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Glioblastoma (GBM) is the most prevalent primary malignant tumor of the nervous system. In this 
study, we utilized pathomics analysis to explore the expression of CD40LG and its predictive value for 
the prognosis of GBM patients. We analyzed the expression differences of CD40LG in GBM tissue and 
normal brain tissue, along with performing survival prognosis analysis. Additionally, histopathological 
sections of GBM were used to screen for pathological features. Subsequently, SVM and LR pathomics 
models were constructed, and the models’ performance was evaluated. The pathomics model was 
employed to predict CD40LG expression and patient prognosis. Furthermore, we investigated the 
potential molecular mechanisms through enrichment analysis, WGCNA analysis, immune correlation 
analysis, and immune checkpoint analysis. The expression level of CD40LG was significantly increased 
in GBM. Multivariate analysis demonstrated that high expression of CD40LG is a risk factor for overall 
survival (OS) in GBM patients. Five pathological features were identified, and SVM and LR pathomics 
models were constructed. Model evaluation showed promising predictive effects, with an AUC value 
of 0.779 for the SVM model, and the Hosmer–Lemeshow test confirmed the model’s prediction 
probability consistency (P > 0.05). The LR model achieved an AUC value of 0.785, and the Hosmer–
Lemeshow test indicated good agreement between the LR model’s predicted probabilities and the true 
value (P > 0.05). Immune infiltration analysis revealed a significant correlation between the pathomics 
score (PS) and the degree of infiltration of activated DC cells, T cells CD4 naïve, Macrophages M2, 
Macrophages M1, and T cells CD4 memory resting. Our results demonstrate that the pathomics model 
exhibits predictability for CD40LG expression and GBM patient survival. These findings can be utilized 
to assist neurosurgeons in selecting optimal treatment strategies in clinical practice.

Glioblastoma (GBM) is the most prevalent malignant tumor of the central nervous system1. Currently, surgery 
supplemented by radiotherapy and chemotherapy is the primary treatment for GBM. Despite substantial 
understanding of the molecular pathogenesis and biology of this tumor, patients with GBM still face a poor 
prognosis, with a median survival of approximately 15 months2,3. Molecular markers such as IDH and MGMT 
are used for predicting the sensitivity and prognosis of GBM patients to TMZ chemotherapy4,5. However, the 
detection of these markers is time-consuming and expensive. Therefore, there is a need to develop an efficient, 
cost-effective method for predicting GBM, aiming to improve patient prognosis and optimize treatment.

The CD40LG gene encodes a protein expressed on the surface of T cells6, and a defect in this gene results in 
incapacity for immunoglobulin class switching, associated with Hyper-IgM syndrome7. Upon interaction with 
its cognate receptor CD40, which is constitutively expressed by B cells and antigen-presenting cells, CD40L 
plays a crucial role in enhancing B-cell activation and promoting T-cell-dependent humoral immune responses8. 
Studies indicate that CD40LG is closely related to the biological development of lung cancer and breast cancer9,10. 
CD40/CD40L expression correlates with survival in glioblastoma patients, and enhancement of CD40 signaling 
enhances vaccination efficacy in glioma models11. Treatment with CD40L blockers inhibits GBM infiltration 
when combined with mesenchymal stem-like cells in the GBM microenvironment12.

Histopathology is the gold standard for tumor diagnosis, providing prognostic predictions. However, 
differences in judgments among pathologists may impact prognosis assessment13. The introduction of the 
concept of pathomics may address this issue. Pathomics involves the conversion of pathological images into 
high-fidelity, high-throughput mineable data using artificial intelligence, covering quantitative features such 
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as texture, morphological characteristics, edge gradients, and biological traits, and is used for quantitative 
pathological diagnosis, molecular expression, and disease prognosis14.

This study screened the pathological features of H&E slices of glioblastoma based on the above factors, 
constructed pathological models based on the screened features, predicted the expression level of CD40LG, 
and assessed prognosis through these pathological features. Simultaneously, it further explored the internal 
molecular mechanisms of pathomics and investigated the relevant molecular pathways and their correlation 
with immune infiltration.

Materials and methods
The overall flowchart of prognosis analysis of CD40LG, image features extraction and pathomics models 
establishment was presented in Fig. 1. The details of each part were described in the following sections.

Patients
The clinical data of 599 GBM patients was obtained from the TCGA database. The criteria for exclusion are as 
follows: 1. Patients who were not first treated at the clinic; 2. Patients with missing survival data or survival time 
of less than one month; 3. Patients with ‘Unknown’ IDH status; 4. Patients with non-primary solid tumors and 
no RNA-seq data.

Additionally, pathological images of 389 GBM patients were obtained from the TCGA database. The criteria 
for exclusion are as follows: patients with poor pathological image quality and no overlap with clinical data.

Identification of CD40LG as a differentially expressed gene
RNA-seq data was downloaded for GBM and corresponding normal tissues from The Cancer Genome Atlas 
(TCGA) database and the Genotype Tissue Expression (GTEx) database. R software version 3.6.6 was used 
for assessing differential CD40LG gene expression between non-paired normal and cancerous tissues. A 

Fig. 1.  The workflow of prognostic analysis, feature extraction and construction of pathomics models.
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significance level of p < 0.05 was applied to determine statistical significance. The data was normalized using the 
Log2 (value + 1) transformation. Expression analysis was conducted using the Wilcoxon rank sum test.

Survival prognosis analysis
Kaplan–Meier (KM) curves were utilized in the survival analysis to assess the relationship between CD40LG 
expression and overall survival (OS) of GBM patients. The criteria for “high” and “low” expressions in the KM 
analysis were based on the tumor cohort median. Additionally, Univariate and multivariate Cox regression 
analyses were performed to identify potential prognostic factors for overall survival (OS) in patients with 
GBM. The analyses were performed using the “survival (v3.2.1)”, “survminer (v3.3.3)” and “ggplot2 (v3.3.3)” R 
packages, where p < 0.05 was considered statistically significant.

Processing of histopathological images
Hematoxylin and Eosin (H&E) stained histopathological images (20 × or 40 × magnification) in SVS format were 
downloaded from the TCGA (https://tcga-data.nci.nih.gov/tcga/) database. Pathological image processing and 
segmentation: use the OTSU algorithm (https://opencv.org/) to obtain the tissue area of the pathological section. 
The 40 × image was divided into multiple 1024 × 1024-pixel sub-images, while the 20 × image was likewise 
resampled to 1024 × 1024 pixels after being divided into multiple 512 × 512-pixel sub-images. Sub-images with 
insufficient quality, such as contamination, indistinct images, or a vacant area exceeding 50%, were discarded. 
Ten sub-images were chosen at random for subsequent analysis from each pathology image.

Pathomics features extraction
PyRadiomics is an open-source Python library designed for extracting a large number of engineered features 
from medical images. It enables researchers and clinicians to automatically extract quantitative features from 
image data, which can be used for disease diagnosis, prognosis prediction, treatment response evaluation, and 
other medical researches. PyRadiomics supports various image formats and offers flexible feature extraction 
configurations, covering multiple categories of features such as shape, intensity, and texture15.

We standardized each sub-image using the PyRadiomics open-source package (https://pyradiomics.
readthedocs.io/en/latest/). Ninety-three original features, including first-order and second-order features, were 
extracted from each sub-image. Additionally, high-order features (Wavelet: LL, LH, HL, HH) were also extracted, 
yielding a total of 465 features. After characterizing 10 sub-images from each patient’s pathological image, we 
calculated the average value of these characteristics for each sample, which served as the pathology characteristic 
for follow-up data analysis. Finally, we applied the mRMR (Maximum relevance, minimum redundancy) and 
RFE (Recursive feature elimination) algorithms to further filter the best characteristics.

Establishment and evaluation of pathomics models
We utilized the R language, specifically the “caret” and “stats” packages, to model the selected pathomics features 
using the support vector machine (SVM) and logistic regression (LR) algorithms, respectively. These models 
were used to predict gene expression. We assessed the model performance using various evaluation metrics, 
including ROC curve, PR curve, AUC, accuracy (ACC), sensitivity (SEN), specificity (SPE), positive predictive 
value (PPV), negative predictive value (NPV), calibration curve, and Brier score. The AUC values of the two 
models were compared using the Delong test. Finally, the pathomics score (PS) of the intersection sample is 
calculated through the pathomics model, the PS is combined with the corresponding clinical data, and the cutoff 
value of the PS is calculated through the survminer package and divided into binary variables.

Immune cell infiltration and enrichment analysis based on pathomics score
To explore the molecular mechanism underlying expression differences between high and low expression groups 
of PS genes, we used the R package “clusterProfiler” to perform genes enrichment analysis (GSEA) on genes 
differentially expressed between high and low PS groups in the KEGG (c2.cp.kegg.v7.5.1.symbols.gmt) and 
Hallmark (h.all.v7.5.1.symbols.gmt) gene sets. A p-value of less than 0.05 was considered statistically significant. 
We uploaded the gene expression matrix of GBM samples to the CIBERSORTx database (https://cibersortx.
stanford.edu/) to calculate the immune cell infiltration of each sample, and we analyzed the correlation between 
PS and the extent of immune cell infiltration using the R package “corrplot”. Moreover, wilcox.test was used to 
analyze the difference in immune checkpoint expression between high and low PS groups.

In addition, WGCNA was used to identify BCR signaling pathway gene sets related to prognosis, an 
expression similarity matrix was constructed based on the obtained BCR signaling pathway gene expression 
data, and the scale independence and scale independence of the network with different power values (1 ~ 10) 
were tested. Finally, the module with the highest correlation with clinical characteristics is regarded as the key 
module, and this module is selected to identify relevant hub genes. Finally, GO and KEGG enrichment analysis 
were performed on the hub genes related to the BCR signaling pathway.

Results
Patients
Out of the clinical data of 599 GBM patients, 557 patients who were initially diagnosed and treated were 
screened, 29 patients with missing survival data and survival time less than 1 month were deleted, 11 patients 
with IDH status “Unknown” were excluded, and 290 patients with non-primary solid tumors with no RNA-seq 
data were eliminated, and 127 were eventually included. Out of 389 GBM pathological images, 311 cases with 
poor pathological image quality and no intersection with clinical data were eliminated, and 78 were eventually 
included.
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Expression and prognostic analysis of CD40LG
Differences in CD40LG expression between GBM (from the TCGA database) and normal tissues (from GTEx 
database) were compared. The analysis revealed a noticeable upregulation of CD40LG expression in GBM 
(Fig. 2A). Based on the expression of CD40LG using a cut-off value of 0.1237, the 127 patients were categorized 
into a CD40LG high expression group (n = 73) and a low expression group (n = 54). Notably, there were no 
significant differences in clinical and pathological characteristics between these two patient groups (Table 1). 
Kaplan–Meier survival curves demonstrated that the CD40LG low expression group had a median survival time 
of 14.4 months, while the CD40LG high expression group had a median survival time of 12.1 months. High 
CD40LG expression was closely associated with OS deterioration, with a borderline significant p-value of 0.056 
(Fig. 2B). Additionally, the IDH mutation group exhibited significantly higher survival rates compared to the IDH 
wild-type group (Fig. 2C). Furthermore, both the chemotherapy group and radiotherapy group demonstrated 
significantly higher survival rates than the no chemotherapy and no radiotherapy groups (Fig. 2D,E).

Univariate and multivariate analyses in GBM
In univariate analysis, high expression of CD40LG was identified as a risk factor for overall survival (OS) 
(HR = 1.471, 95% CI: 0.986–2.195, P = 0.058). Additionally, IDH wild type was associated with an increased 
risk of OS (HR = 3.858, 95% CI: 1.538–9.681, P = 0.004), while MGMT methylation was found to be a protective 
factor for OS (HR = 0.6, 95% CI: 0.376–0.958, P = 0.032). Moreover, chemotherapy (HR = 0.446, 95% CI: 
0.292–0.683, P < 0.001) and radiotherapy (HR = 0.442, 95% CI: 0.254–0.701, P = 0.001) were both protective 
factors for OS. After adjusting for multiple factors, high expression of CD40LG remained a risk factor for OS 
(HR = 1.559, 95% CI: 1.019 − 2.383, P = 0.041), as well as IDH wild type (HR = 3.376, 95% CI: 1.179 − 9.664, 
P = 0.023). Conversely, radiotherapy was observed to be a significant protective factor for OS (HR = 0.339, 95% 
CI: 0.166 − 0.692, P = 0.003) (Fig. 3A).

To further investigate the impact of CD40LG on patient prognosis across different subgroups, we conducted 
exploratory subgroup analysis using univariate Cox regression. In the subgroup analysis, elevated CD40LG was 
identified as a significant risk factor for OS in the subgroup that did not receive radiotherapy (HR = 2.887, 95% 
CI: 1.134–7.352, P = 0.026). However, in the subgroup that received radiotherapy, elevated CD40LG was not 
significantly associated with OS (HR = 1.372, 95% CI: 0.896–2.1, P = 0.15). The interaction test yielded a p-value 
of 0.005, suggesting a significant interaction between the "association between CD40LG and patient OS" and the 
receipt of radiotherapy (Fig. 3B).

Fig. 2.  Expression and prognostic analysis of CD40LG. (A) CD40LG expression in GBM and normal tissues 
(GBM = 166, Normal = 1157). (B) Overall survival curves of CD40LG in GBM (High = 73, Low = 54). (C-E) 
GBM survival curves under different IDH (Mutant = 9, WT = 118), chemotherapy (No = 36, Yes = 91) and 
radiotherapy status (No = 20, Yes = 107).
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Fig. 3.  Univariate and Multivariate Analyses in GBM. (A) Univariate and multivariate Cox regression analyses 
of clinical features of GBM associated with OS. (B) Univariate COX regression for subgroup analysis.

 

Variables Total (n = 127) Low (n = 73) High (n = 54) p

Gender, n (%) 0.98

 Female 41 (32) 23 (32) 18 (33)

 Male 86 (68) 50 (68) 36 (67)

Age, n (%) 0.636

  ~ 59 56 (44) 34 (47) 22 (41)

 60 ~  71 (56) 39 (53) 32 (59)

IDH_status, n (%) 0.077

 Mutant 9 (7) 8 (11) 1 (2)

 WT 118 (93) 65 (89) 53 (98)

MGMT_promoter_status, n (%) 0.536

 Unmethylated 59 (46) 35 (48) 24 (44)

 Methylated 41 (32) 25 (34) 16 (30)

 Unknown 27 (21) 13 (18) 14 (26)

Chemotherapy, n (%) 0.204

 No 36 (28) 17 (23) 19 (35)

 Yes 91 (72) 56 (77) 35 (65)

Radiotherapy, n (%) 1

 No 20 (16) 11 (15) 9 (17)

 Yes 107 (84) 62 (85) 45 (83)

Table 1.  The clinical and pathological characteristics in the CD40LG low and high groups.
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Model establishment and evaluation
Initially, 465 original and high-order features were screened. Then, the mRMR algorithm was used to select the 
top 20 features, followed by the RFE algorithm to further narrow down to 5 features.

The selected pathomics features were modeled through the SVM algorithm. The results show the importance 
of the five features in the SVM algorithm (Fig. 4A). Subsequently, the model’s performance was evaluated. The 
ROC curve revealed an AUC value of 0.779 (Fig. 4B), while the tenfold cross-validation yielded an AUC of 
0.726 (Fig. 4C). The calibration curve and Hosmer–Lemeshow goodness-of-fit test indicated that the pathomics 
prediction model accurately predicted gene expression probability (P > 0.05) (Fig. 4D). DCA further confirmed 
the model’s clinical applicability (Fig. 4E). The training set had an ACC of 0.731, SEN of 0.829, SPE of 0.651, 
PPV of 0.659, NPV of 0.824, and a Brier score of 0.202. The cross-validation had an ACC of 0.718, SEN of 0.714, 
SPE of 0.721, PPV of 0.676, NPV of 0.756, and a Brier score of 0.221 (Fig. 4F). Additionally, the SVM pathomics 

Fig. 4.  SVM model establishment and evaluation. (A) Five features in the SVM algorithm. (B) Predictive 
performance of SVM model. (C) Predictive performance of the tenfold cross-validation. (D) Calibration curve 
analysis. (E) Decision curve analysis. (F) The ACC, SEN, SPE, PPV, NPV and Brier score of the train and 
validation sets. (G) Prediction of CD40LG expression by pathomic score.
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model provided a PS for predicting gene expression levels. The Wilcoxon test revealed a significant difference 
in PS distribution between high and low gene groups (p < 0.001). The CD40LG high expression group exhibited 
higher PS value (Fig. 4G).

The selected pathomics features were used to build a binary classification model for gene expression 
prediction using logistic regression algorithm. Figure 5A illustrates the significance of pathological features in 
the LR algorithm. The performance of the LR model was assessed, demonstrating its effectiveness: the AUC 
value of the model was 0.785 according to the ROC curve (Fig. 5B), and the tenfold internal cross-validation 
yielded an AUC value of 0.742 (Fig. 5C). The calibration curve and Hosmer–Lemeshow goodness-of-fit test 
confirmed the model’s accurate prediction of high CD40LG expression (P > 0.05) (Fig. 5D). Furthermore, DCA 
demonstrated the model’s clinical practicality (Fig. 5E). The training set had an ACC of 0.756, SEN of 0.743, 
SPE of 0.767, PPV of 0.722, NPV of 0.786, and a Brier score of 0.188. The cross-validation had an ACC of 0.744, 

Fig. 5.  LR model establishment and evaluation. (A) Five features in the LR algorithm. (B) Predictive 
performance of LR model. (C) Predictive performance of the tenfold cross-validation. (D) Calibration curve 
analysis. (E) Decision curve analysis. (F) The ACC, SEN, SPE, PPV, NPV and Brier score of the train and 
validation sets. (G) Prediction of CD40LG expression by pathomic score.
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SEN of 0.686, SPE of 0.791, PPV of 0.727, NPV of 0.756, and a Brier score of 0.21 (Fig. 5F). Similarly, the LR 
pathomics model calculated the PS for predicting gene expression levels. The Wilcoxon test revealed significant 
differences in PS distribution between high and low gene groups (p < 0.001). The CD40LG high expression 
group exhibited higher PS value (Fig. 5G).

Finally, the DeLong test was performed to compare the AUC values of the SVM omics model and the LR 
omics model before and after validation. The results showed no statistical difference between the two models 
(p = 0.549 for the training set and p = 0.844 for cross-validation). As the LR omics model had a higher AUC value 
compared to the SVM omics model, it was chosen for further analysis.

Enrichment analysis between high and low PS groups
We utilized the R package “survminer” to obtain the predicted value of the LR pathomics model. Patients were 
stratified into high PS expression (n = 47) and low expression (n = 31) groups based on the PS cutoff value of 
0.3484. Subsequently, a baseline information table for each clinical variable was generated using the PS Low/
High grouping. The analysis revealed no significant differences in the distribution of clinical variables between 
the high and low PS groups (p > 0.05) (Table 2).

GSEA was performed on differentially expressed genes between the high and low PS groups, and the top 20 
pathways were visualized using KEGG16–18 and Hallmark gene set analyses. The KEGG gene set analysis revealed 
significant enrichment of differential genes in the B cell receptor signaling pathway, chemokine signaling pathway, 
and other signaling pathways among the high and low PS groups (Fig. 6A). Similarly, Hallmark gene set analysis 
demonstrated significant enrichment of differential genes in signaling pathways such as KRAS SIGNALING and 
PI3K AKT MTOR SIGNALING between the PS high and low groups (Fig. 6B). Additionally, the differential 
expression of chemokines between the high and low PS groups was analyzed using the Wilcoxon test, revealing 
significantly increased expression of CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL8, CXCL13, CXCL14, and 
CXCL16 in the PS high group (Fig. 6C).

Identification of the Hub Genes in WGCNA network
Furthermore, WGCNA was used to identify BCR signaling pathway gene sets associated with prognosis. The 
optimal soft threshold power, determined from the scale-free network, was 8 (Fig. 7A). Based on the average 
connected hierarchical clustering and the optimal soft threshold power, five modules were identified (Fig. 7B). 
BCR signaling pathway genes were allocated to these 5 modules (Fig.  7C). Pearson correlation coefficient 
analysis revealed a close relationship between the brown module and the prognosis of GBM patients (Fig. 7D). 
Consequently, the brown module was identified as the key module. To investigate the relationship between 
CD40LG and the 19 genes in the brown module, we performed a correlation analysis. The results showed that, 
except for NFKB1, CD40LG expression was significantly correlated with the expression of the other 18 genes 
(Fig. 7E). To further validate the potential functions of the 19 hub genes related to the BCR signaling pathway 
within the brown module, we performed GO and KEGG analyses. GO (BP) enrichment analysis revealed a 
significant enrichment of the activation of immune response among the 19 hub genes within the brown module 
(Fig.  7F). Similarly, the KEGG enrichment analysis indicated a significant enrichment of the NF-kappa B 
signaling pathway among the 19 hub genes in the brown module (Fig. 7G).

Variables Total (n = 78) Low (n = 31) High (n = 47) p

Gender, n (%) 0.547

 Female 21 (27) 10 (32) 11 (23)

 Male 57 (73) 21 (68) 36 (77)

Age, n (%) 0.458

  ~ 59 40 (51) 18 (58) 22 (47)

 60 ~  38 (49) 13 (42) 25 (53)

IDH_status, n (%) 0.107

 Mutant 7 (9) 5 (16) 2 (4)

 WT 71 (91) 26 (84) 45 (96)

MGMT_promoter_status, n (%) 0.237

 Methylated 20 (26) 10 (32) 10 (21)

 Unknown 26 (33) 7 (23) 19 (40)

 Unmethylated 32 (41) 14 (45) 18 (38)

Chemotherapy, n (%) 0.659

 No 21 (27) 7 (23) 14 (30)

 Yes 57 (73) 24 (77) 33 (70)

Radiotherapy, n (%) 0.507

 No 10 (13) 5 (16) 5 (11)

 Yes 68 (87) 26 (84) 42 (89)

Table 2.  The clinical variables between the low and high PS groups.
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Immune correlation analysis
Differential analysis of immune checkpoint expression between the high and low PS groups revealed significantly 
increased levels of immune checkpoints, including CD86 and HAVCR2, in the PS high group (Fig. 8A).

Additionally, to explore the relationship between PS and immune cell abundance, we analyzed immune cell 
infiltration in GBM. The results demonstrated a significant negative correlation between PS and the degree 
of infiltration of activated DC cells (cor = -0.313, p = 0.005) and T cell CD4 naïve (cor = -0.269, p = 0.017). 
Furthermore, a significant positive correlation was observed between PS and the infiltration degree of 
macrophage M2 (cor = 0.289, p = 0.01), macrophage M1 (cor = 0.239, p = 0.036), and T cell CD4 resting memory 
(cor = 0.266, p = 0.019) (Fig. 8B). Furthermore, to explore the relationship between CD40LG and the immune 

Fig. 6.  Enrichment analysis of differential genes between high and low PS groups. (A) Gene set enrichment 
analysis in the KEGG gene set. (B) Gene set enrichment analysis in the Hallmark gene set. (C) Differential 
expression of chemokines between high and low PS groups. (*p < 0.05, **p < 0.01, ***p < 0.001).
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microenvironment, we utilized the CIBERSORT algorithm to analyze the proportions of immune cells in the high 
and low CD40LG expression groups. In the high-expression group, Macrophages M2 accounted for the highest 
proportion (38.68%), followed by Monocytes at 16.07%. Similarly, in the low-expression group, Macrophages 
M2 had the highest proportion (34.44%), followed by Monocytes (15.32%) (Fig. 8C). We also examined the 
differences in infiltration of various immune cell types between the high and low CD40LG expression groups. 
The results indicated that B cells naïve, T cells gamma delta, Macrophages M1, and Macrophages M2 had 
significantly higher infiltration in the high-expression group, whereas NK cells resting, Macrophages M0, Mast 
cells resting, and Neutrophils exhibited significantly higher infiltration in the low-expression group (Fig. 8D).

Fig. 7.  Identification of Hub genes in the BCR pathway by WGCNA network. (A) Scale independence 
and mean connectivity. (B) Clustering of module eigengenes. (C) Gene dendrogram and modules. (D) 
Relationships between module eigengenes and histopathological image feature. (E) The relationship between 
CD40LG and the 19 genes in the brown module. (F, G) GO and KEGG analysis of hub genes. (*p < 0.05, 
**p < 0.01, ***p < 0.001, ns no significance).
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Discussion
Glioblastoma, a highly aggressive and frequently diagnosed malignant primary brain tumor in adults19,20, 
is characterized by its invasive nature, rapid growth, and resistance to treatment21. CD40L, a member of the 
TNF superfamily (TNFSF), and its receptor CD40, are being extensively studied as promising targets for 
immunotherapy. Previous studies have demonstrated a high expression of CD40L in cancer is related to an 
increase in proiferation and poor prognosis22,23. Moreover, studies have found that high expression of CD40 
is associated with lower survival rates in glioma patients. Cell experiments have further demonstrated that 
knocking down CD40LG or using a CD40LG neutralizing antibody can reduce the invasiveness of GBM cells12.

Our findings conclusively demonstrate the upregulation of CD40LG in glioblastoma, which is correlated 
with a dismal prognosis and represents a risk factor for overall survival (OS) in patients with this disease. 
Consequently, we envision the utility of CD40LG as a predictive biomarker for patient prognosis. Nevertheless, 
the current clinical detection method for CD40LG is both time-consuming and labor-intensive, failing to 
provide a rapid and efficient means for its quantification.

Pathology serves as the gold standard for GBM diagnosis. Consequently, we employed H&E colored images 
to construct pathology models utilizing the SVM and LR algorithms. These models demonstrated favorable 
predictive capability for CD40LG expression levels. Given the routine use of H&E-stained images in clinical 
practice, our pathomics model holds significant potential for practical application. The rapid advancement of 
machine learning algorithms and advanced image analysis methodologies has fostered considerable promise 
for the application of artificial intelligence in the detection of histological features, particularly in predicting 
clinical outcomes24,25. High-throughput omics, including radiomics and pathomics, are progressively gaining 
traction in the field of precision medicine for automated diagnosis and prognosis prediction 26–28. For instance, 

Fig. 8.  Immune correlation analysis. (A) Differential analysis of immune checkpoint expression between 
high and low PS groups. (B) The correlation between the PS and the abundance of immune cells. (C) The 
proportions of immune cells in the high and low CD40LG expression groups. (D) The differences in infiltration 
of various immune cell types between the high and low CD40LG expression groups. (*p < 0.05, **p < 0.01, 
***p < 0.001).
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Amin Zadeh Shirazi et al. successfully employed a deep convolutional neural network approach to discern 
pathological features linked to survival in glioblastoma 29. Our research shares similarities with this study; 
however, we employed two algorithms to construct two distinct models, thereby further validating the stability 
and predictive performance of our model. Various methodologies have been employed in numerous studies 
to develop predictive models for the clinical outcomes of patients with glioma. Cui et al. demonstrated the 
potential of radiomics analysis in accurately predicting survival outcomes in individuals diagnosed with low-
grade glioma, reporting an AUC value of 0.709 30. Meanwhile, Yan et al. developed a deep learning feature based 
on diffusion tensor imaging (DTI) to forecast OS in individuals diagnosed with invasive glioma 31. Nonetheless, 
few studies have explored the use of pathomics and genomics in predicting the prognosis of GBM. Notably, 
our research stratified patients into high and low groups based on their PS, demonstrating the effectiveness of 
predicting CD40LG expression.

Most studies primarily focus on the model itself without considering the underlying molecular mechanisms 
associated with it. Consequently, we performed WGCNA and functional enrichment analysis on the differentially 
expressed genes between high and low PS groups. The results of the enrichment analysis were generally consistent 
with our expectations, with a main focus on the B cell receptor signaling pathway, chemokine signaling pathway, 
PI3K signaling pathway, and NF-κB pathway. This finding is also consistent with previous literature reports. 
Studies have demonstrated that the CD40/CD40L system acts as a co-stimulatory mechanism that enhances 
the immune response and can induce inflammation by upregulating adhesion molecules and promoting the 
synthesis of various cytokines and chemokines, including IL-1, TNF-α, IL-832. The transmission of a typical 
CD40/CD40L signal is facilitated by the recruitment of TRAF, followed by the activation of NF-κB. This process 
is further supported by additional signals, such as PI3K/AKT, MAPK, and JAK3/STAT33. We conducted an 
analysis of the relationship between PS and immune infiltration and found a significant association between PS 
and various immune cells, including DC cells, T cells CD4 naïve, Macrophages, T cells CD4 resting memory, 
and others. Our results are consistent with those of previous studies. The primary expression of CD40L occurs 
on activated T cells and platelets. Casamayor-Palleja et al. reported that following stimulation of T cells via the 
TCR and costimulatory ligands such as CD28, preformed CD40L is rapidly upregulated on the cell surface. This 
upregulation occurs within minutes and peaks after 6 h, followed by a gradual decrease in the surface expression 
of CD40L over the next 24 h34. CD40L interacts with CD40, which is present on various antigen-presenting 
cells (APCs) such as B cells, dendritic cells (DCs), and monocytes35. We used our pathohistological model to 
predict CD40LG expression, and our immune infiltration analyses indicated that PS was associated with the 
infiltration of certain immune cells, specifically DC cells. The studies indicate that DCs are essential components 
of the innate immune system, playing a critical role in coordinating antitumor responses. Specifically, their 
primary function is to initiate antitumor T cell responses by activating T cell receptors (TCRs)36. The interaction 
between CD40 and CD40L activates dendritic cells (DCs), allowing them to secrete the proinflammatory 
cytokine interleukin-12 (IL-12), which is critical in supporting CD4 + T cell helper responses and priming 
CD8 + cytotoxic T cells37–39. In vivo, temporary stimulation of the CD40 signaling pathway by soluble CD40 
ligand (sCD40L) has a suppressive effect on human breast cancer cells40, demonstrating the tumor-suppressing 
potential of the CD40/CD40L interaction in various types of tumors. This justifies the use of CD40L + CAR T 
cells in treating various types of cancer. Research has shown that using a mouse model of immunocompetent 
lymphoma, CD40L + CAR T cells can activate dendritic cells (DCs) in vivo, leading to the recruitment of non-
CAR T cells capable of recognizing tumor cells, ultimately resulting in a more potent and effective anti-tumor 
response41.

Despite the potential anti-tumor effect of the interaction between CD40L and CD40, it remains unclear why 
CD40LG, which is highly expressed in GBM, does not exert the same effect and is associated with a poor tumor 
prognosis. Researches have shown that tumor-associated macrophages play a critical role in tumor progression, 
cancer immunosuppression, and treatment resistance42–44. Tumor-associated macrophages constitute the 
primary population of non-tumor cells in GBM, making up half of the cells in GBM tumors45,46. This indicates 
that tumor-associated macrophages, particularly the M2 macrophages, are a major source of immunosuppression 
in GBM.

Our immune infiltration results further support this finding, showing that the proportion of M2 macrophage 
infiltration is significantly higher in the CD40LG high-expression group compared to the CD40LG low-
expression group.

Previous studies have demonstrated the effectiveness of chimeric antigen receptor T (CAR-T) cell therapy 
in treating GBM. However, when CAR-T cells reach the tumor, they face numerous challenges within the 
microenvironment, including tumor-derived soluble substances and cytokines, immunosuppressive immune 
cells, as well as physical and metabolic disturbances47,48. The cytokine network within the glioblastoma (GBM) 
microenvironment includes molecules such as prostaglandin E2, IL-6, IL-10, and TGF-β, which have been 
shown to inhibit T cell proliferation and the development of effector responses49. In comparison to tumors 
collected before therapy, the expression levels of these immunosuppressive factors were consistently higher in 
surgical samples obtained from patients who had received EGFRvIII CAR-T cell infusions50. Regulatory T cells 
(Tregs) make up approximately 30% of the infiltrating lymphocytes in GBM51. Through their role in suppressing 
T cell responses, these Tregs pose a significant challenge to the development of immunotherapeutic strategies 
for GBM. Hence, we infer that these immunosuppressive factors in the GBM microenvironment hinder the 
function of CD40L, thereby impeding its tumor-suppressive effect. The efficacy of CD40L + CAR-T cell therapy 
in treating GBM remains unexplored and warrants further investigation.

Our study demonstrates that CD40LG is associated with a poor prognosis in GBM patients. Additionally, we 
developed a pathomics model to assess CD40LG. This model can effectively predict the expression of CD40LG 
and consequently forecast the prognosis of GBM patients. Simultaneously predicting the prognosis of GBM 
patients from dual perspectives enhances prediction accuracy, timeliness, and alleviates the economic burden 
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on patients. Concurrently, analysis of the intrinsic molecular mechanisms within pathomics revealed that 
differentially expressed molecules were predominantly enriched in immune-related pathways and correlated 
with immune infiltration in GBM. Our findings are derived from bioinformatics and pathomics analyses, 
requiring validation through additional experimental research.

Data availability
The datasets analyzed during the current study are available in the Genotype-Tissue Expression (https://com-
monfund.nih.gov/GTEx) and The Cancer Genome Atlas (http://cancergenome.nih.gov) repositories.
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