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Riboflavin for women’s health and
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Riboflavin (vitamin B2) is an essential water-soluble vitamin that serves as a precursor of flavin
mononucleotide (FMN) and flavin adenine dinucleotide (FAD). FMN and FAD are coenzymes involved
in key enzymatic reactions in energy metabolism, biosynthesis, detoxification and electron
scavenging pathways. Riboflavin deficiency is prevalent worldwide and impacts women’s health due
to riboflavin demands linked to urogenital and reproductive health, hormonal fluctuations during the
menstrual cycle, pregnancy, and breastfeeding. Innovative functional foods and nutraceuticals are
increasingly developed to meet women’s riboflavin needs to supplement dietary sources. An
emerging and particularly promising strategy is the administration of riboflavin-producing lactic acid
bacteria, combining the health benefits of riboflavin with those of probiotics and in situ riboflavin
production. Specific taxa of lactobacilli are of particular interest for women, because of the crucial role
of Lactobacillus species in the vagina and the documented health effects of other Lactobacillaceae
taxa in the gut and on the skin. In this narrative review, we synthesize the underlying molecular
mechanisms and clinical benefits of riboflavin intake for women’s health, and evaluate the synergistic
potential of riboflavin-producing lactobacilli and other microbiota.

Micronutrient status and dietary habits are crucial for human health and
quality of life1–3, especially for women of reproductive age and their
children4. Riboflavin is an essential water-soluble vitamin that cannot be
synthesized in humans and thus requires regular intake5. The need for
riboflavin is prominent in women, due to their increased riboflavin
demands in a variety of life stages and physiological processes6,7. For
example, riboflavin intake should be increased during pregnancy and lac-
tation, since it is taken up by the placenta and fetus to support growth and
prevent birth defects6 and lost via breastmilk tomeet the infant’s nutritional
needs and immune development7. To this end, the recommended dietary
allowance (RDA) is 1.6 mg/day for adults (both sexes), 1.9 mg/day for
pregnant women and 2.0 mg/day for lactating women in Europe8. These
values are higher than RDA values set for healthy U.S. and Canadian
populations, namely 1.1 mg/day for adult women, 1.4 mg/day during
pregnancy, and 1.6 mg/day for lactation9, which can be attributed to cor-
responding regulatory institutions that define criteria for nutritional ade-
quacy in different ways depending on age, sex, and physiological status10.
Documented dietary sources of riboflavin include milk and other dairy
products, dark-green vegetables, cereals, fatty fish, and organ meat11. Yet,
between 31%12 and 92%13 of women worldwide are reported to have a

biochemical riboflavin deficiency. Although the majority of deficiencies
occur in developing countries such as in Africa (e.g., Côte d’Ivoire14) and
Asia (e.g., India15 and Cambodia13), also populations in developed countries
can suffer from riboflavin deficiency due to inadequate intake via diet as a
result of veganism16,17, lactose intolerance18, aging19, anorexia nervosa20, or
alcoholism21. Consequently, both developing and developed countries call
for an acquisition of the necessary riboflavin levels by readily available and
cost-efficient supplementary means22.

Dietary intake of riboflavin is associatedwithhealth claims defined and
evaluated for causality and level of evidence for the general populationby the
European Food Safety Authority (EFSA)23 (Fig. 1, indicated in bold). Apart
from these, additional health benefits have been suggested by observational
and intervention studies (Fig. 1, indicated in light), although the level of
evidence is often still limited. Yet, riboflavin supplementation is increasingly
explored in specific clinical settings, for example in case of preeclampsia24,
anemia during pregnancy25, Parkinson’s disease and migraine26, and
female27, and postpartum depression28, as further discussed below.

Apart fromdietary sources and supplements, riboflavin synthesized by
microbiotamembers in thehumanbody formsanadditional source that can
contribute to the overall riboflavin homeostasis29. Bacteria such as
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Lactobacillaceae and Bifidobacteriaceae species have been reported to pro-
duce riboflavin that canbeusedby colonic epithelial cells, but themagnitude
of their in situ contribution in the gut is not yet clear30,31. Whereas the
riboflavin biosynthesis pathway is most extensively studied in Bacillus
subtilis32 andEscherichia coli33, which can reside in the gut at different levels,
one systematic genome assessment has found that each of the eight B
vitamins (B1, B2, B3, B5, B6, B7, B9, and B12) can theoretically be produced
by 40–65% of the 256 studied human gut strains34. The strains predicted to
produce these vitamins belong to dominant gut microbiota genera such as
Bacteroides, Prevotella, Clostridium, Faecalibacterium and Fusobacterium,
and less dominant but prevalent gut taxa such as lactobacilli from the
Limosilactobacillus reuteri, Limosilactobacillus fermentum and Lactiplanti-
bacillus plantarum species. Riboflavin (B2) and niacin (B9) were predicted
to be synthesized by more than half of the gut microbiota members
studied34. In addition, the authors validated the genome predictions with
experimental data from sixteen human gut microorganisms, published
elsewhere, showing that 88% of the predictions matched34. Of interest,
patients with metabolic diseases, such as obesity and type 2 diabetes35 have
been reported to have a reduction of bacterial riboflavin synthesis genes in
their gut microbiome, suggesting that microbially-produced riboflavin
couldplay a role in these diseases, although the causal association remains to
be established. Similarly,members of themicrobiota at other body sites such
as Lactobacillaceae in the vagina, have been reported to produce B vitamins
in laboratory conditions36, but—to the best of our knowledge—so far
without reference to potential physiological functions for the host. In
infants, it is currently common practice to promote vitamin K supple-
mentation to prevent uncontrolled bleeding until the microbiome is suffi-
ciently matured37. A similar practice to counterbalance certain microbiome
imbalances or deficiencies in infants and/or adults is not yet implemented
for B vitamins but could be of interest. In this review, we present several
arguments why this is of interest to explore, by providing a mechanistic

overview of riboflavin’s involvement in women’s health based on dedicated
molecular studies and clinical trials and associations. We also summarize
the current knowledge on riboflavin production by microbiota members
and exogenously added probiotics.

Riboflavin’s modes of action for women’s health
Riboflavin’s general properties: antioxidation and anti-
inflammation
Riboflavin’s health benefits are generally based on the capacity of its active
forms flavin mononucleotide (FMN) and flavin adenine dinucleotide
(FAD) to function as coenzymes for ca. 70 human proteins (cfr. the
flavoproteome)38,39 in biochemical reactions related to energy production,
macro- and micronutrient metabolism, cell respiration, cell growth and
immune responses (Fig. 2)40,41. By now, it is common knowledge that
riboflavin possesses considerable antioxidative and anti-inflammatory
properties42,43. The antioxidant effects result from the (in)direct capacity
to deactivate reactive oxygen species (ROS), such asO2

- andH2O2, either by
riboflavin in its reduced form, as dihydroriboflavin, or as a cofactor of
antioxidative enzymes, such as glutathione peroxidase, superoxide dis-
mutase, glutathione reductase, and catalase (as reviewed in refs. 42,44). In
this regard, the erythrocyte glutathione reductase activity coefficient
(EGRac), defined as the ratio of reductase activity in red blood cells (RBCs)
after FADaddition to the activity before addition, is a functional indicator of
riboflavin status in the blood and therefore used as golden standard to
clinically monitor riboflavin deficiency (EGRac > 1.40)22. In general, the
higher the EGRac, the less endogenous FAD is available, thus the poorer the
blood riboflavin levels22.

Riboflavin’s anti-inflammatory properties have mainly been studied
using cell and murine models43,45, but are not yet well understood. Inter-
ference of riboflavin with the generally pro-inflammatory nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB) transcription

Fig. 1 | Impact of riboflavin deficiency on various
aspects of women’s health. The different body sites
where riboflavin is crucial are indicated. The evi-
dence is categorized based on the available doc-
umentation on associations between (1) riboflavin
deficiency and specific health problems, (2) ribo-
flavin supplementation and how it improves specific
health outcomes and (3) how normal riboflavin
levels support andmaintain physiological processes.
EFSA-approved health claims are indicated in bold.
This figure was created with Biorender.com and
based on the following key refs.
23–28,42,44,78,87,90,91,96,128,129,215.
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factor signaling seems to play amajor role45. Riboflavin seems to function as
a proteasome inhibitor43,45, resulting in the decreased degradation of the
NF-κB inhibitor, phosphorylated-inhibitor kappa (P-IκB), thus preventing
nuclear translocation of NF-κB and subsequent pro-inflammatory gene
activation46. This has been shown to result in decreased production of pro-
inflammatory cytokines such as Tumor Necrosis Factor alpha (TNF-α),
interleukin 6 (IL-6), interleukin 8 (IL-8), and interferon gamma (IFN-γ),
and inflammationmarkers such as cyclooxygenase 2 (COX2)26,45. In similar
study setups, riboflavin has also been shown to prevent mitochondrial ROS
production and DNA release47. In addition to inhibiting NF-kB signaling,
riboflavin can also inhibit critical components of the non-canonical
inflammasomes, such as caspase-1 activity47, either via the AIM2 cytosolic
innate immune receptor,which recognizes double-strandedDNA(dsDNA)
released during cellular perturbation, or via the Nod-like receptor NLRC4,
which recognizes bacterial ligands such as flagellin and the type three
secretion system (T3SS)47. This appears to also result in reduction of pro-
inflammatory cytokines suchas IL-1β and IL-18 inmacrophagesandmice48.
Moreover, riboflavinhasbeen shown todirectly stimulate the release of anti-
inflammatory cytokines (e.g., IL-10, IL-12p70) and immune modulators
(i.e.,MCP-1,HMGB1,Hsp72,Hsp25)49,50. Riboflavin has also been reported
to have an indirect role in anti-inflammatory mechanisms via its involve-
ment in vitamin D biosynthesis as a cofactor for flavin-dependent mono-
oxygenases and oxidoreductases (as reviewed in ref. 51).

The antioxidant and anti-inflammatory properties of riboflavin have
also beendocumented in clinical trials. For example, in a 3-week prospective
interventionwith a high dose of 100mg riboflavin/daywith 70 patientswith
Crohn’s Disease, a reduction in systemic oxidative stress (measured by
higher free thiol plasma levels), inflammatorymarkers (IL-2 and C-reactive
protein (CRP)) and clinical symptomsofCrohn’s disease (i.e., a reduction in
clinical disease activity index and quality of life improvement) were
observed52. Contrarily, in a shorter placebo-controlled study with healthy
individuals, daily supplementation of 50 mg (n = 32) or 100 mg (n = 33)
riboflavin showedno reduction in free thiols compared toplacebo (n=34)53.
In a prospective study with pregnant women and their children (n = 2797
with singletonbirths), riboflavin levels in the bloodwere inversely associated
with inflammation markers in the blood54.

Indirect clinical validation of antioxidant and anti-inflammatory
effects is linked to roles for riboflavin in themaintenance of healthy skin,
nails, hair55, and good eyesight56. However, when this role of riboflavin
and associated health claims were evaluated by the EFSA8 for the general
population, the expert panel concluded that a cause-and-effect rela-
tionship has only been established for dietary intake of riboflavin in the
case of contribution to normal skin and mucous membranes and
maintenance of normal vision. For the other indications, the panel
concluded that the mechanistic documentation available was too lim-
ited. For example, riboflavin has been shown to be involved in the
conversion of tryptophan to niacin (vitamin B3)57, which stimulates the
production of collagen (type I, III, and V), elastin and fibrillin (1 and 2),
but—to the best of our knowledge—this has only been substantiated
ex vivo in dermal fibroblasts58.

Riboflavin and neurological disorders
Several large observational studies in human cohorts have also associated B
vitamins intake (e.g., vitamin B2, B9, and B12) and other dietary habits with
mental health, particularly in adolescent girls (Japanese cross-sectional
study, n = 3450)59, and women who suffer from postpartum depression
(cross-sectional study, n = 344)28 or premenstrual syndrome (PMS) (case-
control study, n = 3025)60. More specifically, the latter nested case-control
study (1057 cases and 1968 controls) showed that when women consumed
more riboflavin (from fortified cereals, cow milk and/or green vegetables),
the risk for PMS was lowered with 35%60. In the Japanese cross-sectional
study on adolescents (aged 12–15), higher riboflavin in blood were also
associated with less depressive symptoms in girls (n = 3450), but not boys
(n = 3067)59. Another peculiar sex difference was reported in an Iranian
observational study (n = 3362) where lower dietary riboflavin levels were
associated with anxiety and depression inmiddle-agedmen (n = 1403), and
psychological distress in middle-aged women (n = 1959)61. However, a
recent systematic review of 20 randomized controlled trials (RCTs) (n =
2256)62 did not substantiate the potential of riboflavin as adjuvant for
depressive symptom alleviation. Riboflavin supplementation is also dis-
cussed for neurodegenerative diseases such as Parkinson’s disease, where
womenhave highermortality rates and faster disease progression compared

Fig. 2 | Riboflavin mechanisms of action with a focus on women’s health (over-
view).On the left part of the figure, a female’s life trajectory is depicted according to
five different stages based on associated estrogen levels. Riboflavin’s interference in
these life stages is indicated, and the involvedmodes of action of riboflavin (right) are
highlighted via colored dots. Starred items are strongly influenced by the female
hormonal cycle. Mechanisms affecting each other/acting together are connected
with gray arrows. FMN flavin mononucleotide, FAD flavin adenine dinucleotide,

IL interleukin, IFN-γ interferon gamma, NF-κB nuclear factor kappa-light-chain-
enhancer of activated B cells, NO nitric oxide, TNFα tumor necrosis factor alpha,
COX2 cyclooxygenase 2, ROS reactive oxygen species, RfBP riboflavin binding
protein, RFT riboflavin transporter, FSH follicle stimulating hormone, LH lutei-
nizing hormone. This figure was created with Biorender.com and based on the
following key refs. 22,26,43–45,72–76,88,93,97,101,103,104,118,128,130,140.

https://doi.org/10.1038/s41522-024-00579-5 Review article

npj Biofilms and Microbiomes |          (2024) 10:107 3

www.nature.com/npjbiofilms


to men63,64 but the cause of the improvedmotor capacity of the patients was
not solely attributed to riboflavin (n = 19)65.

More clinical evidence exists for the use of riboflavin as prophylaxis
against migraine headaches66. Women suffer from a three-fold increased
risk for migraine symptoms compared to men67. This can possibly be
explained by a hormonally lowered neuro-excitability threshold for these
headache attacks68. Strikingly, in a large cross-sectional study (n = 5725
females and n = 1061 males) menstruation was found as the main trigger
factor for migraine episodes in female patients (78% of women)69, while
postmenopausal women appear to have more similar migraine triggers to
male migraine patients than fertile female patients concerning hormonal
levels69. High-dose supplementation (400 mg/day) of riboflavin over a time
course of three months was found to significantly reduce the frequency,
duration and pain score of migraine attacks in both men and women in a
meta-analysis of eight RCTs and one intervention study66. Consequently,
riboflavin is also included as additional prophylactic therapy in the treat-
ment guidelines of conditions and disorders with co-morbid migraine
headaches70. For example, the American Neurogastroenterology and
Motility Society and the Cyclic Vomiting Association recommend ribo-
flavin for cyclic vomiting, a gastrointestinal and psychological condition
characterized by sudden episodes of nausea and vomiting70.

Theneurologicalmodeof actionof riboflavin and its active formsFMN
andFADappears to be complex andmultifactorial, involving its antioxidant
and anti-inflammatory properties, as well as the homocysteine/L-arginine/
NOpathway. For example, in amousemodel of lipopolysaccharide-induced
neuro-inflammation and Alzheimer’s disease, FMN supplementation with
specific nanoparticles targeting riboflavin metabolism in the microglia
ameliorated cognitive dysfunction, synaptic plasticity, and inflammation71.
These FMN particles appeared to lower riboflavin kinase expression in the
microglia, preventing TNFR1/NF-κB signaling and pro-inflammatory
cytokine release71. A recent integrative systematic review of 21 (pre)clinical
studies (including 8 studies in mice, 12 clinical and one translational)
indicated the potential of riboflavin treatment to improve brain damage
following oxygen deprivation in children, adults, and elderly people72. Apart
from these modes of action, riboflavin has also been shown to activate
specific neuroactive molecules such as vitamin B6 (which confers neuro-
protection based on a role in serotonin production)73, homocysteine (which
has a double-edged neurological role)74 and kynurenine involved in gluta-
mate excitotoxicity (i.e., excess of glutamate in neural synapse, resulting in
death of neural cells)75. Moreover, the synthesis and protection of myelin,
which insulates nerve cell axons and increases their electrical pulse rate,
require riboflavin76. In line with this, riboflavin has been shown to prevent
myelin degeneration in murine models of multiple sclerosis by supporting
the levels of the protective brain-derived neurotrophic factor77. Clinical
substantiation remains to be provided in suitable safety and efficacy trials.

Riboflavin and vaginal health
The above reviewed mechanistic and clinical studies with riboflavin have
mainly focused on systemic outcomes, with some also highly relevant for
women’s health. In addition to systemic benefits, as early as 1940, it was
observed that riboflavin could also have local benefits: vaginal administra-
tion of riboflavin in ten women via a lactose tablet was shown to result in an
increased acidity and a favorable impact on vaginal bacteria through
increased growth of acid-forming bacilli and decrease of pathogens78.
Considering the current knowledge on the vaginal microbiome79,80, these
observations suggest an increased activity of lactic acid production by
vaginal lactobacilli. To the best of our knowledge, local vaginal applications
of riboflavin have not been further explored, so that direct measurements
linking vaginal riboflavin supplementation to increased growth of lacto-
bacilli are currently lacking. In contrast, oral supplementation has been
explored. In one RCT (n = 158), an oral vitamin B complex, including
riboflavin sodium phosphate, showed efficacy as adjuvant therapy to flu-
conazole for women with complicated vulvovaginal candidiasis (VVC)81.
The B vitamin complex appeared to significantly increase the anti-Candida
effect, withmore women testing negative for hyphae and spore formation81.

This finding was mechanistically supported by an enhanced antifungal
effect offluconazole in aVVCvaginal epithelial cellmodel andmousemodel
when administered together with vitamin B complex injection81. In other
research, lactobacilli have also been shown to reduce the growth andhyphae
formation of Candida in vitro82–84 and in patients with acute VVC85.
Unfortunately, no data on the impact of riboflavin supplementation on the
vaginal microbiome composition or endogenous vaginal lactobacilli have
been reported,making it difficult to assesswhether an increase in lactobacilli
by riboflavin could play a role in these observed enhanced antifungal
effects81.

Riboflavin and reproductive health
Modulation of hormonal fluctuations and impact on fertility. Apart
from its role in systemic and vaginal health, riboflavin also seems to
impact reproductive health, in part through its reciprocal interaction
with estradiol, the most prominent female sex hormone essential for
fertility and pregnancy68,86. For example, in a longitudinal prospective
cohort study with 259 premenopausal women, a secondary analysis
showed that higher dietary intake of riboflavin, assessed via a 24h dietary
recall, was associated with lower serum levels of estradiol and homo-
cysteine, which are signals required for folliculogenesis68. Similar inverse
associations between riboflavin intake and blood estradiol levels were
found by the Nurses’Health Study II, which is one of the longest running
investigations of factors influencing women’s health (n = 116,469) by
combining food-frequency questionnaires (FFQs), health surveys, and
biological samples (urine, blood and cheek cell samples)87. Likewise,
higher intake of riboflavin, vitamin B6 and B12 was also associated with
lower incidence of ovulatory infertility87. On the one hand, these obser-
vations might be explained by the fact that an estrogen drop is required
for the onset of ovulation88, and several flavoproteins (proteins using
FMN and FAD as coenzyme) assist estrogen degradation by cytochrome
P45051,89 as they balance electrons from these reactions. On the other
hand, the inverse association of riboflavin with plasma homocysteine
levels can also be attributed to riboflavin’s interaction with methylte-
trahydrofolate reductase (MTHFR), another peculiar flavoprotein
involved in follicular activity, embryo quality and pregnancy success90–92.
In short, MTHFR initiates the conversion of folate (vitamin B9) to its
functional form 5-methyltetrahydrofolate93,94, which on its turn acts as a
coenzyme of methionine synthase for the formation of methionine from
homocysteine93,94. Remarkably, elevated homocysteine levels have fre-
quently been associated with poor oocyte maturity, reduced fertilization
and poor in vitro embryo quality95, though direct clinical evidence linking
riboflavin, homocysteine and anovulation is sparse. Nevertheless, ribo-
flavin and other B vitaminsmight assist future subfertility treatments and
fertility preservation methods. For example, in a subset of 100 women
relying on assisted reproductive technologies (ART), higher preconcep-
tional vitamin B9 and B12 levels in blood were associated with higher live
birth rates96.

Adding to these positive effects of vitamin B9 and B12, higher serum
riboflavin levels were associated with increased probabilities of high-quality
embryos as well as clinical pregnancy after embryo transfer in a prospective
Chinese follow-up study (n = 216, age <35)97. Moreover, in a mechanistic
study in pre-puberty mice, riboflavin, together with vitamin B1 and B6,
seemed to stimulate in vitro maturation of follicles through granulocyte
proliferation and upregulation of oocyte-specific genes, including genes
encoding bone morphogenetic protein 15 (BMP15), growth differentiation
factor 9 (GDF9), zona pellucida glycoprotein 3 (ZP3) and estrogen receptor
alpha (ESR1) andbeta (ESR2)98. This folliclematuration activity is of interest
to substantiate in human mechanistic and efficacy studies because peri-
menopausal women and female cancer survivors relying on fertility pre-
servationmethods have typically smaller number of follicles with a reduced
probability to mature98.

Compared to limited evidence for the aforementioned effect of ribo-
flavin on estrogen levels and menstrual cycle, estrogen seems to have a
clearer impact on plasma riboflavin levels, as well as its distribution
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throughout the female body68. In general, riboflavin and FMN are trans-
ported across the body by binding to non-specific carrier proteins in the
plasma, such as albumin and immunoglobulins (IgA, IgG, IgM), through
hydrogen bond formation99. As a result of the varying affinity between the
flavins and their carrier, the flavins are deposited across the body. Besides
these non-specific carriers, there also exist specific riboflavin-binding pro-
teins (RfBPs) in mature females, which are mainly synthesized by the liver
under influence of an estrogen-sensitive promoter when becoming sexually
mature or when treated with estrogen100–102. These RfBPs, highly conserved
acrossmammals andavian species, scavenge riboflavin inbloodand transfer
the vitamin to specific tissues through receptor-mediated endocytosis by
riboflavin transporters (RFTs)86,100.

Many reproductive andmaternal tissues, such as the ovaries, placenta,
and mammary glands, make use of estrogen-sensitive RfBPs and RFTs for
highly sophisticated riboflavin transport to support fertilization and/or
offspring’s growth101,102. For instance, in rodents and subhuman primates,
immunoneutralization of RfBPs has been shown to result in female infer-
tility, peri-implantation embryonic loss and pregnancy termination103,104.
Evidently, it is more difficult to explore and substantiate such role in
humans, but specific intervention studies with riboflavin in relation to
female fertility seemworth investigation. The same holds true for the role of
other micronutrients, such as folate, vitamin D, and iron, which all depend
on the riboflavin status for their activation and which have been positively
associatedwith female fertility, as reviewed in ref. 105.Moreover, it seems of
interest to explore the role of riboflavin in male fertility in more detail. For
instance, riboflavin seems to be involved in sperm motility and energy
generation as well as fertilization (cfr. acrosome reaction) and oxidative
stressmanagement, but this has so far only been shown in animalmodels106.

We hypothesize that this hormonally induced scavenging of riboflavin
might also explain why women taking high-dosed oral contraceptives
containing estrogen and progesterone have been reported to be at risk for
riboflavin deficiency as measured by the EGRac107–111. Similarly, it could
clarify that migraine attacks, as side effects of the older generation oral
contraceptives, are possibly linked to a reduction in plasma riboflavin67.
Nevertheless, these mechanisms remain to be substantiated.

Riboflavin, pregnancy, and child’s development. Riboflavin is also
crucial for the health and well-being of infants during pregnancy and
after birth112. During pregnancy, estradiol levels are heightened, and
riboflavin consumption strongly increases due to a particularly high
demand by fetal tissues. In one study of 44 women and their infants, a
maternal-fetal riboflavin plasma ratio of 1:4.7 was measured6. This high
riboflavin demand could be explained by its involvement in DNA
synthesis andmethylation during embryonic growth8,105, as well as neural
tube formation (cfr. regulation of the functional folate status as men-
tioned before). The transplacental transport of riboflavin is associated
with high RfBP and RFT expression by placental trophoblast cells and
appears to be the most intense during the third trimester6. To reduce
perinatal mortality113, recommended riboflavin intake is therefore
increased for pregnant women to 1.9 mg/day in Europe8 and 1.4 mg/day
in U.S. and Canada9.

Riboflavin remains essential around birth, with FAD functioning as a
crucial cofactor of glutathione, to oppose peroxidation reactions that arise
during the rapid change in oxygen concentration in the baby during
delivery. After birth, active riboflavin transport by maternal tissues using
RfBPs andRFTs and other proteins appears to remain essential, for instance
to pump riboflavin into the breast milk and support the child’s nutritional
needs as shown in mice and humans101,114. Therefore, as mentioned before,
the recommended daily intake for riboflavin is also increased for breast-
feeding women to 2.0 and 1.6 mg/day in Europe (EFSA)8 and the U.S. and
Canada (RDA)9, respectively.

Riboflavin and iron-deficient anemia: during pregnancy & beyond.
Riboflavin is also important for the health of mother during pregnancy
and this stems in part from its involvement in iron metabolism. Iron-

deficient anemia remains one of the most prevalent medical concerns
during pregnancy115. Women are specifically at risk for anemia during
the first four months of gestation, since hemoglobin levels naturally
decrease due to elevated iron demands to support fetal growth and a
disproportionate rise of blood plasma volume to RBCs97. Iron-deficient
anemia has been systematically associated with extreme fatigue and
severe pregnancy complications such as postpartum hemorrhage,
preterm delivery, stillbirth and reduced offspring birthweight25.
Besides insufficient iron intake, low riboflavin status, which is more
common among women of reproductive age than generally
recognized25,116, appears to be also involved in the development of iron-
deficient anemia22. For instance, in a large randomized controlled
intervention study with 2153 healthy pregnant women in Ireland, 68%
of the cohort measured low or deficient blood riboflavin levels25. This
riboflavin status was found to be a significant determinant of hemo-
globin levels25 and predictor of anemia development at the 12th
gestational week25.

The underlying mechanism of riboflavin in anemia appears multi-
faceted: flavin-dependent enzymes are involved in the absorption of iron
from the diet117, in the mobilization of iron from/to ferritin (the main
intracellular iron storage protein in cells)118, and the uptake of iron in
RBCs116. In addition, flavin-dependent enzymes are needed for the func-
tionalization of hemoproteins (cfr. reduction of insoluble Fe3+ to soluble
Fe2+), as observed for the conversion of inactive methemoglobin into
hemoglobin required for oxygen transport22,119. Apart fromRBCphysiology,
riboflavin is also involved in RBC structure, by preventing hemolysis
through oxidative stress management120, and RBC generation in the bone
marrow, mediated through its interference with corticosteroid
metabolism121, with health implications far beyond pregnancy induced
anemia.

Indeed, in an observational study of non-pregnantMalaysian (n=210)
andCanadian (n= 206)women, it was also shown that riboflavin deficiency
(EGRac > 1.40) was a weak, but significant predictive biomarker of hemo-
globin and anemia22. Altogether, these findings indicate that pregnant
women could benefit from preventative riboflavin supplementation as it
reduces the risk of iron-deficient anemia112,122, however it is not yet in
treatment guidelines. Other cardiovascular concerns during pregnancy and
thepostpartumperiod, such asmaternal systemic endothelial dysregulation,
intravascular inflammation, and preeclampsia have also been associated
with riboflavin deficiency123. Especially the latter is of interest, as it affects 3
to 13% of pregnant women, with incidence up to 20% among high-risk
women according to the World Health Organization (WHO)124. Pre-
eclampsia is a dangerous condition of persistent hypertension, associated
with high urinary protein levels or decreased blood platelet development,
failure of kidneys, liver or lungs, andneurological complications123. In recent
years, riboflavin supplementation is increasingly explored to prevent pre-
eclampsia. It is postulated that riboflavin induces NO-mediated vasodila-
tation, resulting in hypertension relief, through stimulation of the
conversion of homocysteine and its subsequent impact on the L-arginine/
NO pathway125 (Fig. 2). In a prospective, randomized, double-blind trial in
Tanzania and Venezuela with 455 women, taking riboflavin (15 mg/day)
from the 20th week of pregnancy appeared to be associated with prevention
of severe cases of preeclampsia24. However, compared to anemia, the evi-
dence for riboflavin supplementation to treat preeclampsia is limited, as
recently reviewed112.

Riboflavin, aging and cancer
Pelvic organ prolapse and related issues. One of the most important
aging-related conditions for womenwhere riboflavin plays a role is pelvic
organ prolapse (POP). POP is a conditionwith aworldwide prevalence of
9%126, in which a woman’s pelvicmuscles and tissues weaken, resulting in
bulging of the pelvic organs (uterus, bladder, rectum) into the vagina127.
Besides vaginal birth and being heavily overweight, one of the causes for
POP is diminished vaginal tissue stiffness through the reduction of col-
lagen with age and hormonal changes128,129. This loss of collagen and
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epithelial stiffness is also suggested to be a cause of other diseases and
aging-related complications such as corneal130, skin131 and teeth tissue132

deteroriation. While the latter two have been substantiated with in vitro
work133,134, clinical efficacy has been documented for the treatment of
corneal disorders with UVA-activated riboflavin, resulting in its incor-
poration in routine ophthalmologic procedures135. During the exposure
of riboflavin to UVA, singlet oxygen molecules are generated, which
induces covalent bonding between amino groups of collagen fibrils, and
thus strengthens tissue stiffness136. Consequently, UVA-activated ribo-
flavin was proposed as potential therapy for POP aswell, especially due to
its ability to attenuate UVA damage and inhibit necrosis in vaginal
cells128,129. Until now, this hypothesis has only been substantiated by
ex vivo experiments where vaginal tissue strips from POP cases were
exposed to riboflavin and subsequent UVA photoactivation cells128,129.
Dedicated clinical studies are required to substantiate the hypothesized
benefits of local and systemic riboflavin application on vaginal health
outcomes, including a potential beneficial impact on the vaginal micro-
biome as a key read-out.

Cancer. For several decades, poor riboflavin intake has been associated
with increased risk of cervical cancer in epidemiological studies137,138. In
addition, a case-control study (n = 257 cases, 133 controls) in 1993
reported that lower riboflavin intake, assessed via 24 h dietary recall, was
associated with increased risk of cervical intraepithelial dysplasia, an
early stage proceeding invasive cervical cancer139. More recently, a Chi-
nese observational study (n = 146) showed that not only plasma, but also
tissue riboflavin levels were inversely associated with high-risk human
papillomavirus type 16 (HR-HPV16) andHPV18 infection140. Moreover,
compared to healthy control specimens, plasma and tissue riboflavin
levels were decreased in patients with cervical squamous epithelial cancer
and cervical intraepithelial dysplasia, respectively. These findings suggest
a role for riboflavin in HPV-induced cervical cancer development and
progression140, which is potentially mediated through riboflavin trans-
porter C20orf54140, and riboflavin’s antioxidant properties (see above).
Although direct mechanical evidence for riboflavin is lacking, other
antioxidants have been reported to reduce HPV transcription and
expression in vitro through redox regulation141,142. Understanding what
drives the progression from precancerous lesions to invasive cervical
cancer, which especially impacts HPV-infected women, remains a
necessary topic for further research.

Besides cervical cancer, insufficient riboflavin intake has also been
associated with breast carcinogenesis143. A systematic review and meta-
analysis of 21 prospective cohorts and 6 nested case-control studies (n =
49,707 cases and 1,274,060 individuals) indicated that a higher dietary
intake of riboflavin, togetherwith folate and vitaminB6,might be associated
with a decreased risk of estrogen and progesterone receptor-positive breast
cancers143. However, other studies report more complicated associations
between B vitamins and cancer (as also reviewed in ref. 144). For instance,
pharmacokinetic vitamin-drug interaction studies have indicated a
decreased uptake of the anticancer drug antifolate methotrexate in cancer
cells, and the complexation ofmethotrexate anddoxorubicinC into inactive
adducts by riboflavin, thereby reducing the efficacy of these drugs145. Care
should thus be taken when implementing riboflavin in clinical practice for
cancer patients in different disease stages.

Riboflavin-producing microbiota and women’s health
The microbiota at different body sites (gut, skin, vagina) also plays an
important role in women’s health throughout all life stages, although the
level of evidence andmechanistic substantiation for its role is fragmented. In
the vagina, Lactobacillus species are generally dominant in healthy,
complaint-free women, such as shown in a pioneering study in the US (n =
396)146 and a large-scale citizen science cohort study inBelgium (n=3345)79.
Nevertheless, more diverse vaginal microbiomes have been observed
globally across different healthy populations (North America146,
Scandinavia147, South Africa148, and Kenya149), but are usually associated

with adverse sexual and reproductive outcomes150. Systematic reviews have
now established that a vaginal composition dominated by Lactobacillaceae
taxa such asLactobacillus crispatus is linked to protection against conditions
such as preterm birth151, bacterial vaginosis152 and progression of an HPV
infection into cervical cancer153. The protectivemode of action of lactobacilli
in the vagina appears tobemainlydue to their capacity toproduce lactic acid
as antimicrobial factor80, while a metabolic role for metabolites such as
riboflavin is largely underexplored. Research on the gut microbiome in
patients (male and female) with metabolic diseases, such as obesity154 and
type 2 diabetes35,155, has reported a reduction of riboflavin synthesis genes in
their gut metagenome. Of interest, in a female-specific gut metagenome
study of womenwith type 2 diabetes (n= 53), impaired glucose tolerance (n
=49), andnormal glucose tolerance (n=43), riboflavin synthesis geneswere
also more abundant in the normal group156.

Main documentation is based on in vitro and preclinical data
Avariety ofmicroorganisms includingbacteria (e.g.,Clostridiumdifficile157),
archaea (e.g., Methanococcus jannaschii158), fungi (e.g., Eremothecium
ashbyii159, Saccharomyces cerevisiae160) have a documented capacity to
produce riboflavin at different levels40,161, although in general, under phy-
siological conditions themicrobial riboflavinproduction is very low (fewµg/
L, or less, in culturemedia). Therefore, some of thesemicroorganisms, such
as Bacillus subtilis, Ashbya gossypii, and Candida famata, have even been
genetically, metabolically and/or chemically optimized for industrial-scale
riboflavin production160,162. For most commercially available dietary sup-
plements with riboflavin, these microorganisms produce riboflavin
industrially in bioreactors and the vitamin is extracted to be formulated in
supplements163. Many of the producing microorganisms do not have an
assigned safety status suchas ‘GenerallyRecognizedasSafe’ (GRAS)164 in the
United States and/or ‘QualifiedPresumption of Safety’ (QPS)165 as evaluated
by EFSA for Europe, nor do they comply with the scientific definition of
probiotic166. This definition states that probiotics are “live microorganisms
that, when administered in adequate amounts, confer a health benefit on the
host”166. Consequently, many of the known riboflavin-producing taxa
cannot be used live in food products for human consumption167.

Compared to these traditional industrial-scale producing micro-
organisms that cannot be consumed, riboflavin-producing Lactoba-
cillaceae and Bifidobacteriaceae taxa with a GRAS/QPS or related
status are of interest, because they can be safely consumed and allow
the combination of the benefits of riboflavin with some of the probiotic
health benefits for several strains of these taxa (Fig. 3). Probiotic
benefits for Lactobacillaceae and Bifidobacteriaceae evaluated in sys-
temic reviews and meta-analyses include improved gastrointestinal
health and prevention of antibiotic-associated diarrhea168, prevention
of relapse of bacterial vaginosis169, and prevention of respiratory tract
infections170. It is not yet well-understood how these bacteria can exert
these benefits, but documented mechanisms of action include anti-
microbial activity against major gastrointestinal171 and urogenital
pathogens172, barrier-promoting effects at the gut epithelium173 and
other mucosa174, immunomodulatory effects by stimulating host
antimicrobial compounds such as α-defensins175 and modulating the
secretion of cytokines such as IL-10, IL-6, IL-1b, IL-2, TNF-α, and
impacting different cell types such as intestinal epithelial cells, den-
dritic cells, macrophages and regulatory T cells176–178. These probiotic
mechanisms can be postulated to have direct and indirect physiological
effects on women and their health80 (Fig. 3), but require further vali-
dation. A role for (B-)vitamin production in probiotic modes of action
is also not well-studied. Yet, when administered, Lactobacillaceae and
Bifidobacteriaceae taxa that have the genetic and biochemical
potential34 might produce riboflavin in situ as a (temporary) part of the
gut (and other) microbiota, resulting in altered epithelial morphology
as shown in a murine in vivo model179.

Many Lactobacillaceae and Bifidobacteriaceae species have such
capacity to produce riboflavin, at variable concentrations36. For example,
Lactiplantibacillus plantarum strainsM5MA1-B2180,181 and HY7715182 have
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been reported to produce 3–5 μg/mL riboflavin under laboratory condi-
tions. StrainHY7715, isolated from food, could even reachup to 34.5 µg/mL
when cultivated in optimized growthmedia182. However, such exceptionally
high and industrially relevant riboflavin levels are usually not encountered
amongst spontaneous riboflavin-producing lactobacilli183. Therefore, awell-
established directed evolution method, using the toxic riboflavin analogue
roseoflavin, can be applied to enhance riboflavin production in promising
probiotic lactobacilli whilst remaining food-grade184. Most roseoflavin-
resistant strains studied until now carry mutations in the regulatory region
upstream of the rib operon (more specifically, in the aptamer of the ribos-
witch), disrupting the negative feedback mechanism, resulting in sig-
nificantly higher expression184,185. Similar nucleotide replacements and
deletions are also observed in spontaneous overproducing isolates, includ-
ing the vaginal isolate Limosilactobacillus reuteriAMBV339, that can reach
high riboflavin levels of approximately 18.36 μg/mL in laboratory condi-
tions and food matrices36. Such high-producing levels are of interest as this
could theoretically be sufficient tomeet daily needs of 1.6mg riboflavinwith
one fermented beverage consumption of 100 mL, as validated by Spacova

et al.36. However, to the best of our knowledge, no clinical studies in humans
have been performed to validate health effects of in situ riboflavin pro-
duction after administration of riboflavin-producing probiotic strains. Of
note, strain L. reuteri AMBV339 is currently in clinical evaluation for its
impact on the gut and vaginal microbiome and metabolome upon
administration as an oral dietary supplement (ClinicalTrials.gov ID
NCT06425081)36.

Colonic epithelial cells are capable of transporting riboflavin
basolaterally186. They could thus—theoretically—take up microbially pro-
duced riboflavin andbenefit thephysiology of thehost.Moreover, riboflavin
pathway derivatives, such as 5-(2-oxopropylideneamino)-6-d-ribitylami-
nouracil (5-OP-RU), 5-(2-oxoethylideneamino)-6-D-ribitylaminouracil
(5-OE-RU) and 6,7-Dimethyl-8-(1-D-ribityl)lumazine (RL-6,7-diME),
function as evolutionarily conserved non-peptidic antigens to a sub-
population of innate-like T cells, Mucosal Associated Invariant T (MAIT)
cells, particularly enriched atmucosal surfaces ofmammals, such as the gut,
bronchea, skin and uterus187–189. TheseMAIT cells have a semi-invariant T-
cell receptor TCRα(TRAV1-2–TRAJ33)β(TRBV20-TRBV6) and can be activated

Fig. 3 | The postulated synergistic effects of riboflavin-producing microbiota
members such as probiotic lactobacilli and riboflavin. The beneficial properties
consist of riboflavin-mediated effects (as previously described in Fig. 2), probiotic
and microbiome-promoting effects such as modulation of immune responses,
microbe-microbe interactions and enhancement of the epithelial barrier function178

and effects mediated by unstable riboflavin intermediates/derivatives leading to
MR1-dependent activation of Mucosal Associated Invariant T cells (MR1 = Major
Histocompatibility complex class 1 related protein)187. This figure was created with
Biorender.com.
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upon recognition of the riboflavin derivatives 5-OP-RU, 5-OE-RU, or RL-
6,7-diMe bound toMajorHistocompatibility complex class 1 related (MR1)
protein, which is ubiquitously expressed on the cell surface of epithelial cells
and immune cells187. While researchers traditionally focused on the anti-
pathogenic response of MAIT cells, such as their direct cytotoxic activity
and/or indirect antimicrobial activity in bacterial190, fungal191, and viral
infections192, their protective role in epithelial barrier enforcement was only
recently discovered in the context of the immune response to SARS-CoV-2
infections193–196. In particular, MAIT cells have been shown to establish
commensal-driven tissue homeostasis—tissue maintenance, tissue repair,
and wound healing—crucial processes both in absence and presence of
infections, as reviewed in refs. 197,198. For instance, the riboflavin derivate
5-OP-RU has been shown to activate MAIT cells and this stimulated the
healing of a punch-biopsy induced skinwound inmice199. Of interest, early-
life exposure to riboflavin-producing commensals has been shown to pro-
mote the correct development of the gut and skin MAIT cell response in
germ-free murine neonates primed with a synthetic early-life gut microbial
community consisting of two Lactobacillaceae, two Enterobacteriaceae and
Enterococcus faecalis and the skin commensal Staphylococcus epidermidis,
respectively200,201. In mice, riboflavin-overproducing strains L. plantarum
ACTT8014202 and L. plantarum CRL2130203 have also been shown to sig-
nificantly attenuate pathological changes of chemotherapy-induced
mucositis during cancer treatments compared to the non-overproducing
L. plantarum CRL725 and commercial riboflavin203. The same riboflavin-
overproducing strain also showed antioxidant and anti-inflammatory
mechanisms by attenuating motor deficits and prevented dopaminergic
neuronal death inmurinemodels of Parkinson’s disease204. Yet—to the best
of our knowledge—no clinical trial has been initiated or performed linking
riboflavin-producing probiotics and impact on host health.

Need for in vivo documentations in humans
The above mentioned studies are mainly based on in vitro and preclinical
data, while the field would largely benefit from amore solid documentation
of the capacity of riboflavin-producing organisms to increase riboflavin
in vivo in humans by for example metagenomic/proteomic/metabolomic
studies of the gut and vaginalmicrobiomes. For example, riboflavin could—
theoretically—also support the mutualism between microbiota members, a
concept that is increasingly evaluated as (gut)microbiome resilience, also by
EFSA205. Within microbial communities, riboflavin is produced by proto-
trophic species (i.e., species that are equipped with a complete and func-
tional pathway for de novo biosynthesis of certainmicronutrients) to cross-
feed auxotrophic species (i.e., species that lack the corresponding bio-
synthesis pathways) in exchange for other metabolites, mostly nutrients or
energy206. For instance, in vitro co-cultures and synthetic gut microbiome
communities have shown that riboflavin promotes cross-feeding networks
involving butyrate production pathways207,208. In addition, riboflavin can
stimulate flavin-based extracellular electron transfer (FLEET) by Lactoba-
cillaceae, as recently learned from Lactiplantibacillus plantarum and vege-
table fermentations209. In general, these fermentations function as valuable
models for studying fundamental microbial interactions, while excluding
the host as complicating factor. It is now increasingly understood that
FLEET allows respirofermentation in LAB, a hybrid metabolism form that
integrates some aspects of (anaerobic) respiration, such as EET, in fer-
mentation (substrate level phosphorylation)209. It is suggested that the ability
to transfer electronsoutside the cell, and thusmaintain redoxbalanceduring
rapid growth, results in a vast fitness advantage, and seemingly more resi-
lient microbial population. However, the role of FLEET in mammalian
physiology is still unclear. Yet, FLEET by cecal microbiota has already been
observed in mice, rats, and guinea pigs using cyclic voltammetry, while it
appears absent in germ-free mice210. These findings are in line with the
population dynamics hypothesis that cooperation (e.g., cross-feeding)
enhances the resilience of microbial communities during ecological
disturbances211,212. Conformingly, in the gut, where diet is the predominant
ecological driver, short-term dietary changes and nutritional shortages do
not, according to a systematic review213, significantly alter the microbiome

composition. Conversely, microbiome function is impacted by the diet, for
example the production of microbial riboflavin is influenced by a fiber-rich
diet214. This highlights the potential of modulating the human microbiome
in the gut and other body niches through addition of riboflavin-producing
microorganisms with multifactorial ecosystem-wide modes of action. This
is also one of the core objectives in previous clinical trials such as the
observational studies on the association between riboflavin synthesis genes
and type2diabetes usingmetagenomics156 and theongoing clinical trialwith
the riboflavin-overproducing strainL. reuteriAMBV339 (ClinicalTrials.gov
ID NCT06425081). The field would largely benefit from such substantia-
tionsof the associationbetween riboflavin-producingprobiotics andvarious
aspects of health.

Concluding remarks and future perspectives
In conclusion, riboflavin deficiency could have a large impact onwomen’s
health in both developed and developing countries. Due to specific ribo-
flavin demands of women linked to pregnancy, iron deficiency, hormonal
homeostasis, contraceptive use, and other physiological and lifestyle
aspects, it is crucial to ensure an adequate riboflavin status. Considering
that a large proportion of women lack sufficient riboflavin intake, alter-
native riboflavin sources such as functional foods and nutraceuticals
enriched with riboflavin, as well as probiotics, should be considered.
Particularly for lactic acid bacteria-based probiotics, women could benefit
from the synergistic effect of riboflavin and beneficial bacteria such as
lactobacilli with great potential for women’s health. However, more
research is needed on the underlying mechanisms of the way micro-
nutrient production can shape the femalemicrobiome; the ability to share
produced vitamins in microbe-microbe interactions; the beneficial effect
of bacterial vitamin production on human andmore specifically women’s
health. Furthermore, formulation, dosage and safety aspects of microbial
supplementation should be considered for efficient application of
riboflavin-producing bacteria in clinical settings. Ultimately, this research
should include large-scale clinical intervention studies in humans with an
integrated approach that combines microbiome, multi-omics, metabo-
lomics and immunological readouts, and compares administration for-
mulations and routes. Overall, leveraging riboflavin and riboflavin-
producing lactobacilli is a promising avenuewith awide range of potential
benefits for women’s health.
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