Table 4. Results from different ML algorithms.
Model | Subset | AUC | Accuracy | Recall | Precision |
---|---|---|---|---|---|
LSTM | Train | 0.987±0.022 | 0.968±0.051 | 0.951±0.082 | 0.954±0.074 |
Test | 0.983 | 0.978 | 0.978 | 0.978 | |
SVM | Train | 0.951±0.020 | 0.936±0.026 | 0.936±0.026 | 0.940±0.025 |
Test | 0.946 | 0.928 | 0.928 | 0.928 | |
LR | Train | 0.948±0.022 | 0.931±0.029 | 0.931±0.029 | 0.934±0.028 |
Test | 0.946 | 0.928 | 0.928 | 0.927 | |
CNN | Train | 0.956±0.042 | 0.904±0.048 | 0.852±0.072 | 0.860±0.073 |
Test | 0.938 | 0.920 | 0.913 | 0.913 | |
MLP | Train | 0.932±0.025 | 0.910±0.033 | 0.910±0.033 | 0.913±0.035 |
Test | 0.929 | 0.905 | 0.905 | 0.905 | |
NB | Train | 0.834±0.028 | 0.779±0.037 | 0.779±0.037 | 0.800±0.042 |
Test | 0.854 | 0.805 | 0.805 | 0.812 |