Skip to main content
. 2024 Oct 17;19(10):e0305630. doi: 10.1371/journal.pone.0305630

Table 4. Results from different ML algorithms.

The best ML algorithms were LSTM and SVM, whose performances are highlighted in bold.

Model Subset AUC Accuracy Recall Precision
LSTM Train 0.987±0.022 0.968±0.051 0.951±0.082 0.954±0.074
Test 0.983 0.978 0.978 0.978
SVM Train 0.951±0.020 0.936±0.026 0.936±0.026 0.940±0.025
Test 0.946 0.928 0.928 0.928
LR Train 0.948±0.022 0.931±0.029 0.931±0.029 0.934±0.028
Test 0.946 0.928 0.928 0.927
CNN Train 0.956±0.042 0.904±0.048 0.852±0.072 0.860±0.073
Test 0.938 0.920 0.913 0.913
MLP Train 0.932±0.025 0.910±0.033 0.910±0.033 0.913±0.035
Test 0.929 0.905 0.905 0.905
NB Train 0.834±0.028 0.779±0.037 0.779±0.037 0.800±0.042
Test 0.854 0.805 0.805 0.812