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Computational identification of surface
markers for isolating distinct
subpopulations from heterogeneous
cancer cell populations
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Intratumor heterogeneity reduces treatment efficacy and complicates our understanding of tumor
progression and there is a pressing need to understand the functions of heterogeneous tumor cell
subpopulations within a tumor, yet systems to study these processes in vitro are limited. Single-cell
RNAsequencing (scRNA-seq) has revealed that somecancer cell lines includedistinct subpopulations.
Here, we present clusterCleaver, a computational package that uses metrics of statistical distance to
identify candidate surface markers maximally unique to transcriptomic subpopulations in scRNA-seq
which may be used for FACS isolation. With clusterCleaver, ESAM and BST2/tetherin were
experimentally validated as surface markers which identify and separate major transcriptomic
subpopulations within MDA-MB-231 and MDA-MB-436 cells, respectively. clusterCleaver is a
computationally efficient andexperimentally validatedworkflow for identification of surfacemarkers for
tracking and isolating transcriptomically distinct subpopulations within cell lines. This tool paves the
way for studies on coexisting cancer cell subpopulations in well-defined in vitro systems.

Intratumoral heterogeneity is a general termwhich describes the diversity of
cell types and cell states within a tumor. Different cell types, including
immune and stromal cells, are often found in tumor ecosystems1–6, and
within a population of cancer cells there is genetic andnon-genetic variation
which further increases intratumoral heterogeneity7.

Cellular heterogeneity within tumors can alter tumor aggressive-
ness, promote metastasis, and is a known contributor to resistance
against chemotherapy and targeted therapy8–11, making it one of themost
significant factors in disease relapse andmortality. Single-cell sequencing
technologies continue to reveal heterogeneity within primary patient
tumor cells and within in vitro model systems12–15. This intratumoral
heterogeneity can be interpreted from an eco-evolutionary perspective in
that subpopulations of cells adapt, interact, mutate, proliferate, and
perish in response to their environment16,17.While single-cell sequencing
technologies have been crucial to revealing the existence of novel cancer
cell subpopulations, these assays are often endpoint. To understand and
probe into mechanisms which drive tumor heterogeneity and tumor
progression more fully, there is a pressing need for tools which allow
identification, isolation, and perturbation of coexisting tumor cell
subpopulations.

Multiple methods have been developed which aim to findminimal sets
of marker genes which can be used to define groups, primarily aimed at
tools which have limited gene panels18–22. Several other methods have aimed
to find 1 or 2 surface marker genes which will maximally separate
subpopulations23–25; only one of these methods, COMET, demonstrated
experimental validation.Mostof these approacheshave reliedondetermining
an optimal expression threshold built on the assumption that RNA expres-
sion will directly correlate with protein expression, but this is not always
guaranteed tooccur.Ahighly expressedmarker gene is not guaranteed tobe a
highly expressed protein26,27, nor guaranteed to be localized to the cell surface
in a particular experimental model28. Furthermore, optimal thresholds based
onRNAexpressiondonothaveadirect conversion toflowcytometry.Finally,
many of these methods are not easily scalable across large datasets, as they
either require computationally expensive statisticalmethodsor arenot readily
compatible with standard single-cell programs such as scanpy29 and Seurat30

which are optimized for the storage and analysis of complicated datasets.
To address these problems, we developed “clusterCleaver”, a compu-

tationally efficient and scanpy compatible workflow in which the Earth
Mover’s Distance (EMD)31,32, a measure of statistical distance, is applied to
rank individual surface marker genes based on how well they separate
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transcriptomic clusters of cells in scRNA-seq data.We preprocessed single-
cell data to be better suited for predicting surface markers which could
enable separationwith FACS and developed it as a package compatible with
the popular single-cell gene expression package scanpy. To test and validate
the clusterCleaver workflow (Fig. 1), multiplexed single-cell RNA-sequen-
cing (scRNA-seq)wasfirst performedon5breast cancer cell lines to identify
cell lines with highly distinct transcriptomic subpopulations. Then, clus-
terCleaverwas usedon cell lineswith distinct subpopulations to identify and
rank candidate surface markers which could be used to physically separate
transcriptomic clusters within each cell line. Top candidate markers were
then experimentally screenedwithflow cytometry and subpopulationswere
immunostained and FACS-separated from the top hit for each. TagSeq, a
bulk 3’ RNA-seq method33,34, and differential expression analysis was per-
formed on isolated subpopulations to assess similarity with transcriptomic
identities of the targeted scRNA-seq clusters.

Results
Identification of subpopulations within cell lines through
scRNA-seq
As previous studies have suggested the presence ofmultiple subpopulations
within breast cancer cell lines13,35–39, multiplexed scRNA-seq was performed

on 5 different unperturbed and early passage breast cancer cell lines (BT-
474, MDA-MB-231, MDA-MB-436, MDA-MB-453, and Hs578T) to
identify cell lines which contain distinct transcriptomic subpopulations
(Fig. 2a). Leiden clustering was performed on each cell line (Supplementary
Fig. 1a, Fig. 2b, c), then Pearson correlation coefficient (PCC)was calculated
betweenLeiden clusters for each (Supplementary Fig. 1b).As clusterswithin
MDA-MB-231 (PCC = 0.81) and MDA-MB-436 (PCC = 0.87) were the
most dissimilar of the cell lines tested (BT-474 (PCC = 0.95),MDA-MB-453
(PCC = 0.95), Hs578T (PCC = 0.94)), MDA-MB-231 and MDA-MB-436
cells were chosen for testing and validation of the clusterCleaver workflow.

Application of the Earth Mover’s Distance
Next, we applied the EMD to all genes within the scRNA-seq data ranked
within the Cancer Surfaceome Atlas (TCSA)40 to identify candidate surface
markers which could be used to physically separate unique transcriptomic
clusters identified in scRNA-seq. EMD is a computationally efficient metric
that compares two distributions. Intuitively, it can be thought of as the
amount of work required to make two distributions equal41. Therefore, two
distributions with low levels of overlap will have a relatively high EMD and
highly overlapping distributions will have an EMD score close to 0. This
property of EMDmakes it highly suitable for quantitatively rankingmarker

Fig. 1 | The clusterCleaver workflow.Taking clustered single-cell RNA-sequencing
data as input, clusterCleaver computes the EMD on predicted surface maker genes.
Candidate surface marker genes are experimentally screened using flow cytometry,

then surface staining antibodies which show subpopulation separation can be used
to FACS isolate cell subpopulations. Transcriptomic identity of sorted cell sub-
populations can be validated by performing bulk RNA-seq.

Fig. 2 | Identification of multiple transcriptomic subpopulations in commonly
used breast cancer cell lines. a UMAP showing results of multiplexed scRNA-seq
performed on BT-474,MDA-MB-231,MDA-MB-453, Hs578T, andMDA-MB-436

cells within 5 passages from ATCC. Leiden clustering and the top 10 EMD ranked
candidate surface marker genes for separation of Leiden clusters for (b) MDA-MB-
231 and (c) MDA-MB-436 cells.
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genes in scRNA-seq with minimally overlapping expression distributions
between transcriptomic clusters.

The EMD was applied to every candidate surface marker gene found
both in the single-cell data and ranked within the TCSA database. TCSA
provides a predicted surface score for each gene based on amalgamated data
from nine different sources including experimental surface marker studies,
computational protein conformation prediction, and prior database
annotations40. TCSA surface marker scores are useful for filtering out genes
unlikely to be surface expressed, but potential variation in mRNA transla-
tion and protein localization in different cell types highlights the need for
experimental screening after running algorithms which depend on data
built from other sources and cell types. The top candidate surface marker
genes returned from clusterCleaver for MDA-MB-231 and MDA-MB-436
are summarized in Fig. 2b, c and a full list of EMD scores and rankings for
each cell line can be found for each gene in Supplementary Data 1 and
Supplementary Data 2.

Screening of candidate surface markers
The top ranked genes for MDA-MB-231 and MDA-MB-436 from the
clusterCleaver workflow with commercially available fluorochrome-
conjugated monoclonal antibodies were screened (Supplementary Table 1).
OnMDA-MB-231 cells, ESAMandTSPAN8 each identified distinct protein
expression clusters by flow cytometry (Supplementary Fig. 2) but when
immunostained in tandem, it was noted that TSPAN8 recognizes a subset of
ESAM-high cells (Supplementary Fig. 2a). HLA-ABC and ITGA2/CD49b
provided positive surface staining, but without clear delineation between
subpopulations (Supplementary Fig. 2b, c). When stained in tandem with
ESAM, HLA-ABC, and ITGA2/CD49b showed expected cluster-specific
protein expression patterns, with the ESAM-low subpopulation displaying
higher average expression of HLA-ABC and lower average expression of
ITGA2/CD49b as expected from scRNA-seqmeasurements (Supplementary
Fig. 2b, c). Tetherin (CD317), the protein product encoded by BST2, was
found to be a surface marker for MDA-MB-436 cells which identifies two
distinct protein expression clusters byflowcytometry (Supplementary Fig. 3).
IL13RA2/CD213a2 and CA12 showed some positive surface staining
(Supplementary Fig. 3a, b), while antibodies against GYPC and EREG failed
to stain MDA-MB-436 cells (Supplementary Fig. 3c, d). From results of this
surfacemarker screen,we selectedESAMas the topflowcytometry candidate
surface marker for separating clusters in MDA-MB-231 cells, and BST2/
tetherin for MDA-MB-436.

Isolation of subpopulations and validation of subpopulation
transcriptomic identity
Returning to the goal of physically isolating subpopulations identified in
scRNA-seq, we now asked whether the top protein surface markers identi-
fied using the EMD and screened with flow cytometry select for sub-
populationswith transcriptomic identities thatmatch the respective scRNA-
seq clusters. In the flow cytometry screen, immunostaining with ESAM
(MDA-MB-231, Fig. 3a, b) and BST2/tetherin (MDA-MB-436, Fig. 4a, b)
each revealed distinct subpopulations correlating to scRNA-seq cluster gene
expression in their respective cell lines. FACS isolation was performed to
enrich for ESAM-low/ESAM-high subpopulations of MDA-MB-231 cells
(Fig. 3c) and tetherin-low/tetherin-high of theMDA-MB-436 cells (Fig. 4c).

Next, to check the transcriptomic identity of these isolated sub-
populations,we expanded triplicate samples of each subpopulationafter two
roundsofFACSpurificationand thenperformedTagSeq, a bulk3’RNA-seq
method33,34. At the time of RNA collection, parallel cells were immunos-
tained and fixed to assess purity. We note that while the ESAM sub-
populations of MDA-MB-231 cells and the tetherin-high subpopulation of
the MDA-MB-436 cells maintained >97% purity (Figs. 3d and 4d), the
tetherin-low subpopulation of the MDA-MB-436 cells were only 70% pure
(Fig. 4d). The result has been repeated and is not due to sorting error. The
inability of the MDA-MB-436-tetherin-low subpopulation to maintain
purity may indicate a unique biological property of these cells which sug-
gests future studies.

To first assess if isolated subpopulations were significantly different
from each other, differential expression analysis was performed on TagSeq
data. Analysis with DESeq2 revealed 2250 differentially expressed genes
(FDR < 0.05) in the ESAM-separated MDA-MB-231 populations and 447
differentially expressed genes (FDR < 0.05) in the BST2/tetherin-separated
MDA-MB-436 populations (Figs. 3e and 4e).

Finally, transcriptomic identity of FACS isolated subpopulations was
compared to transcriptomic identity of targeted scRNA-seq clusters. Top
scRNA-seq cluster-specific genes were calculated by applying a t-test
between scRNA-seq clusters. Comparing the TagSeq data of the FACS
isolated subpopulations against the top cluster-specific genes from scRNA-
seq revealed that the transcriptome of the isolated subpopulations are well-
matched to their expected scRNA-seq cluster identity (Figs. 3f and 4f). To
quantify similarity between isolated subpopulations and scRNA-seq tran-
scriptomic clusters, the top 50 differentially expressed genes for each sub-
population in TagSeq were then compared to the top 50 differentially
expressed genes in scRNA-seq clusters. For MDA-MB-231, 47/50 genes
(94%) overlapped between the isolated ESAM-high subpopulation and its
target scRNA-seq cluster (2/50with the non-target cluster), and 46/50 genes
(92%) overlapped between the ESAM-low subpopulation and its target
cluster (3/50 with the non-target cluster). For MDA-MB-436, 34/50 genes
(68%) overlapped between the isolated BST2/tetherin-high subpopulation
and its target scRNA-seq cluster (4/50 with the non-target cluster), and 38/
50 genes (76%) overlapped between the BST2/tetherin-low subpopulation
and its target cluster (5/50 with the non-target cluster). Discrepancies in
overlapping differentially expressed genes in this analysis may arise from
many sources not limited to instability of transcriptomic state, heterogeneity
of gene expression within each scRNA-seq assigned transcriptomic cluster,
differences in gene expression within the subpopulations when cultured
together (as in scRNA-seq) compared to in isolation (for TagSeq), and from
differences in the biotechnologies and computational pipelines used to
obtain expression data (scRNA-seq vs. TagSeq). Despite these sources of
error, we find a strong overlap of differentially expressed genes between
isolated subpopulations and their targeted scRNA-seq cluster and weak
overlap with the non-targeted cluster for each isolated subpopulation in
both cell lines. These results suggest that clusterCleaver is a workflowwhich
identifies surface marker genes which can be used to successfully enrich
subpopulations from targeted scRNA-seq transcriptomic clusters.

Discussion
We have shown that clusterCleaver is a computationally efficient workflow
that takes in scRNA-seqandapplies theEMDtorank surfacemarkerswhich
can enrich for targeted transcriptomic subpopulations from heterogeneous
populations of cancer cells.

The use of EMD has been previously used as a method for separating
flow cytometry data directly42, but also it possesses distinct advantages over
other proposedmethods for identifyingmarkers for scRNA-seq data. EMD
is computationally efficient41, making it ideal for searching across large
scRNA-seq datasets. However, its primary advantage is that it does not rely
on finding an optimal threshold or otherwise implementing a loss function
which accounts for the sensitivity and specificity of a given threshold. EMD
instead can be sensitive to outliers, meaning that a cluster with a subset of
cells which have distinctly high expression of a given gene can potentially be
highly ranked. This is advantageous for identifyingmarkers in caseswhere a
largebimodal distribution cannotbe found.This does introduce scenarios in
which a gene with a long-tailed distribution may be ranked higher than a
gene with minimal overlap. To account for this, clusterCleaver includes
several visualization modules to facilitate domain-specific interpretation
when choosing surface markers to screen in flow cytometry.

While clusterCleaver has many computational benefits, it does come
with several caveats. Primarily, clusterCleaver functions optimally with data
processed such that gene expression is bounded to be greater than or equal
to 0. This means that regressed data, such as in cell cycle regression, may
hamper results. Additionally, the current implementation of clusterCleaver
only computes the EMD between two 1-dimensional distributions.
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However, the EMD between multivariate distributions is able to be calcu-
lated using estimations from the sliced-wasserstein distance43,44 as well as
direct calculations45, but thesemethods comeat ahighercomputational cost.

All surface marker prediction methods are ultimately limited in that
they are forced to rely on external databases to predict surface expression of
genes and do not check for commercial antibody availability. Several
computational methods have been developed which attempt to predict

protein expression from scRNA-seq data46–49 which could be implemented
to better search for markers which are more reliably expressed. cluster-
Cleaver uses genes ranked in TCSA40, but is an adaptable workflow that can
rank any set of genes using the EMD.This allows clusterCleaver to use other
curated surface marker datasets50 or user-provided gene lists. While this
work focused on the application of clusterCleaver for isolating tran-
scriptomic subpopulations found in cancer cell lines, it can be applied to any

Fig. 3 | Experimental validation of ESAM as a surface marker for MDA-MB-231
subpopulations. a scRNA-seq UMAP projection of MDA-MB-231 cells colored by
ESAM expression. bHistogram of ESAM expression showing enrichment of cluster
1 for ESAM. c ESAM immunostaining on parental MDA-MB-231 cells. Cells with
the lowest immunostaining were FACS enriched as “ESAM-low” and cells with the
highest immunostaining as “ESAM-high”. dAt the time of RNA collection (10 days
post-FACS and expansion), sorted ESAM subpopulations each maintained around

97% purity as measured by ESAM immunostaining and flow cytometry analysis
(ESAM-low, left; ESAM-high, right). eVolcano plot of differentially expressed genes
from TagSeq performed on sorted subpopulations. Labels point to genes that were
highly ranked in the scRNA-seq dataset using EMD. f Heatmap showing TaqSeq
data for each FACS enriched subpopulation (ESAM-low, left; ESAM-high, right)
plotted against ranked cluster genes from scRNA-seq (Cluster 0, top; Cluster 1,
bottom).
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scRNA-seq data set in which transcriptomic clusters have been defined,
such as the tumormicroenvironment51,52, immune subsets, or cells found in
other pathologies. As clusterCleaver is applied to annotated scRNA-seqdata
and annotations are highly dependent on the biology each data set repre-
sents, it is up to the user to ensure that scRNA-seq annotations match the

expected biology and that the data is appropriately clustered before running
clusterCleaver to prevent spurious outputs.

clusterCleaver is not limited to use in cancer cell lines. However, we
highlight this application for its implications for past and future in vitro
studies. Numerous studies have been performed on cell lines without

Fig. 4 | Experimental validation of BST2/tetherin as a surface marker for MDA-
MB-436 subpopulations. a scRNA-seq UMAP projection of MDA-MB-436 cells
colored by BST2 expression. b Histogram of BST2 expression showing enrichment
of cluster 1 for BST2. c BST2 encodes the protein product tetherin/CD317 and
tetherin immunostaining reveals subpopulations within parental MDA-MB-436
cells. Cells with the lowest immunostaining were FACS enriched as “tetherin-low”
and cells with the highest immunostaining as “tetherin-high” (d) At the time of RNA
collection (13 days post-FACS and expansion), sorted the sorted tetherin-high

subpopulation maintained 97% purity by tetherin immunostaining and flow cyto-
metry analysis (d, right), however, the tetherin-low subpopulation dropped to 70%
purity (d, left). e Volcano plot of differentially expressed genes from TagSeq per-
formed on sorted subpopulations. Labels point to genes that were highly ranked in
the scRNA-seq EMD. f Heatmap of TaqSeq data for each FACS enriched sub-
population (tetherin-low, left; tetherin-high, right) plotted against ranked cluster
genes from scRNA-seq (Cluster 0, top; Cluster 1, bottom).

https://doi.org/10.1038/s41540-024-00441-6 Article

npj Systems Biology and Applications |          (2024) 10:120 5

www.nature.com/npjsba


knowledge of their underlying population structure, yet subpopulations of
cells may behave disparately under different culture conditions and pertur-
bations, skewing interpretation of bulk results. Subpopulations have been
characterized in cell lines through different modalities35–38,53,54, but these
studies may have isolated rare subsets of cells. In contrast, clusterCleaver
delivers aworkflow for isolating subpopulations starting from full knowledge
of the transcriptomic diversity within cell lines by starting at scRNA-seq.

Currently, many studies which investigate eco-evolutionary dynamics
in cancer in vitro rely on cocultures of cell lines from patients with different
genetic backgrounds55,56 or mixes of drug-naïve cells with lab evolved drug
resistant strains57–59. While studies like these have been paramount in
unraveling complex cancer dynamics, these cocultured subpopulationsmay
not accurately reflect the biology that is attempting to be modeled. To
generate more physiologically relevant systems to study coexisting cancer
cells, clusterCleaver was developed as a workflow to rank candidate flow
cytometry surface markers which can be used to monitor populations
changes in naturally coexisting subpopulations within a mixed population
or separate out subpopulations of cells which once coexisted together for
further investigation. In this study, we applied clusterCleaver to cancer cell
lines and identified ESAM and BST2/tetherin as surface markers which can
be used to isolate transcriptomically distinct subpopulations from MDA-
MB-231 and MDA-MB-436 cells, respectively.

The ESAM-separated subpopulations of MDA-MB-231 cells were
stable and showed strong transcriptomic agreement to their targeted
scRNA-seq clusters. TheBST2/tetherin-separated subpopulations ofMDA-
MB-436 cells had high agreement to their targeted transcriptomic clusters
but did not match as strongly as the ESAM-separated subpopulations of
MDA-MB-231 cells (~70% vs. >90% overlap of differentially expressed
genes). While there are many potential sources of error, we reason that
differences in differential gene expression may be primarily driven by het-
erogeneous BST2 expression within the BST2-high/tetherin-high targeted
cluster (MDA-MB-436, Cluster 1) and potential instability of the BST2/
tetherin-low cell state (Fig. 4d), compared to more even coverage of ESAM
expression in the ESAM-high cluster (MDA-MB-231, Cluster 1) and
apparent stability of the ESAM-high and ESAM-low cell states (Fig. 3d).

Genetic and non-genetic heterogeneity emerges within tumors and can
also emerge within cancer cell lines7,16,60. The subpopulations identified and
isolated from MDA-MB-231 and MDA-MB-436 cells in this study seem to
show surprising dynamics, with the ESAM-separated subpopulations of
MDA-MB-231 showing no signs of interconversion within the span of the
experiment (Fig. 3d) but noting potential plasticity in the tetherin-low sub-
populations of the MDA-MB-436 cells (Fig. 4d). Whether these subpopula-
tionshaveemergedas stochastic cell statesoras genotypicallydistinct clones is
yet tobe reconciled. Future studies into the biological characteristics of eachof
these subpopulations may help reveal common mechanisms of coexistence
and help guide improved therapeutic strategies for heterogeneous tumors.

In conclusion, clusterCleaver is a computationally efficient method
which can be applied to any clustered scRNA-seq data set to determine
candidate surface markers for subpopulation tracking or isolation. We
showed the development of clusterCleaver as a computational tool for
ranking candidate surface markers in scRNA-seq and performed experi-
mental validation of this tool with two commonly used breast cancer
cell lines.

Methods
Cell culture
All cell lines were used within 5 passages from thawed ATCC stocks at the
start of this experiment. The passage numbers provided by ATCC via
Certificate of Analysis are as follows: MDA-MB-231 (ATCC p31), MDA-
MB-436 (ATCCp20),MDA-MB-453 (ATCCp349), Hs578T (ATCCp52),
and BT-474 (ATCC p89). MDA-MB-231 and MDA-MB-453 were main-
tained in high glucose DMEM (Sigma, D5796) supplemented with 1X
Penn-Strep (ThermoFisher, 15140122) and 10% FBS (Sigma, F0926).
MDA-MB-436 and Hs578T were maintained in high glucose DMEM
(Sigma, D5796) supplemented with 1X Penn-Strep (ThermoFisher,

15140122), 10% FBS (Sigma, F0926), and 10 µg/mL insulin (ThermoFisher,
12585014). BT-474 cells were maintained in Richter’s modified MEM
without phenol red (ThermoFisher, A1048801) supplemented with 1X
Penn-Strep (ThermoFisher, 15140122), 10% FBS (Sigma, F0926), and
20 µg/mL insulin (ThermoFisher, 12585014). FACS isolated subpopula-
tions were maintained in their parental media. MDA-MB-453 were pas-
saged with 0.25% Trypsin-EDTA (ThermoFisher, 25200056), all other cell
lines were passaged with 0.05% Trypsin-EDTA (ThermoFisher, 25300062)
using standard protocols. A cell scraper was used to fully releaseMDA-MB-
436 cells after 1min of trypsinization.

scRNA-seq sample and library preparation
Cells were prepared for multiplexed scRNA-seq using the 10XGenomics 3ʹ
CellPlex Kit (10XGenomics, 1000261). Briefly,MDA-MB-231 (p4),MDA-
MB-436 (p4), MDA-MB-453 (p5), Hs578T (p4), and BT-474 (p3) were
gently detached, neutralized, strained through a 40 µm cell strainer, then
counted. 1e6 cells from each population were added to a 2mL tube and
washed with room temperature PBS supplemented with 0.04% BSA
(ThermoFisher, 15260037). Each cell line was resuspended in 100 µL of a
unique cell multiplexing oligo and incubated for 5min before 3 rounds of
washingwith cold PBS plus 1%BSA. After washing, cells were counted, and
two pools were made containing equal ratios of 3 cell lines each: (Pool A)
MDA-MB-231, MDA-MB-453, BT-474, and (Pool B) MDA-MB-436 and
Hs578T. Cells were dropped off to theUTAustinGenomic Sequencing and
Analysis and 15,000 cells per poolwere loaded into aChromiumNextGEM
Single Cell 3’ Chip following standard 10X Genomics protocols.

scRNA-seq analysis
Single-cell data was aligned to the GRCh38 (version refdata-gex-GRCh38-
2020-A, 10X Genomics) and processed using cellranger’s (version 6.1.2)
multi command. The data was then aggregated using cellranger’s aggr
function. Cells were then loaded into scanpy (version 1.9.8). Quality control
was done according to the scanpy’s single-cell best practices61. Automatic
thresholding was done on the percentage of mitochondrial genes, the
number of genes within a cell, or the total gene count within a cell using the
median absolute deviation (MAD) as defined by Equation 1:

MAD ¼ median Xi �median Xð Þ
�
�

�
�

� � ð1Þ

Where X is the expression of the given cell. Cells with aMADgreater than 5
were removed. Doublets were then removed using the package
scDblFinder62. To normalize the data, we used the shifted logarithm tech-
nique as recommended by the single-cell best practices. Finally, we
performed dimensionality reduction by finding highly variable genes,
calculating the dataset’s principal components, computing a nearest
neighbors graph, then calculating the UMAP representation. To remove
cell cycle effects potentially biasing clustering, we regressed cell out cell cycle
using gene lists from ref. 63. All clustering and UMAP visualization was
done using the Leiden algorithm as implemented by scanpy on regressed
gene expression data. All candidate marker searches were performed on
non-regressed log-normalized gene expression data. Similarity between
clusters was computed between each cluster within each cell line on the full
concatenated dataset by taking the top 50principal component values of the
gene expression and calculating the Pearson correlation coefficient between
all identified clusters.

Earth Mover’s Distance pre-processing
From experience, ideal surface markers are bimodally distributed between
clusters, with one cluster having gene expression around 0. However, one
case that often occurs is that both clusters will have a peak of 0 gene
expression while one of the clusters will have a second peak of higher gene
expression. Therefore, this gene is potentially a good candidate asmany cells
from the high-expressing gene cluster can still be theoretically isolated.
However, this gene will not rank highly with the EMD because the clusters
bothhave significant overlaparound0.Tocircumvent this,we removedgene
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expression levels of 0 in clusters which had higher average gene expression.
This allowed us to find more genes which were candidate markers.

Flow cytometry and FACS
Cells gently detached and neutralized according to standard culture tech-
niques. Cells were counted using a trypan blue exclusion automated cell
counter. 0.2e6 cells were used for screening antibody labeling experiments.
1e6 cells were used for antibody validation and 2-5e6 cells were labeled for
FACScell sorting experiments.Cellswere resuspended in cell stainingbuffer
(PBS+ 5mM EDTA+ 1% BSA+ 1.6mMNaOH+ 0.01% sodium azide)
and incubated in 1:100dilutedZombieUVviability dye (Biolegend, 423107)
or Zombie Violet viability dye (Biolegend, 423113) for 5min on ice, then
with the manufacturer recommended volume of antibody (antibody
information in supplementary Table 1) for 20min. Immunostained cells
were washed 3 times with cell sorting buffer supplemented with 1:1000
diluted Zombie viability dye, then passed through a 40 µm cell strainer
before flow analysis. For fixed cell preparation, cells were resuspended in
200 µL of 4% PFA in PBS for 15min after the second wash, then washed 2
more times. Collection media for live cell sorting was prepared by supple-
menting completemedia with 25mMHEPES. Cells were sorted into 15mL
tubes containing 7mL of collection media. Collected cells were spun down
at 300 × g for 10min, then plated in 50% conditionedmedia for 24 h before
transitioning to fresh, complete media. Conditioned media (CM) was pre-
pared from complete media incubated on a 70% confluent plate of parental
cells for 24 h. CMwas spundown at 500 × g for 10min and supernatantwas
passed through a 0.22 µm filter. CM was diluted to 50% with fresh,
complete media.

RNA collection for TagSeq
MDA-MB-231: MDA-MB-231-ESAM-low and MDA-MB-231-ESAM-
highwere FACS sorted7 days before plating forRNAcollection. 0.15e6 cells
of MDA-MB-231 p8, MDA-MB-231 p13, MDA-MB-231-ESAM-low,
MDA-MB-231-ESAM-high were plated across triplicate 6-well plates.
Media was exchanged on plates after 24 h. 72 h after plating (10 days post-
FACS), cells were 60–70% confluent, and RNA was collected using an in-
plate lysis strategy following the Qiagen RNAeasy Mini protocol. MDA-
MB-436: MDA-MB-436-tetherin-low and MDA-MB-436-tetherin-high
were FACS sorted 11 days before plating for RNA collection. 0.84e6 cells of
MDA-MB-436 p7, MDA-MB-436 p13, MDA-MB-436-tetherin-low,
MDA-MB-436-tetherin-high were plated across triplicate 6-well plates.
Media was exchanged on plates after 24 h. 48 h after plating (13 days post-
FACS), cells were 60–70% confluent, and RNA was collected using an in-
plate lysis strategy following the Qiagen RNAeasy Mini protocol. For all
samples, RNA was eluted in 35 µL of nuclease-free water. RNA samples
were quantified via Qubit, diluted, then submitted to the UT Austin
Genomic Sequencing and Analysis Facility for 3’-Tag RNAseq (TagSeq)
preparation.

TagSeq analysis
Raw FASTQ files were processed using nf-core/rnaseq (v3.14.0)64 using
default settings. Data was aligned to GrCh38. Bias uncorrected counts were
rounded and used as recommended with DESeq265 (v1.40.2) to generate
differentially expressed genes and generate normalized expression values.

Data availability
TagSeq data has been deposited in the Gene Expression Omnibus (GEO)
under accession code GSE268250. Single cell data was deposited under
accession code GSE268249. Flow cytometry FCS files are available upon
request.

Code availability
Notebooks used to process transcriptomic data and generate figures can be
accessed at www.github.com/brocklab/clusterCleaver-analysis. The clus-
terCleaver package and instructions for installation and usage can be found
at www.github.com/brocklab/clusterCleaver.
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