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Abstract

Neurodevelopmental conditions, such as Autism Spectrum Disorder (ASD) and Attention

Deficit Hyperactivity Disorder (ADHD), present unique challenges due to overlapping symp-

toms, making an accurate diagnosis and targeted intervention difficult. Our study employs

advanced machine learning techniques to analyze functional magnetic resonance imaging

(fMRI) data from individuals with ASD, ADHD, and typically developed (TD) controls, totaling

120 subjects in the study. Leveraging multiclass classification (ML) algorithms, we achieve

superior accuracy in distinguishing between ASD, ADHD, and TD groups, surpassing exist-

ing benchmarks with an area under the ROC curve near 98%. Our analysis reveals distinct

neural signatures associated with ASD and ADHD: individuals with ADHD exhibit altered

connectivity patterns of regions involved in attention and impulse control, whereas those

with ASD show disruptions in brain regions critical for social and cognitive functions. The

observed connectivity patterns, on which the ML classification rests, agree with established

diagnostic approaches based on clinical symptoms. Furthermore, complex network analy-

ses highlight differences in brain network integration and segregation among the three

groups. Our findings pave the way for refined, ML-enhanced diagnostics in accordance with

established practices, offering a promising avenue for developing trustworthy clinical deci-

sion-support systems.
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1 Introduction

1.1 Clinical background

Neurodevelopmental disorders encompass a spectrum of conditions that manifest early in life

and have diverse impacts on brain development and function, often presenting with genetic

and clinical heterogeneity [1]. These disorders profoundly affect neurological functioning,

including cognition, communication, behavior, motor skills, and social interaction [2–4].

Two prominent examples of neurodevelopmental disorders are Autism Spectrum Disorder

(ASD) and Attention Deficit Hyperactivity Disorder (ADHD). ASD is characterized by chal-

lenges in social interaction, communication, repetitive behaviors, and sensory sensitivities [5].

Globally, ASD affects approximately 1 in 36 children and is more prevalent in males than

females [6]. ASD is a spectrum disorder, displaying a wide range of symptom severity and pre-

sentation, making diagnosis a challenging task [7–9]. Furthermore, ASD is marked by signifi-

cant heterogeneity, with no discernible patterns consistently emerging among affected

individuals [10].

ADHD, another prevalent neurodevelopmental disorder, is defined by inattention, hyper-

activity, and impulsivity symptoms, which can substantially impact daily functioning [11]. It

affects 5–8% of children, with a higher prevalence among boys [12]. Despite extensive

research, the prevalence of ADHD remains elusive [13], and diagnosis primarily relies on the

assessment of behavioral symptoms [11].

While ASD and ADHD are traditionally classified as distinct neurodevelopmental disor-

ders, they exhibit a significant degree of symptom overlap [14]. This shared symptomatology

often complicates the accurate diagnosis and treatment planning for affected individuals. Fur-

thermore, it is noteworthy that ADHD frequently co-occurs with ASD, making it one of the

most prevalent comorbidities among individuals with ASD [15]. This comorbidity adds

another layer of complexity to the neurodevelopmental profile of affected individuals, contrib-

uting to the challenges in diagnosis and care. Consequently, these circumstances often lead to

cases of misdiagnosis and underdiagnosis.

1.2 Previous ML approaches

Given the inherent complexity of diagnosing ASD and ADHD, many studies are using

machine learning methods to improve the diagnosis [16]. In the study by [17], machine learn-

ing models were trained and tested on an imbalanced dataset from research records based on

the Social Responsiveness Scale (SRS). The SRS is a parent-administered questionnaire fre-

quently employed for measuring autism traits. Notably, the superior performance algorithms

were Support Vector Machines (SVM), Ridge Regression, Least Absolute Shrinkage and Selec-

tion Operator (LASSO), and Linear Discriminant Analysis, achieving accuracies ranging from

0.962 to 0.965. These results underscore the effectiveness of machine learning techniques in

accurately distinguishing individuals with ASD from those with ADHD. Moreover, in [18] it

was incorporated a crowdsourced dataset comprising responses to 15 SRS-derived questions.

In this subsequent analysis, Linear Discriminant Analysis (LDA) and Elastic Net (ENet)

emerged as the top-performing methods, both achieving an Area Under the ROC Curve

(AUC) of 0.89 when tested on survey data containing the 15 questions.

Machine methods have also been applied to neuroimaging data to develop more precise

and reliable approaches for characterizing and predicting ASD and ADHD in a binary way to

distinguish from TD [11, 13, 19–24]. Most studies in the literature are primarily focused on

distinguishing individuals with a specific condition from typically developing (TD) individu-

als, resulting in a binary classification problem. However, a more desirable scenario would
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involve the differentiation among multiple neurological conditions characterized by overlap-

ping symptoms or co-occurrence, as seen in the case of ASD and ADHD. Preliminary efforts

have been made in this direction, in which various machine learning techniques have been

employed [17, 18, 25]. For instance, one of the pioneering studies to differentiate adolescents

with ADHD from those with ASD or TD was published in 2013 [26]. The authors considered

structural magnetic resonance imaging (MRI) data and a 3-class Gaussian Process Classifica-

tion (GPC) approach to classify ADHD, ASD, and TD groups simultaneously [26]. Their

model achieved a balanced accuracy of 0.682, with sensitivities of 0.759, 0.655, and 0.632 for

the ADHD, TD, and ASD groups, respectively. The positive predictive values for the respective

groups were also 0.629, 0.731, and 0.75.

In [27], centrality abnormalities in cortical and subcortical regions were discovered, some

of them shared between ADHD and ASD. They observed increased centrality in the right stria-

tum/pallidum for ADHD and bilateral temporolimbic areas for ASD. In [28], it was conducted

a comparative analysis of the network topology patterns among ASD, ADHD, and neurotypi-

cal (NT) groups. They found substantial overlap at the global level of community structure

among all groups. However, the overlap between the two clinical conditions was less than that

between each condition and the control group.

Additionally, the ASD and ADHD groups exhibited a more pronounced reduction in cor-

relation strength with increased distance compared to the NT group. Notably, the ADHD

group displayed reduced wiring costs, thinner cortical regions, and lower hub degrees than the

ASD group. Significant findings emerged in the study [29] regarding oscillatory patterns in

children with ASD and ADHD during task conditions. Children with ASD exhibited signifi-

cant hypoconnectivity in large-scale networks during these tasks, while those with ADHD

showed hyperconnectivity in large-scale networks under similar conditions. In a recent study

[30], an SVM algorithm with l2-regularization emerged as the top-performing method, achiev-

ing an accuracy of 0.66, an f1-score of 0.68, a precision of 0.59, and a recall of 0.82. Notably,

their findings unveiled a substantial convergence in functional brain connectivity patterns

between ADHD and ASD, particularly within the right ventral attention network, the salience

network, and the default mode network (DMN) as observed in resting-state fMRI data.

Table 1 concisely overviews the primary research using machine learning classification

methods and the ASD and ADHD groups outlined in this subsection.

1.3 Research gap

Previous ML models have yet to be constructed using explainable AI approaches. This limits

their interpretability and, hence, the trustworthiness of their model predictions. In particular,

Table 1. Studies with ML classification algorithms for distinguishing ASD and ADHD groups described in subsection 1.2.

Studies Dataset type ML algorithm Classification type Correlation

metric

AUC Accuracy Recall Precision

[17] research records

survey

SVM, Ridge Regression, LASSO, and

LDA

Binary (ASD and ADHD) - - 0.962–

0.965

- -

[18] research records

survey

LDA and ENet Binary (ASD and ADHD) - 0.890 - - -

[25] research records

survey

SVM Binary (ASD and ADHD) - 0.910 - 0.680 -

[26] MRI GPC Multiclass (ASD, ADHD and

TD)

- - 0.682 - -

[30] fMRI SVM Multiclass (ASD, ADHD and

TD)

Pearson

correlation

- 0.66 0.82 0.59

https://doi.org/10.1371/journal.pone.0305630.t001
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a clear connection between established clinical symptoms and model properties has yet to be

drawn, raising doubts among medical professionals and hindering the use of ML modeling in

actual clinical diagnosis [31].

Upon reviewing the landscape of studies within the domain of ASD and ADHD classifica-

tion, a notable trend emerges, as illustrated in the summarized literature (Table 1): a predomi-

nant focus on binary comparisons between ASD and ADHD, often reliant on survey-based

symptomatic datasets, which not alllows clear separation in the cases that have overlapping of

symptoms. This emphasis on a binary framework potentially oversimplifies the nuanced com-

plexities inherent in these neurodevelopmental disorders. Moreover, the reliance on survey

data in many studies raises concerns regarding introducing biases [32], particularly when com-

pared to more direct neuroimaging modalities such as EEG and fMRI. Our previous research

[33, 34] highlights the critical role of correlation metrics in constructing connectivity matrices

to effectively capture brain changes associated with these conditions. While studies such as

[30] use fMRI and a multiclass approach, they predominantly utilize linear measures like Pear-

son correlation; the robustness of alternative metrics such as normalized transfer entropy still

needs to be explored. In our prior works [34, 35], we demonstrated the robustness of normal-

ized transfer entropy in distinguishing neurodevelopmental disorders from TD individuals,

underscoring the need to explore these metrics further. Furthermore, the prevailing focus on

ML methodologies overlooks the exploration of complex network topology changes and needs

more medical interpretation. There is a clear need for a more holistic approach that integrates

diverse methodologies and prioritizes nuanced understanding over simplistic binary classifica-

tions. Such an approach holds the potential to advance our comprehension of the underlying

mechanisms of ASD and ADHD and inform more effective interventions and treatments.

1.4 Objective and hypothesis

Our study aims to bridge the existing research gap by advancing beyond simplistic binary

comparisons in the classification of ASD, ADHD, and TD individuals using fMRI datasets.

Building upon prior work that underscores the limitations of binary frameworks and the

potential bias introduced by survey-based datasets, our hypothesis posits that distinct brain

activity patterns underlie these neurodevelopmental disorders and can facilitate their reliable

separation. We seek to investigate whether these patterns align with existing clinical knowl-

edge of ASD and ADHD, thereby providing deeper insights into these conditions’ underlying

mechanisms and proving our methodology’s trustworthiness.

Additionally, we aim to explore the utility of complex network measures in achieving a

clean separation of the groups, surpassing the conventional focus on machine learning meth-

odologies, through the integration of diverse methodologies alongside advanced analytical

techniques such as normalized transfer entropy, our study endeavors to enhance prediction

accuracy while ensuring an explainable and trustworthy machine learning approach.

2 Materials and methods

2.1 Innovations in the methodology

The current paper endeavors to investigate the feasibility of automatically detecting brain

changes associated with ASD and ADHD while simultaneously providing a biological rationale

for these observations. We leverage the blood oxygenation level-dependent (BOLD) time series

data to achieve this objective and develop a classification method to distinguish individuals

with ASD, ADHD, and TD profiles. Following dataset preprocessing (described in subsection

2.2), we employed two levels of data abstraction: (A) the calculation of correlations, deter-

mined by the normalized transfer entropy between specific fMRI regions of interest (described
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in subsection 2.3), and (B) the extraction of complex network measures from the correlations

(A) (described in subsection 2.4). It is important to note that while our methodology bears

similarity to our previous work [33–37], where binary classification was primarily explored,

the present study aims to establish a multiclass classifier. Moreover, departing from existing lit-

erature, which often focuses on utilizing only one of these abstraction levels, our study pio-

neers the simultaneous use of both levels in a multiclass context, marking a novel contribution

to the field.

To enhance the interpretability of our machine learning results, we incorporated cutting-

edge techniques that have emerged in recent years. One such technique is the application of

SHapley Additive ExPlanations (SHAP) values [38]. These values help identify the most critical

features within our model, shedding light on essential brain areas and connections between

regions. Notably, SHAP values have demonstrated superior performance compared to prior

research efforts [33, 36, 39] in pinpointing significant brain areas and connectivity patterns

and have been an integral part of our previous work.

Differently from [33–37], we added three measures to analyze the segregation and integra-

tion concepts: Effective Information, determinism, and degeneracy coefficients. These mea-

sures provide a comprehensive understanding of the dynamics of brain networks in

individuals with ASD, ADHD, and TD profiles. Furthermore, to the best of our knowledge,

this is the first study that employed the SHAP values methodology for a multiclass classifica-

tion of ASD and ADHD, enhancing the interpretability and robustness of our classification

results.

The Python code with the methodology used in this work and described in this section is

available at: https://github.com/Carol180619/Multiclass-ADHD-ASD.git.

2.2 Data and data preprocessing

The ADHD dataset used in this study was sourced from the Neuro Bureau ADHD-200 Prepro-

cessed repository, as detailed in [40]. During a 6-minute resting-state fMRI scan, participants

received instructions to relax, maintain closed eyes, avoid falling asleep, and refrain from

engaging in specific thoughts. The resting-state fMRI data captures spontaneous fluctuations

in BOLD signals, widely acknowledged as indicative of underlying brain activity. In this inves-

tigation, we utilized the ADHD-200 dataset via the Nilearn package. Nilearn is a Python pack-

age [41] tailored explicitly for analyzing neuroimaging data. Our selection of Nilearn

seamlessly integrated with our existing workflow, as we had already incorporated Nilearn into

our analysis pipeline. Nilearn provides a comprehensive set of tools for preprocessing, feature

extraction, and statistical analysis of neuroimaging data. It was used in numerous studies [42–

44], making it a suitable and convenient choice for our research. Within the Nilearn package,

the dataset comprises 40 child and adolescent participants aged 7 to 27, equally divided

between individuals diagnosed with ADHD and healthy control subjects.

As in our previous work [34], we considered the preprocessed version of the Autism Brain

Imaging Data Exchange (ABIDE) (Avaiable in https://fcon_1000.projects.nitrc.org/indi/abide/

) which consists of 1112 datasets comprised of 539 ASD and 573 TD with 300s BOLD time

series (7–64 years, median 14.7 years across groups). Further, it is also available for use in

Nilearn’s Python package. We used the same amount of 40 subjects from the ADHD dataset.

For TD groups, we randomly selected 20 subjects for the ABIDE dataset and 20 for the Neuro

Bureau ADHD-200 Preprocessed repository.

In our study, rather than utilizing the entire BOLD time series obtained from each voxel in

brain images, we focused on specific Brain Regions of Interest (ROIs). These ROIs are defined

based on a brain atlas; only the BOLD time series from these ROIs are considered. The choice
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of Brain Atlas is crucial, and in our work, we employed the Bootstrap Analysis of Stable Clus-

ters (BASC) atlas, selected for its exceptional performance in discriminating Autism Spectrum

Disorder (ASD) patients using deep learning models, as reported in [45]. The BASC atlas,

introduced initially in [46], is derived from group-level brain parcellation through the BASC

method, an algorithm utilizing k-means clustering to identify brain networks with coherent

activity in resting-state fMRI, as described in [47]. BASC map with a cluster number of 122

ROIs is used here (see Fig 1A). From our previous work [34], a manual use of Yale BioImage

Suite Package web application (Avaiable in https://bioimagesuiteweb.github.io/webapp/

mni2tal.html) labeled the coordinates of each ROI for the identification of their names (see Fig

1A).

After extracting the BOLD time series, a sliding time window of 20 seconds was

employed for data augmentation. This duration was selected based on our previous study

[34], where it demonstrated optimal performance for the ASD dataset. Additionally, to

ensure comparability between the ASD and ADHD datasets, the same window size was

Fig 1. Methodology to obtain the connectivity matrices based on [34]. In (A), a time series of 122 ROI is extracted

from fMRI data using the BASC BOLD atlas (highlighted in blue, purple, and orange). A sliding window was

performed as a data augmentation. Then, they are correlated (B) to form the connectivity matrices, where each row

and column corresponds to one of the Brodmann areas for a patient with ASD, TD, and ADHD (the figure illustrates

an example of a connectivity matrix with a normalized TE of a subject presenting ADHD). The same highlighted

matrices represent the brain in a three-dimensional (in a top and left perspective) schematic.

https://doi.org/10.1371/journal.pone.0305630.g001
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utilized for the ADHD dataset. By employing consistent time windows across both datasets,

we aimed to mitigate potential biases arising from variations in data acquisition protocols

between different sites and enhance the robustness of our analyses. Through the data aug-

mentation process, 600 matrices were randomly selected, ensuring an equal representation

of each class.

Once the time series for each of the 122 regions had been extracted for each time window,

they were correlated according to normalized transfer entropy (TE)(see Fig 1B). The TE is

described in [48] and given by the Eq 1. The normalized TE metric was selected as our study’s

primary analytical tool, building upon prior research findings [34, 35]. TE has demonstrated

its efficacy in capturing changes in brain dynamics associated with neurodevelopmental disor-

ders. This choice was motivated by several advantages it offers. Firstly, normalized TE is adept

at capturing directional dependencies [49], providing a nuanced understanding of information

flow within neural systems [50, 51]. Unlike linear measures, such as Spearman and Pearson

correlation, TE is non-linear and model-free, making it particularly suitable for analyzing

complex, non-stationary, and non-Gaussian datasets [52–54]. Moreover, TE stands apart from

traditional correlation measures like the Pearson correlation. While the latter is confined to

assessing linear or monotonic relationships between variables, regardless of their direction of

influence, TE excels in identifying and quantifying the directional dependencies between time

series [55], thereby facilitating a more comprehensive assessment of neural interactions. Note-

worthy, as in our previous work [34, 35], for computing TE, a Min-max normalization and

then a thresholding process was performed, with a value of 0.5, since this measures deal best

with binary values.

TEY!XðtÞ ¼
XN

i¼1

Pðxitþt; x
i
t; y

i
tÞlog

Pðxitþtjx
i
t; y

i
tÞ

PðxitþtjxitÞ
ð1Þ

where:

• TEY!X(τ) denotes the transfer entropy from Y to X at time lag τ.

• xit and yit represent samples from time series X and Y respectively.

• N is the total number of samples.

• Pðxitþt; x
i
t; y

i
tÞ is the joint probability distribution of xitþt, x

i
t, and yit.

• Pðxitþtjx
i
t; y

i
tÞ is the conditional probability distribution of xitþt given xit and yit .

• Pðxitþtjx
i
tÞ is the conditional probability distribution of xitþt given xit .

In addition to the aforementioned preprocessing steps, we employed the NeuroImaging

Analysis Kit (NIAK) [56] to further standardize and enhance the quality of our neuroimag-

ing data for both datasets. NIAK offers a comprehensive set of tools for preprocessing fMRI

data, including motion correction, slice timing correction, spatial normalization, and nui-

sance signal regression [40, 57]. These preprocessing procedures are crucial for mitigating

potential confounding factors introduced by differences in data acquisition protocols across

multiple sites. By implementing the same preprocessing pipeline in both datasets, we aimed

to minimize site-related variations and ensure the consistency and reliability of our data

across different acquisition sites. This standardized approach facilitated the integration of

neuroimaging data from disparate sources, enhancing the validity and generalizability of our

findings.
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2.3 Connectivity matrices

Similar to our prior research endeavors [33–37], we leveraged Machine Learning (ML) algo-

rithms to analyze fMRI data at different levels of abstraction the connectivity matrix (A) and

the attribute matrix (B), which comprises complex network metrics derived from (A). To con-

duct our analysis, we employed a diverse set of ML classifiers, including the Support Vector

Machine (SVM) [58], Naive Bayes (NB) [59], Multilayer Perceptron (MLP) [60], a fine-tuned

Convolutional Neural Network (CNN), and Long Short-Term Memory neural networks

(LSTM) [61].

Subsequently, the SHAP values method was employed for the biological interpretation, as it

provides a comprehensive explanation of the predictive contribution of each feature. To

ensure robustness and unbiased assessment of the machine learning models, we adopted a

consistent evaluation approach: 10-fold stratified cross-validation with shuffling. This cross-

validation technique partitions the dataset into ten equal stratified folds, ensuring that each

fold, denoted as k, maintains a balanced distribution of samples from each class. This approach

guarantees that all classes are equally represented across the folds, thus enhancing the reliabil-

ity of our model evaluations. The algorithm then trains on nine of these folds and validates on

the remaining fold, repeating this process ten times, each serving as the validation set once.

We used k = 10, which is a common value for this method [62–66]. However, to show the sta-

bility of the model’s performance, we also tested different values of k. Moreover, the shuffle

strategy ensures the data is randomized before being split into folds to prevent ordering effects;

this randomization helps prevent any potential bias stemming from data ordering, ensuring

the robustness of the model training process.

Furthermore, as a crucial step in our experimental methodology, we performed an initial

partition of 30% of the original dataset (comprising a total of 600 matrices) for final testing,

constituting an exclusive reserve of 180 matrices. This separation is done before the model’s

training using a 10-fold cross-validation. Adopting such a practice is commonplace in machine

learning, and it serves the dual purpose of assessing model performance while mitigating over-

fitting and ensuring its ability to generalize to new, unseen data [67, 68].

This procedure was applied for model selection and hyperparameter optimization. It was

also considered the grid search method, commonly used in the literature [69–73], used for all

ML algorithms except the CNN and LSMT models. In the deep learning models, we used ran-

dom search optimization because it offers a more computationally efficient alternative for

hyperparameter tuning compared to grid search, which is particularly advantageous, given the

high computational demands of deep learning tasks. The hyper-parameter optimization values

for each classifier model can be seen in more detail in [33–36]. In Tables 2 and 3, we present

the architectural details and hyperparameter configurations for CNN and LSTM models,

respectively. Notably, dropout regularization, as indicated in Tables 2 and 3, is a widely-used

technique in neural network training to combat overfitting [74]. Dropout operates by ran-

domly deactivating neurons during training, compelling the network to learn more resilient

and generalizable features [75]. Empirically, dropout has effectively enhanced the generaliza-

tion capabilities of deep learning architectures and medical data [76, 77].

Additionally, in our training set, we applied a process known as standardization. Standardi-

zation in machine learning typically involves rescaling features to have a mean of zero and a

standard deviation of one [78]. This step is pivotal as it transforms the data, facilitating more

straightforward comparisons and analyses [79]. This practice is essential because it ensures

that all model attributes are equally important and share a consistent scale [80]. Moreover,

standardization safeguards against the undue influence of outliers and features with substantial

variability on the model’s performance [81].
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First and foremost, we considered the widely-used accuracy metric, which provides an

overall assessment of our classification model’s correctness [82–86]. We expanded our evalua-

tion to incorporate additional standard metrics such as precision and recall [87–90]. Precision,

also known as a positive predictive value, measures our model’s ability to classify instances

belonging to a specific class correctly. In our case, precision helps gauge our model’s accuracy

in identifying the TD group. On the other hand, recall, also known as sensitivity, assesses how

effectively our classifier predicts positive examples, which now encompass ASD and ADHD

individuals. To visualize the performance of our classification model, we continued to utilize

the Receiver Operating Characteristic (ROC) curve, a standard method for illustrating the

trade-off between true and false positive rates. The Area Under the ROC Curve (AUC)

remained a key evaluation metric, with values ranging from 0 to 1. An AUC of 1 signifies a

flawless classification, while 0.5 suggests a random choice where the classifier cannot distin-

guish between classes effectively [72, 82, 91, 92].

In this three-class classification context, we calculated the micro-average AUC indepen-

dently for each class (TD, ASD, or ADHD) to provide insights into individual class perfor-

mance. This micro-average computation treats each class equally, allowing us to assess how

well our model performs for each group. Furthermore, we introduced the concept of macro

average in our evaluation, which considers the classes individually and aggregates their contri-

butions before calculating the average. Unlike the micro average, the macro average does not

Table 3. Hyperparameters and layer configurations for the LSTM model.

Type of Layer Tuning hyperparameter Value

LSTM — —

LSTM dropout [0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50]

LSTM — —

LSTM units [70, 60, 50, 40]

Dense - units 3

-activation softmax

Adam optimization compile learning rate min − value = 1e−10

max − value = 1e−1

sampling = LOG

https://doi.org/10.1371/journal.pone.0305630.t003

Table 2. Hyperparameters and layer configurations for the CNN model.

Type of Layer Tuning hyperparameter Value

Convolutional — —

Convolutional dropout [0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50]

Convolutional — —

Convolutional number of filters [32, 64]

Max Pooling dropout [0.00, 0.50, 0.10, 0.15, 0.20]

Flatten — —

Dense - units [32, 64, 96. . ..512]

-activation [relu, tanh, sigmoid]

Dropout rate [0.00, 0.50, 0.10, 0.15, 0.20]

Adam optimization compile learning rate min − value = 1e−4

max − value = 1e−2

sampling = LOG

https://doi.org/10.1371/journal.pone.0305630.t002
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treat all classes equally, providing a different perspective on the overall performance of our

classification model. Subsequently, the SHAP values method was used for the biological inter-

pretation, as it explains the predictive power of each attribute. The SHAP values method was

subsequently employed for the biological interpretation, as it explains the predictive potential

of each attribute. The results regarding the connectivity matrix of the first level of abstraction

(A) can be found in subsection 3.1.

2.4 Complex network measures

Considering the performance and computational cost, the best ML algorithm was used to eval-

uate the complex network measure’s level of abstraction. To characterize the structure of the

brain’s network, the following complex network measurements were computed as used in the

previous work [33–37]: average shortest path length (APL) [93], betweenness centrality (BC)

[94], closeness centrality (CC) [95], diameter [96], assortativity coefficient [97, 98], hub score

[99], eccentricity [100], eigenvector centrality (EC) [101], average degree of nearest neighbors

[102] (Knn), mean degree [103], entropy of the degree distribution [104], transitivity [105,

106], second moment of the degree distribution (SMD) [107], complexity, k-core [108, 109],

density [110], and efficiency [111].

In this study, we employed recently developed metrics, as comprehensively detailed in [36],

to quantify the number of communities within a complex network. Our investigation also

incorporated various community detection algorithms [112–114]. The outcomes of commu-

nity detection measures were consolidated into a single scalar value. Specifically, we focused

on identifying the largest community within each network, followed by the computation of the

average path length within that community, resulting in a singular metric. The suite of com-

munity detection algorithms encompassed fast greedy (FC) [115], infomap (IC) [116], leading

eigenvector (LC) [117], label propagation (LPC) [118], edge betweenness (EBC) [119], spin-

glass (SPC) [120], and multilevel community identification (MC) [121]. For clarity and coher-

ence, we extended the abbreviations by appending the letter ‘A’ (indicating average path

length) to denote the corresponding approach, resulting in AFC, AIC, ALC, ALPC, AEBC,

ASPC, and AMC.

Further, we used three measures to analyze the segregation and integration concepts: Effec-

tive Information (EI) and determinism and degeneracy coefficients. Measures of integrated

information promise general applicability to questions in neuroscience, in which part-whole

relations play a role, and are our interest here [122]. In this paradigm, a system can show a bal-

ance between two competing tendencies [123]:

• integration, i.e., the system behaves as one;

• segregation, i.e., the parts of the system behave independently.

In other words, integration in network analysis refers to how well nodes in a network are

interconnected, facilitating efficient information flow, and highly integrated networks allow

for smooth information exchange between nodes [124, 125]. Segregation, on the other hand,

pertains to distinct subgroups or communities within a network; segregated networks have

subsets of nodes that are more tightly connected within their subgroups, often forming distinct

clusters or communities [126, 127].

The EI was first introduced to capture the causal influence between two subsets of neurons

as a step in calculating integrated information in the brain [128]. Later, a system-wide version

of EI was shown to capture fundamental causal properties such as determinism and redun-

dancy [129, 130]. To expand the EI framework to networks, in [131], the intervention opera-

tion in the EI calculation is relaxed by assuming that Wout has modulus one and interpreted as
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leaving a random walker on the network. This allows us to investigate the dynamics by inspect-

ing the graph topology. Quantitatively, the EI is based on two uncertainties: the first is the

Shannon entropy of the average out-weight vector in the network, HðWout
i Þ, which captures

how distributed out-weights of the network are; the second is the average entropy of each

node’s HðWout
i Þ, giving:

EI ¼ HðWout
i Þ � HðWout

i Þ:

Further, two fundamental components of EI are the determinism and degeneracy coeffi-

cients. They are based on a network’s connectivity, specifically the degree of overlapping

weight in the networks. The determinism is based on the average of how much information is

not lost in a walker’s uncertainty, HðWout
i Þ. Since log2(n) represents maximal determinism, i.e.,

when all walkers have the output wij = 1. Then, the determinism is given by

log
2
ðnÞ � HðWout

i Þ. Meanwhile, the degeneracy describes how non-uniform the weight distri-

bution is of the network. If all nodes lead only to one node, that network is perfectly degener-

ate. The degeneracy can be captured by log
2
ðnÞ � HðWout

i Þ. Together, determinism and

degeneracy can be used to re-define EI:

EI ¼ determinism � degeneracy:

However, this study considers three classes, differently from the previous ones [33–37] that

only consider two classes. Therefore, it was not possible to classify ADHD from TD using the

complex network measures. To address this challenge and gain insights into the underlying

patterns within the data, we performed a Principal Components Analysis (PCA). PCA is a

dimensionality reduction technique that transforms the original high-dimensional data into a

lower-dimensional representation while preserving as much of the variance in the data as pos-

sible [132, 133]. By extracting the main components, we aimed to uncover hidden structures

and reduce the dimensionality of the dataset, which can be beneficial for subsequent analysis

and visualization. This approach allowed us to explore the relationships between the variables

and potentially reveal patterns that may not be apparent in the raw data, ultimately contribut-

ing to a deeper understanding of the complex network measures in the context of ADHD and

TD classification.

After PCA, we conducted a statistical analysis using the Wilcoxon test with Bonferroni cor-

rection to compare the three classes: ASD, ADHD, and TD. The Bonferroni correction con-

trols the family-wise error rate in multiple hypothesis testing scenarios, such as when

performing multiple pairwise comparisons [134]. In our context, it helps address the issue of

inflated Type I error rates that can occur when conducting multiple statistical tests simulta-

neously. The Wilcoxon test, also known as the Mann-Whitney U test in the case of two groups

or the Kruskal-Wallis test for more than two groups [135–137], is a non-parametric test used

to assess whether there are statistically significant differences between groups when the

assumptions of normality and equal variances are not met. In this specific analysis, the Wil-

coxon test allowed us to determine if there were significant differences in some measure or

variable among the ASD, ADHD, and TD groups. To apply the Bonferroni correction, the sig-

nificance level (alpha) for each comparison is adjusted to reduce the overall probability of

making a Type I error (Type I error, also known as a false positive, occurs when a true null

hypothesis is rejected in a statistical test [138]. In the context of multiple comparisons, it refers

to the increased likelihood of mistakenly concluding that there is a significant difference when

there is not due to the increased number of tests being performed simultaneously. The Bonfer-

roni correction helps to reduce this risk) across all comparisons [139]. This adjustment is

achieved by dividing the original alpha level by the number of comparisons being made. The
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adjusted alpha becomes more stringent, making it harder to declare a result as statistically sig-

nificant. Consequently, the Bonferroni correction helps to mitigate the risk of false positives

when conducting multiple comparisons. These results can be seen in subsection 3.2, and the

following symbols represent the statistical significance:

• ns: 5.00e − 02 < p< = 1.00e + 00;

• *: 1.00e − 02 < p< = 5.00e − 02;

• **: 1.00e − 03< p< = 1.00e − 02;

• ***: 1.00e − 04 < p< = 1.00e − 03;

• ****: p< = 1.00e − 04.

3 Results

3.1 Connectivity matrices

According to Table 4, the best classifiers were LSTM and SVM. LSTM performance for the test

set was equal to 0.983 for the mean AUC, 0.978 for precision, 0.978 for recall, and 0.978 for

accuracy. SVM performance for the test set was equal to 0.946 for the AUC, 0.928 for the preci-

sion, 0.928 for the recall, and 0.928 for the accuracy. Each classifier’s confusion matrices and

ROC curves are depicted in Figs 2 and 3, respectively.

Further, we investigated potential biases arising from variations in data acquisition proto-

cols between different sites to enhance the robustness of our analysis; we compared the TD

group for the ADHD dataset and the ASD dataset using the SVM. The results in Fig 4 show

that all metric performance stands around 0.50 in a random classifier. Therefore, it is impossi-

ble to distinguish between the TD groups of the different datasets, proving that we could miti-

gate potential biases from variations in data acquisition protocols.

Since SVM has a lower computational cost, it was chosen for the following subsequent anal-

yses. To determine the optimal number of features required for peak performance, we con-

ducted a Recursive Feature Elimination (RFE) analysis, as illustrated in Fig 5A. RFE, often

used in the literature in prediction models in medical data [140–142], iteratively removes less

Table 4. Results from different ML algorithms. The best ML algorithms were LSTM and SVM, whose performances are highlighted in bold.

Model Subset AUC Accuracy Recall Precision

LSTM Train 0.987±0.022 0.968±0.051 0.951±0.082 0.954±0.074

Test 0.983 0.978 0.978 0.978

SVM Train 0.951±0.020 0.936±0.026 0.936±0.026 0.940±0.025

Test 0.946 0.928 0.928 0.928

LR Train 0.948±0.022 0.931±0.029 0.931±0.029 0.934±0.028

Test 0.946 0.928 0.928 0.927

CNN Train 0.956±0.042 0.904±0.048 0.852±0.072 0.860±0.073

Test 0.938 0.920 0.913 0.913

MLP Train 0.932±0.025 0.910±0.033 0.910±0.033 0.913±0.035

Test 0.929 0.905 0.905 0.905

NB Train 0.834±0.028 0.779±0.037 0.779±0.037 0.800±0.042

Test 0.854 0.805 0.805 0.812

https://doi.org/10.1371/journal.pone.0305630.t004
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critical features to gauge their impact on model performance, allowing us to pinpoint the most

relevant features. Fig 5A demonstrates that greater accuracy is attained while using 310 charac-

teristics. Thus, including a complete feature set was not necessary to achieve maximum

effectiveness.

Fig 2. Confusion matrices depict the performance of various ML algorithms. The elements in the figure labeled A to F

correspond to LSTM, CNN, LR, SVM, MLP, and NB, respectively. The diagonal elements represent TP values, showcasing each

algorithm’s accuracy in correctly identifying positive instances. This is noteworthy on a test sample containing 180 instances.

https://doi.org/10.1371/journal.pone.0305630.g002
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Fig 3. ROC curve for each ML algorithm. The elements in the figure labeled A to F correspond to LSTM, CNN, LR, SVM, MLP, and NB,

respectively. The dashed pink line represents the random choice classifier, the purple line the micro-average ROC curve, the gray line the macro-

average ROC curve, the turquoise line the ROC curve referring to the TD class, the orange line the ROC curve referring to the ADHD class, and

the green line the ROC curve referring to the ASD class.

https://doi.org/10.1371/journal.pone.0305630.g003
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In addition to RFE, we generated a learning curve, as illustrated in Fig 5B, to gain insights

into the influence of dataset size on our model’s performance. This curve visually represents

how the number of training instances affects the model’s predictive accuracy. Therefore, RFE

and the learning curve enable us to fine-tune our SVM model, ensuring it achieves the optimal

equilibrium between feature selection and data volume. From Fig 5B, it can be seen that the

maximum performance occurred with 450 subjects without the need for the complete dataset.

Then, we used the 310 features obtained from RFE analysis to perform the SHAP values

methodology. The results can be seen in Fig 6.

As in Fig 6, it can be seen that for all classes, mainly for distinguishing TD and ASD (in Fig

6A, dark blue and green, respectively), the two primary connections were Left-ParsOrbitalis-

Left-PrimMotor and Left-ParsOrbitalis-Left-Thalamus. Regarding the ASD class, the primary

connections found were Left-ParsOrbitalis-Left-Thalamus and Left-ParsOrbitalis-Left-Prim-

Motor, with a low correlation value for this class (in Fig 6B). Regarding the ADHD class, the

primary connections found were Left-VisualAssoc-Outside defined BAS1 and Right-

AngGyrus-Outside defined BAS1, with a low correlation value for this class (in Fig 6C). From

our previous work, the Outside defined BAS1 was identified as the cerebellum. Fig 7 contains

the two-dimensional schematic (ventral-axis) with the man regions found regarding ASD and

ADHD.

Furthermore, we introduced noise generated by a normal distribution, with different

means (level of the noise) while keeping the standard deviation constant at 0.1. This resulted

in a range of noisy matrices that we used to evaluate our SVM model’s performance. We

assessed the SVM model’s performance using AUC and accuracy depicted in Fig 8, which indi-

cates that our SVM model exhibits robustness to noise in the input data matrices. Even when

noise levels vary from 0.0 to 1.5, the model maintains a relatively high AUC and accuracy, indi-

cating its ability to accurately classify patients with ASD, ADHD, and TD individuals. The

model’s performance gradually decreases as the noise level increases, which is expected. How-

ever, it is noteworthy that even at noise levels as high as 1.0 (where the data is significantly dis-

torted), the model still achieves a reasonable AUC of 0.70 and an accuracy of 0.60 (see Fig 8).

Fig 4. Investigation of potential biases arising from variations in data acquisition protocols. Comparing the TD

groups from different datasets results in all metric performance standing around 0.50 in a random classifier, proving

that we could mitigate potential biases from variations in data acquisition protocols with our preprocessing.

https://doi.org/10.1371/journal.pone.0305630.g004
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Fig 5. RFE and the learning curve for the SVM model are depicted in (A) and (B), respectively. The best

performance is achieved with a total of 310 characteristics, as shown by (A). In (B), the learning curve is presented for

the training Accuracy (blue) and test Accuracy (green) using the entire dataset (600 connectivity matrices subjects).

The highest performance was achieved with 450 connectivity matrices subjects without requiring the entire dataset.

Notably, the connectivity matrices were generated using the data augmentation technique sliding window, and 600

connectivity matrices were used in total in the ML approach before the sampling technique.

https://doi.org/10.1371/journal.pone.0305630.g005
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Fig 6. Feature importance ranking using the SHAP values methodology for the SVM classifier with brain regions

in descending order. (A) Feature ranking based on the average of absolute SHAP values over all subjects considered.

(B) Feature importance ranking regarding ASD class. (C) Feature importance ranking regarding ADHD class.

https://doi.org/10.1371/journal.pone.0305630.g006
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This suggests that the SVM model is resilient to noise and can provide valuable diagnostic

information in real-world scenarios where data may be imperfect.

Further, we conducted stratified k-fold cross-validation with values beyond k = 10, namely

2, 3, 5, and 15. The resulting plot in Fig 9 reveals trends in the SVM model’s performance on

Fig 7. The most important connections found. Two-dimensional schematic (ventral-axis), where the most important

connection for ADHD and ASD are highlighted in green and blue, respectively. The brain plot was developed by the

Braph tool [143], and each region was plotted using a Brodmann map from the Yale BioImage Suite Package.

https://doi.org/10.1371/journal.pone.0305630.g007

Fig 8. SVM behavior after insertion of noise. The mean AUC of the test was obtained with the insertion of noise

generated by a normal distribution with 0.1 standard deviation and a 0–1.5 mean range.

https://doi.org/10.1371/journal.pone.0305630.g008
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the training dataset. As the value of k increases, the AUC remains relatively stable, with values

ranging from approximately 0.94 to 0.95. This suggests that the SVM model consistently dis-

criminates between the three groups—ASD, ADHD, and TD. The corresponding accuracy val-

ues remain steady, ranging from approximately 0.93 to 0.94. We observed similar stability in

AUC values for the test dataset, which ranges from about 0.92 to 0.95 as k varies. This indicates

that the SVM model’s ability to distinguish between groups holds when applied to unseen

data. The accuracy on the test dataset also remains steady, with values ranging from approxi-

mately 0.89 to 0.93. This robustness is particularly valuable when dealing with real-world data

where k can impact model stability.

3.2 Complex network

The performance of the test sample considering the complex network yielded the confusion

matrix and the ROC curve depicted in Fig 10.

The performance of the test sample considering the complex network yielded the confusion

matrix, and the ROC curve depicted in Fig 10 indicates that the model did not perform well

for the ADHD class (with an accurate positive accuracy of 0.53 and an AUC of 0.72). This sub-

optimal performance can be attributed to several factors. Firstly, when we performed PCA

with two and three components, as shown in Fig 11, it became evident that the ADHD and TD

instances formed two overlapping groups, differently from the ASD instance class. This lack of

clear separation in the PCA space suggests that the initial feature set does not easily capture the

inherent characteristics distinguishing ADHD from TD cases. This inherent overlap in feature

distributions can significantly hinder the performance of a classifier like SVM, which relies on

well-defined class boundaries.

Additionally, we observed in Fig 11 that none of the features displayed strong correlations

with the principal components. This lack of feature-component solid correlations suggests that

the initial feature set may need to contain clear discriminatory information, making it chal-

lenging for the SVM to distinguish between classes effectively.

Fig 9. Plot for the SVM model with performance measures. The AUC and Accuracy, in the y-axis, in blue and

purple, respectively, were obtained by varying the number of k in the stratified k-fold-cross-validation (x-axis))—the

dashed lines corresponding to the test sample and the complete lines to the training sample. Furthermore, the shaded

represents the standard deviation in the training sample.

https://doi.org/10.1371/journal.pone.0305630.g009
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Therefore, to improve the model performance, it may be necessary to consider additional

domain-specific features that could better capture the nuances of ADHD and TD differentia-

tion within the dataset.

Then, we performed a statistical t-test with Bonferroni correction. This choice was driven

by our need to rigorously assess the significance of differences in the means of individual fea-

tures between the ADHD and TD groups. By conducting this test, we could identify which

Fig 10. ML results from complex network measures. (A) The confusion matrix indicates that there were a lot of

incorrect predictions between the TD and ADHD groups. (B) The ROC curve, where the dashed pink line represents

the random choice classifier, the purple line is the micro-average ROC curve, the gray line is the macro-average ROC

curve, the turquoise line the ROC curve referring to the TD class, the orange line the ROC curve referring to the

ADHD class (which can be seen the ADHD has the lowest-distinguished curve) and the green line the ROC curve

referring to the ASD class (which can be seen the ASD has the best-distinguished curve).

https://doi.org/10.1371/journal.pone.0305630.g010

PLOS ONE Multiclass machine learning and deep learning for fMRI functional connectivity individuals with ASD and ADHD

PLOS ONE | https://doi.org/10.1371/journal.pone.0305630 October 17, 2024 20 / 35

https://doi.org/10.1371/journal.pone.0305630.g010
https://doi.org/10.1371/journal.pone.0305630


Fig 11. PCA using the complex network measures. The features for ASD, ADHD, and TD are depicted in red, green,

and blue, respectively. In (A), PCA with three components, namely PC1, PC2, and PC3, is illustrated in the plot axis. In

(B), PCA with two components, namely PC1 and PC2, is presented in the plot axis; further, the heatmap shows that

any of the features were highly correlated with the two components.

https://doi.org/10.1371/journal.pone.0305630.g011
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Fig 12. Features were statistically significant between all groups when using the t-test with Bonferroni correction. The orange, pink, and

purple boxplots show the features that obtained the most statistically significant differences regarding the classes ADH, ASD, and TD,

respectively.

https://doi.org/10.1371/journal.pone.0305630.g012
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Fig 13. Features were four stars statistically significant, at least between one of the groups, when using the t-test with Bonferroni correction. The orange, pink,

and purple boxplots show the features that obtained the most statistically significant differences regarding the classes ADH, ASD, and TD, respectively.

https://doi.org/10.1371/journal.pone.0305630.g013
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specific features exhibit statistically significant distinctions between these two classes. The

Bonferroni correction is applied to mitigate the issue of multiple comparisons, ensuring that

we maintained a low family-wise error rate. In other words, it helps control the higher proba-

bility of obtaining false positives when examining numerous features simultaneously. The sta-

tistically significant ones between all groups are depicted in Fig 12, and the ones with four stars

at least between one of the groups are in Fig 13. Further, the statistical test with the integrated

measures can be found in Fig 14.

4 Discussion

4.1 Connectivity matrices

Overall, we obtained the best performance compared to the multiclass machine learning algo-

rithm comparing ASD, ADHD, and TD in the literature, as described in section 1. Analysis

Fig 14. The t-test with Bonferroni correction for the integrated measures. The orange, pink, and purple boxplots show the features that obtained the most

statistically significant differences regarding the classes ADH, ASD, and TD, respectively.

https://doi.org/10.1371/journal.pone.0305630.g014
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from Table 1 reveals that our methodology outperforms existing multiclass approaches. In our

prior research [33] focusing on EEG time series, we demonstrated the superior accuracy of

constructing connectivity matrices compared to conventional methods employing raw EEG

data. This underscores the significance of network topology in characterizing brain data.

Furthermore, in subsequent investigations [34, 35], we found that employing a distinct cor-

relation metric yielded improved detection of brain changes associated with ASD and schizo-

phrenia, respectively. Interestingly, TE proved effective in capturing such changes in the fMRI

dataset. Thus, one of our hypotheses for achieving optimal performance revolves around

selecting an appropriate correlation metric.

Furthermore, our findings, as illustrated in Fig 6, provide valuable insights into the func-

tional roles of specific brain regions in distinguishing between individuals with ASD, ADHD,

and TD based on fMRI matrices. These results shed light on the neural circuitry implicated in

these neurodevelopmental conditions.

In Fig 6A, where TD and ASD are distinguished, the two primary connections of interest

are Left-ParsOrbitalis-Left-PrimMotor and Left-ParsOrbitalis-Left-Thalamus. This observa-

tion suggests that these connections play a significant role in discriminating between TD and

ASD individuals. The Left-ParsOrbitalis is associated with decision-making and social cogni-

tion [144], areas commonly affected in individuals with ASD [145]. The connections to the

PrimMotor and Thalamus imply that motor control and sensory processing also contribute to

distinguishing between these groups and are also found in our previous work [34]. Further,

Fig 6B highlights the primary connections for the ASD class, with a focus on Left-ParsOrbita-

lis-Left-Thalamus and Left-ParsOrbitalis-Left-PrimMotor. These connections are consistent

with the findings in Fig 6A, emphasizing the importance of the Left-ParsOrbitalis in distin-

guishing individuals with ASD. This region’s involvement in social cognition, decision-mak-

ing, and language processing may reflect the cognitive and behavioral characteristics

associated with ASD.

In Fig 6C, which pertains to the ADHD class, the primary connections identified are Left-

VisualAssoc-Outside defined BAS1 and Right-AngGyrus-Outside defined BAS1, both with

low correlation values. Our previous work has identified the “Outside defined BAS1” as the

cerebellum. The cerebellum is traditionally linked to motor control [146]. However, emerging

research suggests its involvement in cognitive functions, including attention and executive

control [147] and in several studies associated with ADHD [146, 148, 149]. The Left-VisualAs-

soc connection might signify differences in visual processing [150], while the Right-AngGyrus

could be related to higher-order cognitive functions [151]. Both areas play a significant role in

visuospatial attention processes [152, 153]. The low correlation values may imply that these

connections are less distinctive for distinguishing ADHD from the other groups, suggesting a

more complex neural signature for this condition.

4.2 Complex network measures

The results in Fig 12 offer valuable insights into the network properties of three distinct

groups: ASD, ADHD, and TD. We employed a range of complex network measures to assess

valuable insights into the network properties of three distinct groups. Further, with these met-

rics, we can observe distinct patterns in integration and segregation, which are fundamental

concepts in network analysis, across the three groups [154, 155].

The ASD group exhibits the lowest values across various network metrics, such as BC, Den-

sity, Eccentricity, K-core, KNN, Mean Degree, ED, and Efficiency. This suggests that individu-

als with ASD have a more fragmented and segregated network structure, indicating challenges

in information integration within the network. In other words, their networks may have more

PLOS ONE Multiclass machine learning and deep learning for fMRI functional connectivity individuals with ASD and ADHD

PLOS ONE | https://doi.org/10.1371/journal.pone.0305630 October 17, 2024 25 / 35

https://doi.org/10.1371/journal.pone.0305630


isolated clusters of nodes that do not communicate effectively with each other, according to

the literature [34, 156, 157].

On the other hand, the ADHD group demonstrates higher values in these metrics com-

pared to ASD; however, it falls short of the performance observed in the TD group, indicating

that individuals with ADHD have a network structure that is more integrated than ASD but

still not as optimal as the control group. This implies that individuals with ADHD have a net-

work structure that is more cohesive than ASD but not as cohesive as typical development.

Furthermore, as shown in Fig 13, the ASD group exhibits the lowest values for both the

ASC measure, gauging the size of community networks, EC, network influence, and transitiv-

ity. In contrast, the ADHD group displays higher values in these metrics than the ASD group

but still lags behind the TD group. These findings suggest that individuals with ASD may have

smaller and less influential networks within their communities, while those with ADHD fall in

between ASD and TD individuals regarding these network characteristics.

By computing the EI in the TD, ASD, and ADHD groups, there is a lower average value of

EI in the ASD group than the others, showing a tendency to have a more segregated than inte-

grated structure in this group (see Fig 14). Interestingly, there is an analysis of determinism

and degeneracy coefficients in the groups. The greater value of determinism and degeneracy

coefficients in the ASD than the others shows that the graph structure in this group resembles

a star (sparse connections) instead of a complete (well-connected) network [131] strengthen-

ing the EI interpretation in the last paragraph.

In [158], functional segregation was characterized as the capacity for specialized processing

within tightly interconnected brain regions. In other words, neuronal processing is distributed

across functionally related regions organized into modules. These modules are described as

communities exhibiting dense internal connectivity among their constituent nodes and lim-

ited communication with nodes from other communities. This network analysis can be linked

to the long-observed fact by clinicians that those with ASD are impaired in their ability to gen-

eralize—that is, to relate new stimuli to past experiences. Instead, these groups are good at spe-

cializing in learned habits [159, 160].

5 Conclusion

Our study used fMRI datasets and explainable IA methods to generate an interpretable classi-

fier for ASD, ADHD, and TD. We have found distinct brain activity patterns underlying these

neurodevelopmental disorders by advancing beyond binary comparisons and integrating com-

plex network measures alongside machine learning methodologies.

Our findings confirm the existence of unique neural signatures for ASD, ADHD, and TD

groups. Notably, connections involving Left-ParsOrbitalis emerged as crucial in distinguishing

between TD and ASD, possibly indicating underlying deficits in decision-making and social

cognition observed in ASD. Similarly, distinct neural signatures were observed for ADHD,

with connections to the cerebellum, Left-VisualAssoc, and Right-AngGyrus, highlighting

potential involvement in cognitive functions and sensory processing differences. The observed

connectivity patterns on which the ML classification rests agree with established diagnostic

approaches based on clinical symptoms, proving the trustworthiness and efficiency of our

multiclass ML approach’s interpretability technique. Moreover, we demonstrate the superior

performance of our multiclass machine learning approach compared to existing literature.

This heightened performance is essential for reliable discrimination between neurodevelop-

mental conditions, promising prospects for more precise diagnostic tools.

Furthermore, our analysis of complex network measures elucidated the network properties

of each group, unveiling differences in integration and segregation patterns. The ASD group
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exhibited the lowest values across various network metrics, suggesting a fragmented network

structure. In contrast, the ADHD group demonstrated intermediate values, indicative of a net-

work that is more integrated than ASD but less cohesive than typical development.

Despite these significant contributions, limitations such as data quantity constrain the gen-

eralizability of our findings. Future studies should aim to overcome these limitations by incor-

porating larger datasets encompassing a broader range of mental health conditions. Further

investigations focusing on specific brain regions could provide deeper insights into group dif-

ferences in brain connectivity. Further, we propose integrating our methodology with feder-

ated learning techniques as a promising avenue for advancing diagnostics and drug trials in

neurodevelopmental conditions [161–163]. Federated learning offers a solution to data privacy

and scalability challenges, allowing for collaborative model training across multiple datasets

while preserving data decentralization [164–166]. This approach holds immense potential for

improving diagnostic accuracy and guiding personalized treatment strategies tailored to spe-

cific demographics or clinical settings [167].

In summary, our study represents a significant step forward in understanding the neural

underpinnings of neurodevelopmental conditions. By leveraging advanced analytical tech-

niques and machine learning methodologies, we have surpassed performance in discrimina-

tion between ASD, ADHD, and TD individuals, paving the way for refined diagnostics and

promising avenues for developing trustworthy clinical decision-support systems.

Supporting information
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tion contains the normalized transfer entropy connectivity matrices derived from the authors’

preprocessed BOLD time series of 122 fMRI regions. These matrices served as inputs for the

algorithms employed in this study and for extracting complex network measures.
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of deep learning models with Monte Carlo dropout. npj Digital Medicine. 2022; 5(1):174. https://doi.org/

10.1038/s41746-022-00709-3 PMID: 36400939

77. Li X, Dou Q, Chen H, Fu CW, Qi X, Belav‘y DL, et al. 3D multi-scale FCN with random modality voxel

dropout learning for intervertebral disc localization and segmentation from multi-modality MR images.

Medical image analysis. 2018; 45:41–54. https://doi.org/10.1016/j.media.2018.01.004 PMID:

29414435

78. Bisong E, Bisong E. Introduction to Scikit-learn. Building Machine Learning and Deep Learning Models

on Google Cloud Platform: A Comprehensive Guide for Beginners. 2019; p. 215–229.

79. Raschka S. Python machine learning. Packt publishing ltd; 2015.

80. Raschka S, Mirjalili V. Python machine learning: Machine learning and deep learning with Python, sci-

kit-learn, and TensorFlow 2. Packt Publishing Ltd; 2019.
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