Table 2. Hyperparameters and layer configurations for the CNN model.
Type of Layer | Tuning hyperparameter | Value |
---|---|---|
Convolutional | — | — |
Convolutional | dropout | [0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50] |
Convolutional | — | — |
Convolutional | number of filters | [32, 64] |
Max Pooling | dropout | [0.00, 0.50, 0.10, 0.15, 0.20] |
Flatten | — | — |
Dense | - units | [32, 64, 96….512] |
-activation | [relu, tanh, sigmoid] | |
Dropout | rate | [0.00, 0.50, 0.10, 0.15, 0.20] |
Adam optimization compile | learning rate | min − value = 1e−4 |
max − value = 1e−2 | ||
sampling = LOG |