat ed c omorbidities fr om birth onwar d . Differ ential
DNAm of ME regions in genes related to energy
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alanc e, nutrient sig naling and metabolism and/or
dipogenesis may thus serve as a novel biomarker at
irth that predicts adiposity later in childhood and could

rigger additional clinical monitoring and/or alternative
utritional recommendations or int erventions t o pr ev ent
xcessive adiposity gain. 

In this study, we aimed to determine if DNAm of
Es detectable in neonatal cord blood are associated
ith adiposity at birth and the change in adiposity

rom birth through 5 years of age. To the best of our
nowledge, this is the first investigation to analyze cord
lood DNAm of MEs and its specific association with
diposity at birth and the change in adiposity from
irth to 5 months and 5 months to 5 years conducted
mongst a large longitudinal pr ospectiv e bir th cohor t.
ur investigation is original given that we aimed to
v alua te the associa tion of DNAm of MEs with direct
easures of fat mass instead of proxies such as BMI

nd we assessed the persist enc e of such methylation
arks measured in cord blood at birth with adiposity

hange o ver kno wn sensitive periods of auxological
evelopment in infancy and childhood. We hypothesized

hat cord blood DNAm patterns of differentially methy-
ated positions within MEs and differentially meth ylated
egions (DMRs) represen ta tive of MEs documented from
he literature, particularly those associated with genes
nv olv ed in energy balance, nutrient metabolism, growth
nd obesity, would be associated with adiposity at birth
nd change in adiposity from birth through 5 years
f age, r espectiv ely. We further hypothesized that the
ssociation between DNAm of DMRs representing these
Es in cord blood and change in adiposity would persist

rom birth to 5 years, thus lending credenc e t o their use
s a novel biomarker for adiposity. 

. Materials & methods 

.1. Pa rticipa nts & study design 

he Healthy Start Study is a longitudinal pr ospectiv e
re-bir th cohor t (clinicaltrials.gov NCT02273297) that

ecruited 1410 pregnant women from outpa tien t obstet-
ic clinics at the University of Colorado Hospital from 2009
o 2014 as previously described [ 22 ]. Briefly, women were
ligible for participation if they w er e 16 years of age or
lder, pregnant with a single fetus, less than 24 weeks ges-

a tion a t enrollmen t , had no history of e xtr eme pr eterm
ir th nor stillbir th, and no self-repor t ed hist ory of dia-
etes, asthma, cancer or psychiatric illness. At the initial
 esear ch visit, information on maternal age, education,
ravidity, annual household income, race and ethnicity
 er e obtained via self-repor t. Par ticipants c omplet ed
uestionnair es, pr ovided blood samples at a median
f 17 weeks and 27 weeks’ gestation, and authorized
review of their medical rec ords. Umbilical c ord blood was
c ollect ed at delivery on 867 mother–infan t dy ads, 600 of
which w er e select ed for an ancillary DNAm analy sis based
on availability of both maternal mid-pregnancy blood
and urine samples and neonatal cord blood samples
(R01ES022934). After five dyads withdrew consent and
sev en w er e r emov ed fr om analy sis due t o inadequat e
quality of samples, 588 dyads remained for the present
analysis. Our study subset of mother–infant pairs is r epr e-
sen ta tive of the full Healthy S tart S tudy cohort in terms of
demographic and clinical characteristics ( Supplementary
Table S1 ) [ 23 ]. Wr itten infor med consent was provided by
all participants and study pr ocedur es w er e appr ov ed by
the Colorado Multiple Institutional Review Boar d . 

2.2. Umbilical cord blo o d collection, genomic DNA 

isolation & DNAm 

Umbilical cord blood was collected at delivery and
processed by the University of Colorado Clinical and
Translational Scienc e Institut e Core Laborat ory. Buffy
coat fractions w er e separa ted and immedia t ely st ored
a t -80 ◦C for la t er analy ses. Genomic DNA w as isola ted
from buffy coat samples using the QIAamp kit following
manufac turer’s instruc tions (Qiagen, Germantown, MD,
USA) [ 24 ]. DNA purity was assessed via the NanoDrop
2000 Spectrometer (ThermoFisher Scientific, Waltham,
MA, USA). DNA quantity and quality w er e determined
using the Qubit Fluorometer (ThermoFisher Scientific,
Waltham, MA, USA) and the Bioanalyzer 2100 (Agilent),
r espectiv ely. Samples with a 260–280 nm ratio g reat er
than 1:8 and a DNA Int eg rity Sc ore (DNA) g reat er than 7
w er e used for DNAm analyses. 

Genome wide DNAm was assessed by the University
of Colorado Genomics and Microarray Core using the
I llumina I nfinium 450K Human Methylation array as
previously descr ibed [ 24 ]. Br iefly, 500 ng of genomic
DNA underwent bisulfite conversion using the EZ DNA
Methylation Kit (Zymo Research, Irvine, CA, USA). Bisulfite
c onvert ed samples as well as commercially available
positiv e and negativ e contr ols serv ed as the input for
the Illumina Infinium HumanMethylation450 BeadChip
assay. Data w er e visualized with the GenomeStudio
software and examined using both sample-dependent
and sample-independent quality control cr iter ia, and
sig nal int ensities and det ection p -v alues of methyla ted
and unmethylated probes were exported. 

2.3. Infant & child body composition measures 

Body composition (fat mass and fat free mass) was
measured via air displacement pleth ysmograph y (ADP)
within 3 days of birth, at approximately 5 months of age,
and again at about 5 years of age using the PEAPOD
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nd BODPOD devices ( Cosmed, Rome , Italy) as previously
escribed [ 25 ]. These devices utilize a two-compartment
odel t o estimat e whole body fat mass and fat-free
ass [ 26–29 ]. The validity and reliability of this body

omposition method has been assessed previously [ 27 ].
diposity w as calcula t ed as the perc ent of t otal mass

hat is fat mass. Two measures were taken, with a third
btained when adiposity differed by > 2%, and the closest
w o measur ements w er e av eraged for analysis. Adiposity
t birth, change in percent fat mass (%FM) (fat mass/total
ass × 100) from birth to 5 months of age and from
 months to 5 years of age w er e the main out c ome
easures for this analysis and were normally distributed. 

.4. DNAm quality control 

e ev alua ted DNAm da ta from 588 individuals using
llumina’s 450K array, with an original count of 484,261
r obes. For quality contr ol , one sample was r emov ed

or low median intensity using the Tukey far-out outliers
ethod [ 30 ] with a cutoff of less than the 25th quantile

r g reat er than the 75th quantile and six samples w er e
 emov ed due to mismatched sex between the clinical
ata and predicted sex from their methylation using the
infi getSex function (R version 4.0.2 (22 June 2020)) [ 31 ].

r obes w er e excluded if they had detection p -values
 > 0.05) in more than 10% of samples, a bead count
 3 in at least 5% of samples, or a high detection p -

alue ( > 0.01) in more than 10% of samples. Cross-
 eactiv e pr obes (n = 27,349) w er e r emov ed based on the
nvestigations of Chen et al. [ 32 ] and probes with single
ucleotide polymorphisms at the CpG interrogation
nd/or at the single nucleotide extension for any minor
llele frequency (n = 17,272 probes) were excluded from
he analysis of DMPs based upon Illumina’s manifest and
nnota tion informa tion provided in the R package Illu-
inaHumanMethylation450kanno.ilmn12.hg19 (v 0.6.0).

robes on the X and Y chr omosomes w er e included . Sex
as adjusted for by including sex as a variable in the
odels. The final sample size was 439,281 probes and 588

articipant samples ( Figure 1 ). 

.5. St atistical analy sis 

eta values for CpGs (i.e., the ratio of intensity at the
ethylat ed probe t o the sum of the int ensities of the
ethylated and unmethylated probes) were c onvert ed

 o M-values t o bett er approximat e a nor mal distr ibution,
here M = log (beta/[1-beta]). The offset for the beta
 alues w as 100 (the default for the R packages minfi and

umi). Stra tified quan tile normaliza tion w as performed
sing the pr epr ocessQuantile function in minfi [ 33 ]. Batch
ffects by sample plate w er e r emov ed using ComBat [ 34 ].
For surroga te v ariable analysis, we used an int erc ept only
model matrix with sample plate defined as the batch vari-
able. Ba tch w as adjusted during the pr epr oc essing st eps
using ComBat as it could not be included in the model
later. In addition, the sample size was large and samples
w er e randomly allocated on the batches. We assessed
the validity of ComBat, using multidimensional scaling
(MDS) plots of normalized M values before/after ComBat
bat ch c orrection and c onfirmed that clust ering by plat e
on MDS plots was not observ ed . The MDS plots and batch
c orrection st eps ar e pr ovided thr ough GitHub. 

Linear r egr ession models w er e fit t o estimat e the
association bet ween adiposit y at birth (out c ome) and
methyla tion M v alue (predictor) a t each of the 927 CpG
sit es associat ed with MEs from the literature [ 16 , 17 , 35 ]
using the Illumina Infinium 450K microarray after quality
contr ol measur es w er e implemented ( Figur e 2 ). Lin-
ear r egr ession models w er e also fit to estimate the
association between the change in adiposity at each
of the defined study time points, birth to approxi-
mately 5 months of age and approximately 5 months to
approximately 5 years of age for each CpG on the array (a
total of 439,281 probes) and then DMRs w er e identified
via Comb-p [ 36 ]. Significant DMRs w er e then mapped
to the nearest of the 927 CpGs annotated as MEs by
genomic location [ 16 , 17 , 35 ]. We assessed the two-time
periods separately as they may r epr esent distinct sensi-
tive periods for future adiposity risk. We also performed
another analysis for DMR iden tifica tion by implemen ting
an alternative method, bumphunter [ 37 , 38 ]. 

Multiple comparisons w er e adjusted for by control-
ling the false disc overy rat e rat e using the Benjamini–
Hochberg pr ocedur e [ 39 ], acr oss 439,281 p -values for the
epigenome wide analysis (EWAS) and 927 p -values for the
target ed DMP/ME analy ses, with a level of sig nificanc e set
at 0.05. 

Given the exploratory study aims, our main model
ev alua ted infan t race, ethnicity, sex, and gestational age
as cov aria tes (i.e., infant characteristics). We did not
adjust for estimated cell proportions given that MEs are
thought to be neither cell nor tissue specific , furthermor e,
DNAm was the predictor variable and not the out c ome
variable in our analyses [ 16 , 17 ]. In a secondary analysis,
we ac c ount ed for pot en tial effects of ma ternal pre-
pregnancy BMI, gravidity, and prenatal smoking as these
cov aria tes have been associated with either offspring
cord blood DNAm or the out c ome of offspring growth or
both in other studies [ 24 , 40 , 41 ]. Supplementary Figure S1
illustrates the forward model building approach used for
the primary and secondary analyses and the cov aria tes
assessed. All analyses were c onduct ed using R version
4.0.2 (2020-06-22) [ 31 ]. 
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Sample size n = 600
Illumina Infinium 450K array

484,261 probes

Sample size n = 588
483,562 probes

Excluded 5 samples for revoked consent, 
1 sample with low median intensity, and 6 
samples with mismatched sex.

Excluded 699 probes with a detection 
p-value greater than 0.01 in more than 
10% of samples

Excluded 660 probes with a bead count of 
< 3 in at least 5% of samples

Excluded  17,272 probes with SNPs1 at 
the CpG2 site or at the single nucleotide 
extension for any minor allele

Excluded  27,349  cross reactive probes 
at the CpG site or at the single nucleotide 
extension for any minor allele

Adiposity data absent on 16 participants 
at birth, 192 participants at 5 months, and 
249 participants at 5 years.

Sample size n = 588
482,902 probes

Sample size n = 5883

439,281 probes

Sample size n = 588
465,630 probes

Adiposity data at birth
n = 572

Adiposity data at 5 months
n = 396

Adiposity data at 5 years
n = 339

Figure 1. DNA Methylation Study quality control flow diag r am and offspring participant flow diag r am for adiposity data. 
1 SNP: Single nucleotide polymorphism; 2 CpG: Cytosine-guanine dinucleotide. 3 Further reduction in sample size for the three outcomes 
measures assessed (i.e., percent adiposity at birth, 5 months, and 5 years of age) is attributable to lack of adiposity measurements due 
to unavailability of the PEAPOD device as well as subject attrition. 
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.6. Ta rgeted a nalysis of DMPs near MEs & the 
assoc ia tion with adiposity at birth 

e used the I llumina I nfinium 450K microarray which
easur ed DNAm acr oss 439,281 CpG sit es aft er quality

ontr ol pr ocedur es ( Figur es 1 & 2 ). We performed a
arget ed analy sis t o det ermine if DMPs near MEs (i.e., 927
pG sites r efer enced fr om the literatur e [ 16 , 17 , 35 ]) in

nfant cord blood were associated with adiposity at
irth, change in adiposity from birth to 5 months of
ge and change in adiposity from 5 months to 5 years
f age. Offspring cord blood DNAm at each DMP/ME
served as the predictor and adiposity at birth, change in
adiposity from birth to 5 months, and change in adiposity
from 5 months to 5 years served as the out c omes
with adjustment for select ed c ov aria tes ( Supplemen tary
Figure S1 ). 

2.7. Ta rgeted a nalysis of DMRs near MEs & the 
assoc ia tion with change in adiposity 

DMRs w er e identified using the Python package
comb-p,[ 36 ] using the p -values from the untargeted
epigenome-wide analysis in order to ev alua te their
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Silver et al., 2015
109 MEs

Gunasekera et al.,
2019

9926 MEs

Kessler et al., 2018
687 MEs

MEs annotated in the Literature
10722

48 MEs

45 MEs

822 MEs

230 MEs
182 MEs

700 MEs

MEs present on the Illumina
Infinium 450K

1100

CpGs within MEs
present on the

Illumina 450K and
in cord blood data

927

Figure 2. Metastable epiallele interrogation on the Illumina 450K and in Cord Blood by Literature Source. 
Selection of MEs was based upon the following literature sources [ 16 , 17 , 35 ]. 
ME: Metastable epiallele. 
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ssociation with change in adiposity from birth to
 months and change in adiposity from 5 months to
 years for the primary and secondary analyses, yielding
 total of four statistical models. A seed of 0.1 was
sed, indicating a minimum p -value per CpG of 0.1
as r equir ed to start a r egion. Peaks/tr oughs w er e
erged when within 750 bases of the other. We used

he full set of 439,532 probes to identify the regions.
ollowing iden tifica tion of the DMRs through comb-p,
he direction of the methylation of the probes within
ach region was calculated. The top probe within a
MR was defined as that with the smallest p -value. This
rocess was conducted for the outcomes, change in
diposity from birth to 5 months and change in adiposity
rom 5 months to 5 years. The Sidak correction was used
o adjust for multiple testing for the number of regions
 est ed [ 36 ]. Linear r egr ession models w er e fit t o estimat e
he association between the predictor variables, the
 op, most sig nificant CpG sit e of the DMRs identified by
 omb-p, and the out c omes of change in adiposity from
irth to 5 months and change in adiposity from 5 months
to 5 years of age. Cov aria te adjustmen ts made in the
EWAS DMR analysis w er e similar to those made in the
EWAS DMP analysis. 

To verify our results, we employed a second DMR iden-
tification method, the function bumphunter, as imple-
mented in minfi to the normalized, ComBat-adjusted M-
values for all probes. We t est ed changes in adiposity
between birth and 5 months of age and 5 months
and 5 years of age, while adjusting for infant sex,
race and gestational age at birth. We employed 1000
bootstraps to generate the null distribution to compare
our observ ed r egions. We allow ed bumphunt er t o pick
the cutoff using the permutation distribution and set
the quantile cutoff to 90%. Furthermore, to again mirror
our previous comb-p analysis, we specified a maximum
location gap to define cluster of 750 bp. We then
compared our regions identified from bumphunter with
the previous ones identified with c omb-p. U sing the
total sample, we annotated the bumphunter regions
with bumphunter’s annotate Tr anscripts function, refer -
encing TxDb.Hsapiens.UCSC.hg19.knownGene (hg19 to
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imic previous analyses which r efer enced IlluminaHu-
anMethylation450kanno.ilmn12.hg19). Then we used
enomicRange’s subsetB yOver laps function to identify
ny DMRs from bumphun ter tha t overlapped with our
omb-p DMRs. We specified iden tifica tion of any type of
verlap, with a default maxgap of -1 and mingap of 0. 

Genomic distance of DMRs and the annotated
Es from previous literature were identified using

he R package GenomicRanges. The overlap of those
MRs with MEs identified from the literature (i.e., 927
pGs) was assessed to identify the presence, if any, of
MRs that w er e MEs. Supplementary Tables S7 & S8

how the distance that significant DMRs associated
ith change in adiposity in our study w er e located

rom the genomic regions defined as MEs in the
iteratur e sour ces r efer enced [ 16 , 17 , 35 ]. A DMR was
onsidered a possible ME if the smallest number of
ase pairs between the two identified regions was
ithin approximately 10,000 bp [ 42 ] and the gene

o which the DMR annotated was the same gene
ha t annota t ed t o a ME as r efer enced fr om literatur e
ources [ 16 , 17 , 35 ]. This mapping was done using the
ocumen ta tion for Illumina’s 450K array (see R package:

lluminaHumanMethylation450kanno.ilmn12.hg19). 
he tables present both the comb-p annotation
or such DMRs and the ME annotation from the
iteratur e sour ces alluded to above [ 16 , 17 , 35 ].
he r efer ence gene was defined ac c ording t o the
nnotation provided for in the Illumina manifest and
nnota tion informa tion provided in the R package

lluminaHumanMethylation450kanno.ilmn12.hg19 (v
.6.0). Further review of the methods used for the
argeted DMP and DMR analyses conducted is provided
n Supplementary Figure S2 . A link to the Github repo
s pr ovided her e: https://github.com/CIDA-CSPH/Waldr
p _ P21002Borengasser _ CBMethylationDMRsMEs . This
etails the EWAS and DMR (c omb-p) analy ses as well
s select QC plots reflecting the adequacy of batch
orrection with ComBat. 

. Results 

.1. Study pa rticipa nts 

haracteristics of the 588 mother-offspring dyads in our
tudy are shown in Table 1 and ar e compar ed with
he Healthy Start Cohort in Supplementary Table S1 .
ffspring adiposity data w er e available for 572 infants

97%) at birth, 396 infants (67%) at 5 months and 339
hildren (58%) at 5 years ( Figure 1 ). Differences in sample
ize across the analyses are due to missing adiposity
a ta a t the 5 mon th visit (n = 176) or the 5 year visit

n = 233). Maternal and infant characteristics for offspring
with c omplet e adiposity da ta a t each study time poin t
w er e similar despite attrition ( Supplementary Table S2 ). 

3.2. EWAS of DMPs/MEs with offspring adiposity at 
birth 

Of the total 10,722 known CpGs within MEs [ 16 , 17 , 35 ],
927 w er e included in the Illumina 450K and w er e r etained
following processing and quality control of DNAm cord
blood data as shown in Figures 1 & 2 . We found no
association of DMPs within MEs with adiposity at birth,
change in adiposity from birth to 5 months of age or
change in adiposity from 5 months of age to 5 years of
age (all false discovery rate-adjusted p ≥ 0.05). 

3.3. Assoc ia tion of MEs & several DMRs with 

offspring adiposity in infancy & childhood 

using comb-p 

Supplementary Figure S2 explains the sequence of DNAm
bioinforma tic sta tistical analyses. From a total of 10,722
CpGs within MEs identified from the literature [ 16 , 17 , 35 ],
ther e w er e a total of 1100 CpGs within MEs present on
the I llumina I nfinium 450K array and of those, 927 CpGs
within those MEs w er e pr esent on both the array as well
as in the cord blood data. We identified two potential MEs,
ZFP57 and B4GALNT4 [ 16 ], and three significant DMRs
which annotat ed t o the same genes tha t annota t ed t o
MEs from the literature [ 17 , 35 ] as associated with change
in adiposity from birth to 5 months of age in the primary
analysis which adjusted for infant characteristics. Three
of these remained sig nificant aft er further adjustment
for maternal characteristics (i.e., the secondary analysis)
( Supplementary Tables S3 & S4 ). There were five DMRs
which annotated to ME genes [ 17 , 35 ] identified as
associated with change in adiposity from 5 months to
5 years of age in the primary analysis. Three of these
remained significantly associated with change in adipos-
ity during this age in terv al in the secondary analysis
( Supplementary Tables S5 & S6 ). The DMR annotated
to B4GALNT4 that was significantly associated with the
change in offspring adiposity from birth to 5 months of
age, w as also significan tly associa ted with the change in
offspring adiposity from 5 months to 5 years of age. 

3.4. DMRs assoc ia ted with cha nge in adip osity from 

birth to 5 months 

The association of DNAm at birth with offspring
change in adiposity from birth to 5 months of age
in the primary analysis r ev ealed fiv e DMRs, including
B4GALNT4, TOP1MT, ZFP57, CBFA2T3, and CYP26C1 as
shown in Table 2 . Three of these remained significant
in the secondary analysis that adjusted for maternal
characteristics and included ZFP57 , CBFA2T3 , and

https://github.com/CIDA-CSPH/Waldrop_P21002Borengasser_CBMethylationDMRsMEs
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Table 1. S tudy participan t characteristics †. 

Mat ernal charact eristics Total N = 588 

Pr e-pr egnancy body mass index (ppBMI (kg/m 2 ) 26.00 ± 6.68 
Gravidity 

< 3 pregnancies 480 (83%) 
> 3 pregnancies 99 (17%) 

Gestational diabetes 29 (5.2%) 
Age at delivery (years) 27.56 ± 6.2 
Prenatal smoking (n) 52 (9%) 
Mode of delivery 

Vaginal 450 (78%) 
Cesarean 129 (22%) 

Race/ethnicity (self-reported), N (%) 
White, non-Hispanic 315 (54%) 
Hispanic 144 (24%) 
Black, non-Hispanic 90 (15%) 
All others combined 39 (6.6%) 

Household income past year, N (%) 
Less than $40,000 164 (28.3%) 
$40,000 to $69,999 106 (18.3%) 
$70,000 or more 195 (33.8%) 
Missing or do not know 114 (19.6%) 

Neonatal characteristics Total N = 572 
Sex: male 292 (52%) 
Gestational age at birth (weeks) 39.48 ± 1.22 
Birth weight (kg) 3.13 ± 0.42 
Breastfed 212 (39%) 
Perc ent fa t mass (%) 9.01 ± 3.85 

Inf ant charact eristics Total N = 396 
Perc ent fa t mass (%) 24.64 ± 5.49 

Child characteristics Total N = 339 
Perc ent fa t mass (%) 20.08 ± 6.66 

Adiposity birth – 5 months 
Adiposity 6 months – 6 years 
Adiposity birth – 6 years 

15.7 ± 5.8% 

-4.10 ± 8.0% 

10.6 ± 7.6% 

Adiposity 5 months – 5 years 
Adiposity 6 months – 6 years 
Adiposity birth – 6 years 

15.7 ± 5.8% 

-4.10 ± 8.0% 

10.6 ± 7.6% 

†Data are mean ± SD, unless otherwise stated. 
SD: Standard deviation. 
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YP26C1 . A graphical depiction of the relationship
etween change in offspring adiposity from birth to
 months of age and DNAm of the most significant CpG

i.e., with the lowest Sidak p -value) within the DMR for
elect genes is shown in Supplementary Figure S3 . For
he CpGs within the DMRs annotated to genes B4GALNT4
nd TOP1MT , every 10% change in methylation at
he CpG sit e result ed in a 4.6% and 2.4% decrease in
diposity change, r espectiv ely. For ev ery 10% change

n methyla tion a t the most significan t CpG site within
ach of the other afor ementioned DMRs, w e found a
.1% decrease in adiposity change for CYP26C1 , a 4.3%
ecrease for CBFA2T3 and a 1.6% decrease for ZFP57 .
or those DMRs that remained significantly associated
ith the out c ome in the secondary analysis, the beta

stimates w er e minimally changed when maternal BMI,
ravidity and smoking w er e added as cov aria tes to the
odel ( Table 2 ). None of the DMRs identified contained

ny of the 927 CpGs, but ZFP57 was within base pair range
 onsist ent with ME crit eria (10,360 bp) as was B4GALNT4
10,150 bp) ( Supplementary Tables S7 & S8 ). 
3.5. DMRs assoc ia ted with cha nge in adip osity from 

5 months to 5 years 

Five DMRs not ed t o be annotated to ME genes w er e
significan tly associa ted with change in adiposity
from 5 months to 5 years in the primary analysis
( Table 2 & Supplementary Table S5 ). These included ANO7 ,
SBK1 , B4G ALNT4 , DLG AP2 , as well as HLA-DPA1 and HLA-
DPB1 , the latter two of which both annotated to the same
DMR. Only one of these was also previously identified in
the analysis from birth to 5 months of age (i.e., B4GALNT4)
( Table 2 & Supplementary Table S3 ). Of these five DMRs,
three DMRs remained significantly associated with
change in offspring adiposity with further adjustment for
mat ernal charact eristics (sec ondary analy sis) as shown
in Table 2 & Supplementary Table S6 . The graphical
r elationship betw een change in offspring adiposity fr om
5 months of age to 5 years of age and DNAm of the most
significant CpG within the DMR for select genes is shown
in Supplementary Figure S3 . For the most significant CpGs
within the DMRs annotated to genes ANO7 and SBK1 ,
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Table 2. Reference genes annotated to ‘top CpGs’ of differentially methylated regions associated with change in adiposity and to 
metastable epialleles from literature sources †. 

Birth to 5 months of age 

Reference 
gene for DMR 
(top CpG) ‡

Beta 
estimate ± S.E. 

(adjust 
p -value) (Sidak 
p -value) for the 

primary 
analysis ¶

Beta 
estimate ± S.E. 
(adjust p -value) 
(Sidak p -value) 

for the 
secondary 
analysis §

#Chr Reference 
gene 

location 

DMR start site 
to end site in 

base pairs 

CpG 
loca- 
tion 

Reference gene description 

B4GALNT4 
(cg21996245) 

-4.59 ± 1.35 
(0.71) 

(0.005) 

N/A chr11 Intergenic 368351 to 
368898 
(547 bp) 

N/A Enzyme inv olv ed in the biosynthesis and 
transfer of N-acetlygalactosamine 
residues to N- and O-glycans present on 
mammalian gly copr oteins such as 
proopiomelanocortin (POMC), a regulator 
of energy in tak e and expenditure(45, 46). 

TOP1MT 
(cg2324402) 

-2.42 ± 0.721 
(0.73) 

(0.013) 

N/A chr8 intron + utr5 144437314 to 
144437592 

(278 bp) 

N/A Enzyme responsible for catalyzing 
reactions that break and rejoin DNA 
within the mitochondrial genome during 
replication and transcription. 
https:// www.genecards.org/ cgi-bin/ card 
disp.pl?id+116447 

ZFP57 
(cg12644888) 

-1.72 ± 0.698 
(0.74) 

(5.02E-04) 

-1.60 ± 0.70 
(0.73) 

(0.001613) 

chr6 TSS + intron 
+ exon + utr5 

29648161 to 
29648952 
(791 bp) 

N/A Associated with parental methylation 
marks in the early embryo and with 
methylation of MEs; reported to be in the 
proximal vicinity (within 10 kb) of MEs 
(16). 
https:// www.genecards.org/ cgi-bin/ card 
disp.pl?id+346171 

CBFA2T3 
(cg04220636) 

-4.33 ± 1.16 
(0.71) 

(1.62E-06) 

-3.94 ± 1.15 
(0.71) 

(1.39E-04) 

chr16 Intron 89033895 to 
89034343 
(448 bp) 

island Transcriptional cor epr essor; 
do wn-regulat es expression of glycolytic 
genes; inhibits glycolysis and stimulation 
of mitochondrial respiration (65). 

CYP26C1 
(cg05219493) 

-4.08 ± 1.16 
(0.71) 

(9.60E-07) 

-4.11 ± 1.15 
(0.71) 

(7.03E-07) 

chr10 utr5 + cds 94820892 to 
94821136 
(244 bp) 

island A cytochrome P450 enzyme involved in 
the catabolism of all- trans - and 
9- cis -r etinoic acid . 
Regulates retinoic acid levels in cells and 
tissues (58). 

5 months–5 years of age 

ANO7 
(cg13339454) 

-11.0 ± 3.62 
(0.993) 
(0.004) 

N/A chr 2 intergenic 242127690 to 
242127999 

(309 bp) 

N/A Prostate specific gene. Associated with 
AR10 Spinocerebellar Ataxia, and 
Gnathodiaphy seal Dy splasia. 
https:// www.genecards.org/ cgi-bin/ card 
disp.pl?id=31677 . Associated with change 
in BMI, but not adiposity, in a population 
of 374 preschoolers (7). 

SBK1 
(cg06897606) 

-9.91 ± 2.83 
(0.993) 
(0.004) 

N/A chr16 intergenic 28270490 to 
28270805 
(315 bp) 

island Ma y pla y a role in metabolic adaptation to 
obesity through regulation of lipid 
metabolism in the liver and insulin 
sensitivity (68). 

B4GALNT4 
(cg20846508) 

6.86 ± 1.96 
(0.993) 
(0.001) 

6.22 ± 1.94 
(1.00) 
(0.02) 

chr11 intergenic 368351 to 
368763 
(412 bp) 

N/A See above. 

DLGAP2 
(cg12133423) 

3.69 ± 1.23 
(0.993) 
(0.002) 

3.70 ± 1.20 
(1.00) 

(0.001) 

chr 8 intron 1094484 to 
1094955 
(471 bp) 

island 
A maternally imprinted gene; methylation 
associated with maternal insulin 
resistance and smoking.(69–71) Expressed 
in brain tissue within postsynaptic 
neurons modulates glutamate signaling 
(72). May be associated with feeding 
behavior traits (73). 

†DMRs associated with percent fat mass change and their annotated genes based on “top CpGs” within the DMR. Annotation of the identified DMRs to genes 
also annotated to MEs was based upon the following literature sources [ 16 ]. 

‡The “top DMP”or “top CpG”is denoted as that with the lowest Sidak p -value, the largest effect estimate and the lowest proportion of standard error) localized 
within cord blood DMRs associated with change in adiposity. Beta estimates and standard errors are shown for primary (adjustment for infant characteristics). 

§Secondary (adjustment for infant and maternal characteristics). 
¶Analyses performed. 
CDS: Coding region sequence; DMR: Differentially methylated region; ME: Metastable epiallele. 

https://www.genecards.org/cgi-bin/carddisp.pl?id+116447
https://www.genecards.org/cgi-bin/carddisp.pl?id+346171
https://www.genecards.org/cgi-bin/carddisp.pl?id=31677
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Table 2. Reference genes annotated to ‘top CpGs’ of differentially methylated regions associated with change in adiposity and to 
metastable epialleles from literature sourc es † (c ont .). 

5 months–5 years of age 

HLA-DPA1 
(cg25511667) 5 

-4.10 ± 1.39 
(0.993) 

(1.93E-07) 

-4.46 ± 1.35 
(1.00) 

(1.868E-11) 

chr 6 TSS + intron 
+ exon + utr5 

33048254 to 
33048970 
(716 bp) 

island Encodes the Major Histocompatibility 
Class II Antigen DPA1 which presents 
peptides from foreign extracellular 
proteins on antigen presenting cells to the 
immune system. 

HLA-DPB1 
(cg25511667) 5 

-4.10 ± 1.39 
(0.993) 

(1.93E-07) 

-4.46 ± 1.35 
(1.00) 

(1.868E-11) 

chr6 intron + cds 33048254 to 
33048970 
(716 bp) 

island Encodes the Major Histocompatibility 
Class II Antigen DPB1 which presents 
peptides from foreign extracellular 
proteins on antigen presenting cells to the 
immune system. Associated with 
intr auterine g r owth r estriction in an 
analysis restricted to CD3 + T cells (74). 

†DMRs associated with percent fat mass change and their annotated genes based on “top CpGs” within the DMR. Annotation of the identified DMRs to genes 
also annotated to MEs was based upon the following literature sources [ 16 ]. 

‡The “top DMP”or “top CpG”is denoted as that with the lowest Sidak p -value, the largest effect estimate and the lowest proportion of standard error) localized 
within cord blood DMRs associated with change in adiposity. Beta estimates and standard errors are shown for primary (adjustment for infant characteristics). 

§Secondary (adjustment for infant and maternal characteristics). 
¶Analyses performed. 
CDS: Coding region sequence; DMR: Differentially methylated region; ME: Metastable epiallele. 
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very 10% change in methylation at the CpG site resulted
n a 11.0% and 9.9% decrease in adiposity change,
 espectiv ely. For ev ery 10% change in methylation
t the most significant CpG within each of the other
for ementioned DMRs, w e found a 6.9% increase in
diposity change for B4GALNT4 , a 3.7% increase for
LGAP2 and a 4.1% decrease for HL A-DPA1/HL A-DPB1 .
or those DMRs that remained significantly associated
ith the out c ome in the secondary analysis, the beta

stimates w er e again minimally changed when maternal
MI, gravidity and smoking w er e added as cov aria tes to
he model ( Table 2 ). B4GALNT4 was the only DMR within
ange of a ME (10,150 bp) significan tly associa ted with
hange in offspring adiposity from 5 months to 5 years of
ge. 

.6. Genomic loci distribution of DMRs identified 

he genomic location of the DMRs that annotated to ME
enes associated with offspring change in adiposity is
hown in Supplementary Tables S3 & S4 for the primary
nalysis. Tw o DMRs w er e localized to a transcription start
it e (T SS) reg ion and four w er e localized to the fiv e
rime un transla t ed reg ion (5’UTR). The most c ommonly
oted genomic locations in order included the intronic

eg ion, the int ergenic reg ion, and the 5’UTR. The genomic
istances from MEs established from the literature of the

den tified DMRs associa ted with change in adiposity in
ur study are shown in Supplementary Tables S7 & S8 . 

.7. Verification of DMRs with bumphunter 

MRs identified by bumphunter w er e not significant
n their association with our out c omes of change in
diposity from birth to 5 months of age nor change in
adiposity from 5 months to 5 years after multiple cor-
rection testing ( p -value of family-wide error rates < 0.05)
(data not shown). We found overlap of DMRs significantly
associated with our outcomes using comb-p, with four
DMRs listed among the top 100 genomic regions ranked
by bumphun ter permuta tion p -v alue ( Supplemen tary
Tables S9 & S10 ). These DMRs annotat ed t o B4GALNT4
and ZFP57 for the analysis ev alua ting change in offspring
adiposity from birth to 5 months of age and to HLA-
DPB1 and DLGAP2 for the analysis ev alua ting change in
offspring adiposity from 5 months to 5 years of age.
All four of these DMRs w er e of the same directionality
using both DMR iden tifica tion methods ( Supplementary
Tables S9 & S10 ). 

4. Discussion 

This was an exploratory analysis examining differential
methylation of DMPs within MEs and DMRs potentially
r epr esen ta tive of MEs in cord blood and their novel
association with offspring adiposity at birth and change
in adiposity as measured via ADP from birth through
early infancy and early childhood , r espectiv ely. We found
no DMPs within MEs that w er e associated with adiposity
at birth. We found one DMR that r epr esents a potential
ME associated with change in offspring adiposity from
birth to 5 months of age ( ZFP57 ) and one DMR that
r epr esen ts a poten tial ME associa ted with change in
offspring adiposity from birth to 5 months of age and
5 months to 5 years of age ( B4GALNT4 ). Focusing on those
DMRs annotating to genes which annotat ed t o MEs from
the literatur e, w e found fiv e DMRs that w er e associated
with change in adiposity from birth to 5 months, three
of which remained significant in their association after
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djustment for mat ernal charact eristics (i.e., secondary
nalysis). We also found five DMRs associated with change

n adiposity from 5 months to 5 years, one of which was
ignifican tly associa ted with change in adiposity from
irth to 5 months of age as well as from 5 months to
 years of age . Of those , thr ee r emained significant in their
ssociation after adjustment in the secondary analysis.
pproximately 3% of the total DMRs identified in our

tudy and judged to be significan tly associa ted (Sidak
 ≤ 0.05) with change in adiposity out c omes in the
rimary analysis (i.e., adjustment for infant characteristics
nly) w er e localized t o the T SS or 5’UTR regions (data
ot shown). In general , w e found increased DNAm of

he DMRs to be associated with decreased change in
diposity from birth to 5 months of age for all associated
nnotated genes. For the change in adiposity evaluated
rom 5 months of age to 5 years of age, how ev er, incr eased
NAm of three DMRs was associated with decreased

hange in adiposity (i.e., HL A-DPA1 / HL A-DPB1 , ANO7 ,
BK1 ) while methylation of two DMRs was associated
ith increased change in adiposity (i.e., DLGAP2 and

4GALNT4 ). The genes identified play roles in nutrient
etabolism [ 43 , 44 ], obesity risk [ 7 , 8 ], hypothalamic and

ituitary hormone processing [ 44–47 ] and immune func-
ion [ 48–51 ], supporting the biological plausibility of our
ndings. 

We aimed to explore DMRs potentially r epr esen ta tive
f MEs documented from the literature as novel potential
iomarkers of adiposity at birth and adiposity change

n infancy and childhood and att empt ed t o identify a
ersisten t associa tion of these in cord blood with adi-
osity change throughout infancy and early childhood.
ur a priori r esear ch inter est was to understand persistent
pigenetic marks associated with adiposity from birth to
 months and 5 months to 5 years. We believed these
wo particular time periods to be important given that
ate of gr owth/w eight gain in the first several months of
ife has been shown to contribute to risk of obesity later
n childhood [ 52 ]. Further more, ear ly adiposity rebound
t 3 - 5 years of age has been shown to increase risk
f obesity in later childhood, adolescence and young
dulthood [ 53 ]. We found methylation of one DMR and a
oten tial ME , ZFP57 [ 54 ], to be associa ted with decreased
hange in adiposity from birth to 5 months only. The gene

s proposed to be in tima tely inv olv ed with the Tripartite
otif Containing 28 gene (TRIM28) in promoting obesity

s well as dysregulation of imprinting gene networks
nd body weight control [ 55 ]. It is also involved in
ain taining paren tal methyla tion mar ks in the ear ly

mbryo [ 16 ]. ZFP57 in our study was localized within a
SS and the 5’UTR. These findings find credence in work
y Kessler et al. in which it is suggested that ME regions
re typically associated with TSS regions and zinc finger
genes [ 16 ] as well as work by Harris et al ., wher e authors
defined ME regions as those containing two or more
CpG sites residing within an approximate 10 kilobase pair
distance ( Supplementary Tables S7 & S8 ) [ 42 ]. Thus, the
iden tifica tion of ZFP57 in our study potentially supports
our approach to investigating MEs as early life biomarkers
for adiposity change in the first 5 years of life using a
nonspecific platform such as the Illumina 450K array. 

We further identified another DMR and potential ME
annotat ed t o B4GALNT4 that associated with change in
offspring adiposity from birth to 5 months and from
5 months to 5 years of age. This was the only gene
annotat ed t o a DMR that was associated with adiposity
change in both age in terv als in our analysis. Ov erall ,
all CpGs within the B4GALNT4 DMR demonstrated an
inv erse r elationship with change in adiposity from birth
to 5 months of age but showed a direct relationship
with change in adiposity from 5 months to 5 years of
age ( Supplementary Tables S3, S5 & S6 , Supplementary
Figures S3 & S4 ). The change in directionality of asso-
ciation of B4GALNT4 with change in offspring adiposity
may be due to the 14–16% positive change in adiposity
from birth to 5 months but a 4–5% negative change in
adiposity noted from 5 months to 5 years in our study
popula tion. The persisten t associa tion of B4GALNT4 with
change in adiposity is supported by potential biological
plausibility, given its role in the biosynthesis and transfer
of N-ac etlygalact osamine residues t o N- and O- glycans
present on glyc oprot eins found on mammalian pituitary
and hypothalamic hormones and peptides such as POMC ,
a regulator of energy intake and expenditure [ 45 , 46 ].
B4GALNT4 annotated to the same gene as r efer enced in
Gunasekara et al. [ 17 ] and met ME base pair distance
cr iter ia as denoted by Har r is et al. [ 42 ]. 

We found the highest number of DMRs to be asso-
ciated with change in adiposity from birth to 5 months
of age. This is particularly notable given the literature
suggesting the importance of rate of gr owth/w eight
gain in the first several months of life in contributing
to risk of obesity later in childhood [ 52 , 56 , 57 ]. Early
infancy (i.e., the first 6 months of life) is a period
of low fatty acid oxidation and rapid growth, and in
the presence of positive energy balance, fat deposition
occurs. In the context of r elativ ely constant dietary fat
intake, deposition of fat mass during this time period
(e.g., an average of ∼15% increase) may be more related
t o phy siolog ic “prog rammed” mechanisms developed
in utero [ 58 ]. Of the DMRs associated with change
in offspring adiposity from birth to 5 months of age
( CYP26C1 , CBFA2T3 , ZNF57 , B4GALNT4 and TOP1MT ), all are
novel in their association with change in infant adiposity
in our study, and four are known to play roles in either
obesity risk, energy homeostasis, nutrient metabolism or
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ypothalamic/pituitary hormone processing. We discuss
elect ones in turn below. 

We hav e pr eviously iden tified the associa tion of
YP26C1 methylation, a cytochrome p450 gene impli-
ated in retinoic acid metabolism, with adiposity [ 8 ]
ithin the first 5 months of life in the Colorado Healthy

tart population [ 51 ] as well as with rate of adiposity
ain (increase in %FM/day) from birth to 5 months

unpublished work). Within our present investigation,
ower methylation of CYP26C1 was associated with an
ncreased change in adiposity that occurred during
his time period. The role of CYP26C1 methylation in
etinoid X rec ept or (RXR) and retinoic acid rec ept or (RAR)
nduced transcription and in regulating the retinoic acid
RA) level has been suggested by Lee et al. because
inding sites for the RAR and the RXR dimer can be

ound within the CYP26C1 promoter region [ 43 ]. Thus,
xpression of CYP26C1 may be regulated by RA-linked
ranscription factors and h ypometh ylation of its promo-
 or reg ion [ 43 , 59 ]. Our findings are further supported in
art by Godfrey et al. who noted increased umbilical cord
lood DNAm of the RAR gene to be positively associated
ith FM and percent FM in children at age 9 years
f age [ 8 ]. In our analysis, the DMR that annotated to
YP26C1 was localized to the 5’ UTR as well as the coding

eg ion sequenc e, suggesting effects on gene expression. 
Lower methylation of CBFA2T3 , a gene inv olv ed in

egulation of glyc oly sis, transcription and mitochondrial
er obic r espira tion [ 60 ] w as found to be associa ted with
he ov erall incr ease in per cent adiposity in our study
opulation from birth to 5 months of age and annotated

o a DMR localized to a CpG island and intronic region.
n adult pa tien ts with obesity undergoing weight loss,
NAm of this gene (specifically CpG cg00035197) has
een associated with ketosis induced by very low-calorie
iets and appears to be consistent with the methylome
resent in normal weigh t pa tien ts [ 60 ]. As noted above,
e identified increased methylation of the DMRs, ZFP57

nd B4GALNT4 , to be associated with lower offspring
hange in adiposity from birth to 5 months. Although
 alida tion in other cohorts would be needed, these
MRs may r epr esent nov el new target biomarkers for

ater adiposity in childhood. TOP1MT was another gene
nnotat ed t o a sig nifican t DMR in our study and w as
ound to be associated with decreased offspring change
n adiposity during this age in terv al as w ell . This gene,
ow ev er, did not appear to have any role in obesity
 isk, nutr ient metabolism, nor energy homeostasis and
s more well known for its role as a mitochondrial DNA
opoisomerase. 

The average offspring change in adiposity (i.e., fat mass
s a percentage of total body mass) from 5 months to
5 years in our study w as nega tive, likely in part due to
the well-known “adiposity rebound”[ 61 ]. During this time
period (i.e., after ∼6 months of age) and assuming a
r elativ ely constant dietary fat intake, growth of fat free
mass r elativ e to body w eight incr eases mor e than fat
mass [ 58 ]. Given this, the DMRs and annotated genes
iden tified as associa ted with adiposity change during
this age in terv al may be more reflective of changes in
percent lean body mass from a functional standpoint. This
is par ticularly per tinent in considering our findings with
respect to ANO7 , which annotated to a DMR associated
with change in adiposity from 5 months to 5 years in
our study and was shown in the European Childhood
Obesity Project (CHOP) Study to contain one of the
t op t en differentially meth yla ted probes associa ted with
change in BMI, but not absolute fat mass nor fat free
mass, in a population of 374 preschoolers [ 7 ]. In our
study, we identified the same CpG identified in the
CHOP study (cg17810765) but found a 10% change in
methylation of this CpG within the ANO7 DMR to be
associated with an approximate 6% decrease in adiposity
change, whereas in the CHOP Study they found a 1%
change in methylation of the CpG was associated with
a 0.14 kg/m 

2 increase in childhood BMI at 5.5 years of
age [ 7 ]. The difference in our results may be related to
our ability to look at change in adiposity (i.e., change in
%FM) over infancy and early childhood versus the CHOP
study, which assessed absolute BMI, fat mass and fat free
mass at only approximately 5 years of age, in addition
to their use of bioelectrical impedance analysis to assess
body c omposition out c omes. We did not, how ev er, find
associations of other cord blood DMPs or DMRs noted
in other studies to be associated with BMI in early
childhood [ 62 ]. 

Similar to other studies, we found one DMR annotated
to MHC genes, such as HL A-DPA1 and HL A-DPB1 , to
be significant in their association with the change in
adiposity during this age in terv al, which is c onsist ent
with the methylation of many major hist oc ompatibility
genes being linked to obesity and metabolic disease
in adults and adolescents [ 48–50 ]. The implications of
the association of these immune function genes with
change in adiposity within early infancy and childhood
is not w ell defined . We hav e published w ork, how ev er,
showing the association of HLA immune genes with
adiposity in infancy and early childhood even with adjust-
ments for c ellular het erogeneity [ 51 ]. The association
noted may be attributable to the influence of maternal
peric onc eptional nutritional exposures not ev alua ted in
our study (e.g., maternal glucose, maternal dietary fat
intake and maternal BMI > 30 kg/m 

2 ). These maternal
metabolic and nutritional exposur es hav e been shown to
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dversely impact offspring immune sy st em development
hrough epigenetic changes, placental lipid accumula-
ion and inflammation and to also be associated with
ffspring adiposity [ 63 ]. 

Despite the novelty of our investigation given our
ocus on DMPs and DMRs potentially r epr esenting MEs
s documented from the literature, and our outcome
f change in adiposity measured via ADP in a large
r ospectiv e bir th cohor t, our study has limitations and

hus we must express some skepticism with respect to our
esults. We identified nine DMRs associated with offspring
hange in adiposity in infancy and early childhood and
w o DMRs ar e potential MEs. Fr om a sta tistical softw are
nalysis perspective, while comb-p is well accepted in the
eld, a limitation of our study is that our results did not
chieve statistical sig nificanc e aft er multiple c orrection
esting when analyzed with bumphunter. We otherwise
id not ev alua te our data with other DMR identifica-

ion methods that may have supported our results or
roduc ed alt ernat e findings. Sec ond , w e only assessed
NAm at one-time point and we were not able to assess

hanges in gene expression to v alida te the presumed
ownstream effects based on methylation patterns and
MR genomic location. This latter evaluation, how ev er,
as not an aim of our exploratory work though we hope

o be able to ev alua te such downstream effects with
utur e inv estiga tions when the da ta are av ailable. We
ec og nize our statistical approach may be less powerful
han linear mixed models or a repeated measures model,
ow ev er, the latter methods posed g reat er challenges

n in terpreta tion of effec t. Trajec t ory clust ering analy ses
i.e., clustering participants based on similar adiposities
ver time) and modeling cluster as the categorical out-
ome in a multinomial r egr ession model w er e consider ed .
ow ev er, trajectories in adiposity have been explored for
ther studies in this cohort and there was insufficient data

o der ive meaning fully different trajector ies [ 64 ]. Signifi-
antly distinct clusters in the adiposity data w er e also not
viden t (da ta not shown). Further, due to sample attrition,
tatistical power to detect significant associations varied
cross the analyses. The use of the lllumina 450K Human
ethylation Bead Chip array platform significantly limited

ur in terroga tion of MEs reported in the literature and the
roximity of the DMRs to MEs identified using the Illumina
50K is inherently dependent upon the array alignment,
hich is predetermined by the manufacturer. We also

cknowledge the Illumina 450K array is biased toward
robes localized within promoter reg ions, pot entially
v er estima ting the iden tifica tion of DMRs tha t may be

nv olv ed in regulation of gene expression. Lastly and
deally, w e w ould need to v alida te our findings within
nother cohort. 
5. Conclusion 

In summary, we found associations between newborn
cord blood DNAm of DMRs that annotated to bio-
logically relev an t genes rela t ed t o obesity r isk, nutr i-
ent metabolism, energy homeostasis and pituitary and
hypothalamic hormone processing with offspring change
in adiposity a t differen t developmen tal growth periods
in infancy and childhood. We identified one DMR and
poten tial ME , ZFP57 , associa ted with change in adiposity
from birth to 5 months of age. We identified one DMR and
poten tial ME , B4GALNT4 , which associa ted with change in
adiposity from both birth to 5 months and 5 months to
5 years of age. We believe our investigation is novel given
our a priori focus on DMRs potentially r epr esentativ e
of MEs and their association with offspring adiposity
as measured by ADP as opposed to BMI, particularly
within infancy. How ev er, w e acknowledge that w e found
very limited evidence of ME associations with offspring
adiposity using the Illumina 450K array. Nonetheless, in
this explora tory investiga tion using cor d blood , w e hav e
identified novel and pot entially, biolog ically plausible,
epigenetic biomarkers at birth for adiposity change
during two separate critical periods of development
considered important for assessing growth and potential
risk of obesity that may guide future investigations. 

Article highlights 

Background 
• Differences in obesity risk may appear as early as infancy, 

suggesting that developmental factors driving obesity are 
operating very early in life. 

• There is emerging evidence from human studies of the potential 
for epigenetic signatures, namely DNA methylation (DNAm), to 
serve as predictive biomarkers of obesity risk. 

• Human metastable epialleles (MEs) are unique genomic regions 
established during early embryogenesis that show systemic 
interindividual variation and stability across different tissues and 
may be influenced by preconceptional exposures. 

• DNAm of MEs has been suggested to play a role in energy balance 
and has previously been associated with obesity in adult and 
pedia tric popula tions. 

Methods 
• We explored differentially methylated regions potentially 

r epr esentativ e of MEs from the literature as poten tial biomark ers of 
adiposity at birth and adiposity change in infancy and childhood 
and att empt ed t o identify a persist ent associa tion of these in c ord 
blood with adiposity change throughout infancy and early 
childhood. 

Results 
• We found associations between offspring change in adiposity in 

infancy and childhood and newborn cord blood DNAm of nine 
DMRs that annotated to genes, which also annotated to MEs 
r efer enced in the literature. The annotated genes are biologically 
relevant and related to obesity risk, nutrient metabolism and 
neuroendocrine energy balance. 

• We found lower methylation of one DMR and a putative ME, ZFP57 , 
t o be associat ed with an o v erall incr eased change in adiposity from 

birth to 5 months only. The gene is proposed to promote 
dysregulation of imprinting gene networks and body weight 
control and has been identified as a metastable epiallele by others. 
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• We identified one DMR annotated to B4GALNT4 that associated 
with change in offspring adiposity from birth to 5 months and 
from 5 months to 5 years of age. This was the only gene annotated 
to a DMR that was associated with adiposity change in both age 
intervals in our analysis. B4GALNT4 has a role in the biosynthesis 
and transfer of N-acetlygalactosamine residues to N- and 
O- gly cans pr esent on gly copr oteins found on mammalian pituitary 
and hypothalamic hormones and peptides such as POMC , a 
regulator of energy in tak e and expenditure. Furthermore, the 
kilobase distance of B4GALNT4 from the ME annotated to the same 
gene as r efer enced in Gunasekara et al. may support its potential 
as a ME, though more studies would be needed. 

Conclusion 
• Using cord blood, we have identified potential, biologically 

plausible, epigenetic biomarkers for adiposity change during two 
separate critical periods of development considered important for 
assessing rapid growth and risk of obesity that may be of use in 
futur e inv estigations. 

• How ev er, skepticism of our results is due given lack of validation 
with the alternative DMR identification method employed 
(i.e., bumphunter) in addition to the inability to replicate findings 
using a different c ohort . 
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