Skip to main content
. 2024 Oct 17;19(10):e0305630. doi: 10.1371/journal.pone.0305630

Table 2. Hyperparameters and layer configurations for the CNN model.

Type of Layer Tuning hyperparameter Value
Convolutional
Convolutional dropout [0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50]
Convolutional
Convolutional number of filters [32, 64]
Max Pooling dropout [0.00, 0.50, 0.10, 0.15, 0.20]
Flatten
Dense - units [32, 64, 96….512]
-activation [relu, tanh, sigmoid]
Dropout rate [0.00, 0.50, 0.10, 0.15, 0.20]
Adam optimization compile learning rate minvalue = 1e−4
maxvalue = 1e−2
sampling = LOG