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The human claustrum tracks slow waves
during sleep

Layton Lamsam1, Brett Gu1, Mingli Liang1, George Sun 1, Kamren J. Khan1,
Kevin N. Sheth 1,2, Lawrence J. Hirsch2,3, Christopher Pittenger 4,5,6,7,8,
Alfred P. Kaye4,5,9, John H. Krystal 4,5,6,9,10 & Eyiyemisi C. Damisah 1,5,8,10

Slow waves are a distinguishing feature of non-rapid-eye-movement (NREM)
sleep, an evolutionarily conserved process critical for brain function. Non-
human studies suggest that the claustrum, a small subcortical nucleus, coor-
dinates slow waves. We show that, in contrast to neurons from other brain
regions, claustrum neurons in the human brain increase their spiking activity
and track slowwaves duringNREMsleep, suggesting that the claustrumplays a
role in coordinating human sleep architecture.

Slow waves are low-frequency (0.3–1.5Hz) electrographic brain oscil-
lations present across the N2 and N3 stages of non-rapid-eye-
movement (NREM) sleep and are a defining feature of the deeper
N3 stage (known as slow-wave sleep, SWS)1–4. NREM sleep is important
for brain homeostasis and memory consolidation, and its disruption
has been linked to a variety of neurocognitive and sleep disorders5,6. At
the single neuron level, slow waves are characterized by alternating
periods of synchronous silence (hyperpolarized DOWN states) and
firing (depolarized UP states) in the cortex7. This synchrony is intrin-
sically generated in the cortex but highly regulated by a complex
network of subcortical regions, including the thalamus8–11. Despite
great interest in the contribution of slow waves to normal sleep phy-
siology, the source of their regulation is poorly understood in
humans.1,2

The claustrum is an evolutionarily conserved subcortical sheet of
neurons with a high density of reciprocal connections with the
cortex12–14. Its ability tomodulatemany cortical regions simultaneously
has motivated inquiry into its contribution to diverse functions,
including perception, salience detection, and memory15–21. Recent
work in reptiles and rodents has shown that the claustrum coordinates
slow waves in the cortex during sleep20,22–24. Specifically, the claustrum
is thought to regulate slow waves by activating a network of cortical
parvalbumin-expressing interneurons, suppressing activity across
broad regions of the cortex through feedforward inhibition16,20,21. On a
longer timescale, claustrum neurons in rodents increase spiking

activity during NREM sleep compared to rapid-eye-movement (REM)
sleep or wakeful states24. While this function of the claustrum appears
to be conserved across reptiles and rodents, it has not yet been
examined in humans.

We, therefore, sought to examine the relationship of the human
claustrum with slow waves during sleep. We recorded overnight sleep
sessions from epilepsy patients who underwent intracranial electrode
placement into the middle insula for seizure localization, which gave
us the rare opportunity to sample single units from the human claus-
trum. Using this paradigm, we show that claustrum neurons increase
spiking activity during NREM sleep and periods of slow waves while
other brain regions behave in an opposite manner. We conclude that
the claustrum plays an important role in the regulatory network that
coordinates slow waves during NREM sleep in humans.

Results
Microwire sampling of claustrum single units in humans
The small axial cross-section of the claustrum and its proximity to the
insula and striatum have made human lesion studies difficult to inter-
pret, as lesions frequently entail damage to adjacent structures25.
Similarly, electrical stimulation using depth electrodes may not be
confined to the claustrum alone, limiting its ability to define claustrum
function26,27.We inserted40μmmicrowires into the claustrum through
insular electrodes placed for clinical seizure localization in two human
subjects, allowing us to overcome these technical challenges. Accurate
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placement was verified by fusion of pre-operative and post-operative
imaging, which projected microwire locations onto subject-specific
anatomy (Fig. 1a–c, Supplementary Table 1, Supplementary Figs. 1, 2).

After validating microwire placement, we tracked claustrum sin-
gle unit activity during sleep using established spike-sorting methods
(Supplementary Fig. 3). Over four nights and33 hof sleep,we recorded
49 single units in the claustrum (CLA) along with 73 units in cortical
(anterior cingulate cortex, ACC) and subcortical (amygdala, AMY)
regions (Supplementary Tables 2, 3). Simultaneously, we recorded
slow-wave activity (SWA, 0.3–4Hz) in 150 intracranial macroelectrode
contacts across 77 unique brain regions (Fig. 1d, e, Supplementary
Table 4, Supplementary Fig. 4). SWA was defined as the z-score of the
log-normalized 0.3–4Hz band power. To identify morphological slow
waves (SWs) for complementary analyses, we adapted an established
slow-wavedetection algorithm (Fig. 1f, SupplementaryFig. 4). Briefly, it
applies a 0.3–1.5Hz bandpass filter before pairing negative and posi-
tive peaks to produce candidate SWs, which are then subjected to
numerous quality control parameters before acceptance.

Neurons typically decrease spiking activity during NREM sleep
compared to REM sleep or wakefulness (except for neurons with very
low firing rates <1 Hz)28–30. However, studies in mice have found the
opposite pattern in the claustrum20,24.We, therefore, hypothesized that
single units in the human CLA would increase spiking activity during
periods of SWA in NREM sleep and that neurons in other brain regions
(the ACC and AMY) would concomitantly decrease spiking activity.

Claustrum single units track slow-wave activity over hours
of sleep
On a timescale of hours, we observed that CLA neurons increase their
spiking activity during NREM sleep. This was in contrast to ACC and
AMY neurons, which decreased their spiking activity over the same
periods (Fig. 2a, Supplementary Fig. 5). On a timescale of minutes, this
pattern was most prominent during transitions out of NREM sleep, in

which CLA spiking activity decreased and AMY population activity
increased (Fig. 2b, Supplementary Fig. 6). These initial qualitative
findings were consistent with observations of claustrum activity,
relative to cortical activity, during NREM sleep in rodents20,24.

Claustrum single units increase spiking with slow-wave activity
(SWA) and non-rapid-eye-movement (NREM) sleep
We confirmed the initial observation that CLA neurons increase their
spiking activity during NREM sleep by inspecting CLA units individu-
ally (Fig. 3a, Supplementary Fig. 7). First, we divided sleep recordings
into epochs classified by indirect measures of SWs: sleep stage and
SWA. We found that a majority (40/49) of CLA neurons increased
spiking activity during NREM sleep relative to wakefulness and REM
sleep (combined intoW/REM). This was significantly different than the
pattern seen in pooled control AMY and ACC units (χ2:
pFDR = 4.5 × 10−8). A similar pattern was observed when we compared
periods of high SWA to periods of low SWA (χ2: pFDR = 3.6 × 10−5)
(Fig. 3b). Cross-correlograms between single units were generated to
assess correlated spiking behavior across regions (Fig. 3c). However,
while strong cross-correlation existed between some units in the same
region, especially in the amygdala, no significant interactions across
regions were found (Fig. 3d).

Claustrum single units positively correlate with measures of
slow-wave sleep (SWS)
Based on these observations, we quantified the heterogeneity of
responses among neurons: Single units were classified into positive-,
negative-, and non-responding units based on Spearman’s ρ correla-
tions with SWA and SWs in ipsilateral brain regions (Fig. 4a, b, Sup-
plementary Fig. 8). This analysis showed that 63% of CLA single units
were positive responders compared to 8% of units in other regions
(17% ACC, 5% AMY); conversely, only 14% of CLA single units were
negative responders compared to 62% of units in other regions (33%

Fig. 1 | Claustrum single units sampled with microwires. a Model of a
Behnke–Fried depth electrode with protruding microwires for sampling the
claustrum (top). Location of right claustrum microwires (blue dot) in Subject A
on the MNI152 template (bottom). b Axial, coronal, and sagittal T1 MR images of
Subject A with corresponding mirrored MNI152 templates in the axial and cor-
onal views (top row) marking the location of right claustrum microwires and
accompanied by magnified inserts and a sagittal MNI152 template (bottom row).
c Locations of distal microwires when superimposed onto MNI152 models of the

right and left claustrum, respectively (left top and bottom). Sagittal T1 MR image
of Subject A (top right) marking the location of the right claustrum microwires.
d Electrode locations for all subjects superimposed onto the N27 template in
axial, coronal, and sagittal views (left, middle, right). e Power spectral density of
NREM and W/REM sleep across all channels in Subject B, Night 03. Delta and
sigma frequency bands (indicating SWA and sleep spindles, respectively) are
shaded. f Average waveforms of detected slow waves in each channel of Subject
B, Night 03.
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ACC, 71% AMY) (Fig. 4c). The assigned response types were further
validated by assessing population spiking behavior across sleep stages
and deciles of SWA stratified by unit response type (Fig. 4d,e). Thus,
the majority of CLA neurons displayed a preference for spiking during
periods of SWs compared to neurons in other regions.

Claustrum population activity predicts slow-wave activity
To compare the population activities of the CLA, ACC, and AMY across
full sleep recordings, we used uniform manifold approximation and
projection (UMAP) to collapse single unit activity across time31. Single
units were segregated into clusters in native space using hierarchical
density-based spatial clustering of applications with noise (HDBSCAN)
prior toUMAP32. Clusters positively correlatedwith SWAwere enriched
in CLA units, while negatively correlated with SWA were enriched in
ACC and AMY units (Fig. 5a, Supplementary Fig. 9). We then collapsed

single unit activity intopopulation activity using the temporal potential
of heat-diffusion for affinity-based transition embedding (T-PHATE),
which is a dimensionality reduction technique designed to preserve
time33. These new dimensions were used as model features for the
prediction of sleep stage and SWA. The T-PHATE population activity
fromall regions, includingCLA population activity, was highly accurate
in classification of sleep stage (mean AUC: CLA =0.97, AMY=0.96,
ACC=0.95) and regression of SWA (mean RMSE: CLA =0.29, AMY=
0.28, ACC=0.30), reflecting that population activity in all sampled
regions undergoes major changes during SWS, even though such
changes may be opposite in direction (Fig. 5b–d).

Claustrum single units phase-lock with the slow-wave band
We then examined the relationship between the CLA activity and the
slow-wave band (SWB, 0.3–1.5 Hz), which more narrowly captures

Fig. 2 | Claustrum single units and slow-wave activity tracking over hours
of sleep. a Sleep recording from Subject B, Night 03. Hypnogram is colored by
behavioral state observed on avEEG: red indicates wakefulness and blue indicates
behavioral quiescence (first row). Power spectrogram from the C4 scalp electrode
(second row). Illustrative power spectrogram from rightmiddle frontal gyrus (third
row). Binned z-score of slow-wave activity from four illustrative regions: middle
frontal gyrus, amygdala, middle temporal gyrus, and orbitofrontal cortex (fourth
row). Binned z-score of the firing rate for claustrum (blue), anterior cingulate cortex
(green), and amygdala (orange) single units (fifth row). First principal component

of thefiring rate for single units in the above regions (sixth row).bTransition out of
NREM sleep in Subject A. Power spectrogram of the left middle frontal electrode
(first row). z-scored population firing rates in the claustrum (blue) and amygdala
(orange) with black triangles indicating the transition period (second row). Mag-
nified windows before and after sleep transition (bottom left and bottom right
panels) showing SWA in the prefrontal cortex, insula, temporal lobe, and parietal
lobe (first rows of bottom panels) and raster plots of spiking activity for the
claustrum (second rows of bottom panels) and amygdala (third rows of bottom
panels).
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morphological slow waves, during NREM sleep, using spike-phase
coupling (SPC) (Fig. 6a–c). The strength of SPC, as measured by the
distributions of mean resultant lengths (MRLs, a measure of the con-
centration of phase angles), increased fromW/REM to NREM (Fig. 6d).
The MRLis further increased when comparing NREM sleep with high
delta-band power (DREM) to all NREM sleep to periods of NREM sleep
with high delta-band power (DREM) (Fig. 6e). The strength of coupling
between AMY single units and AMY SWB phase was designated as the
positive control given that it was the only region with simultaneous
sampling of single units andmacroelectrodefield potentials (Fig. 6a, f).
Strong SPC relationships in CLA clustered around phases of −π/2 and
π/2; a similar effect was seen in the AMY and ACC, although less
markedly (Fig. 6f). Significant SPC of CLA units with SWB phase was
present in nearly all sampled macroelectrode regions (Fig. 6g, Sup-
plementary Table 5)31.

Pyramidal neurons positively correlate with slow-wave activity
in the human claustrum
Finally, we inferred the cell types of our 122 single neurons using
established metrics (Fig. 7a–c)34. Most CLA units were classified as
pyramidal cells (84%) with a similar proportion in control region units

(AMY 89%, ACC 83%); the remaining cells were classified as inter-
neurons or did not meet criteria for either cell type. Notably, nearly all
CLA units classified as pyramidal cells exhibited increased spiking
activity during NREM sleep (p = 9.3 × 10−8), whereas all CLA units clas-
sified as interneurons and about half of CLA units classified as
unknown displayed a decrease in spiking activity during NREM
sleep (Fig. 7d).

Discussion
We recorded single neurons in the human claustrum. In contrast to
neurons in other brain regions, CLA neuronal activity tracked SWA in
NREM sleep, at multiple timescales and over multiple nights of sleep:
Spiking activity increased with SWA at NREM sleep onset, maintained
heightened levels throughoutNREMsleepperiods, anddecreasedwith
the transition to REM sleep or wakefulness. These correlations were
robust for SWAmeasured in many brain regions, including the frontal
lobe, which is known to have strong connections with the human
claustrum14,20,35. We also found that CLA units displayed broadly sig-
nificant phase locking with the cortical SWB during NREM sleep, which
is consistentwith recent animalfindings thatCLAneuronal stimulation
aligns SWs across the cortex24. CLA neurons were mostly classified as

Fig. 3 | Claustrum single units increase spiking with slow-wave activity (SWA)
and non-rapid-eye-movement (NREM) sleep. a Average waveforms of three
claustrum units with inset firing rate and inter-spike interval violations (left panels)
with corresponding mean z-scored firing rate (black panels) aligned to the illus-
trative z-scored slow-wave activity (SWA) in the right orbitofrontal cortex from
Subject A (blue panels) (right panels). Standard error for each 5-min interval (30
epochs of 10 s each) is indicated by vertical bars.b Scatterplots of log2firing rate of
claustrum (blue), amygdala (orange), and anterior cingulate (green) units stratified
by sleep stage (not NREM sleep vs. NREM sleep, left) and SWA (25th vs. 75th

percentiles, middle). Crosses indicate population averages with 95% confidence
intervals. Units in the lower triangle favor SWs. Inset bar plots indicate the number
of units in the upper and lower triangles, and their sum indicates the sample size.
c Example cross-correlograms during NREM sleep between single unit pairs with
p <0.05 prior to FDR correction on threshold-free cluster enhancement (TFCE)
permutation testing (except for ACC–ACC).d Scatterplots stratified by region pairs
showing the maximum TFCE value of each unit pair’s cross-correlogram (in log10)
and the time lagatwhich it occurred; red indicates unit pairswithp <0.05 after FDR
correction on TFCE permutation testing.

Article https://doi.org/10.1038/s41467-024-53477-x

Nature Communications |         (2024) 15:8964 4

www.nature.com/naturecommunications


pyramidal cells; this result may be consistent with the theory of CLA
feedforward inhibition, as CLA pyramidal cells are connected to the
SW-generating cortex in animals16,20,21. We believe that our results
support previouswork in animals and argue for a conserved role of the
claustrum in the coordination of human SWs.

A broader question remains: how is the claustrum integrated into
the known circuitry of NREM sleep regulation? Many subcortical nuclei
participate in the NREM regulatory network36. Specifically, the thalamus
has been shown to orchestrate neocortical slow waves during NREM

sleep, via projections to parvalbumin-positive interneurons37,38. It is
possible that the claustrumplays a complementary role in the regulation
of SWS by coordinating SWs across brain regions via trans-claustral
circuits39. For example, slow waves in humans have been shown to
predominantly originate from the anterior-inferior regions of the brain
(e.g. prefrontal cortex, temporal lobe, insula) andpropagate in a broadly
posterior-superior direction40,41. Trans-claustral circuits may be a
mechanism that facilitates this propagation. Alternatively, the claustrum
may serve to suppress the cortex through slow-wave activity in NREM

Fig. 4 | Claustrum single units positively correlate with measures of slow-wave
sleep (SWS). a Heatmap of Spearman’s ρ correlations between units (rows) and
SWA across channels (columns) for Subject A. Colors indicate unit region.
Highlighted lobes indicate channel locations. b Histogram of Spearman’s ρ
values for unit-channel pairs (122 units and 64 unique channels across four
recordings) stratified by unit response type and unit region. Colors indicate unit
region. c Bar plot showing distribution of single units across all subjects with
positive (red), negative (blue), or no correlation (gray) with ipsilateral SWA and
SWs. d Paired dot plots of z-scored firing rates for units (n = 122) in WREM versus

NREM sleep stratified by unit response type and unit region; black horizontal
lines indicate group medians, and p-values are derived from FDR-corrected
Wilcoxon signed-rank tests (two-sided). Colors indicate unit region. e Decile
scatterplots stratified by unit response type and unit region show the average z-
scored firing rate for each decile of SWA. Deciles are plotted separately for each
of four sleep recordings and are derived from 10 s epochs (underlying sample
size varies based on recording length and the number of units in each response-
region subset); vertical lines indicate the standard error; fitted lines and R2 values
are based on linear models. Colors indicate unit region.
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sleep—as opposed to thalamic sleep spindles that may be associated
with excitatory post-synaptic potentials, faster cortical frequencies, and
cortical sleep spindles42,43. Recent evidence suggests that the claustrum
is also involved in the regulation of other sleep stages, such as REM23.
This, however, was outside the scope of the current work.

Our study has several limitations. First, we studied claustrum
activity in subjects with epilepsy undergoing inpatient seizure mon-
itoring, which may reduce the generalizability of our results to the
broader population. Furthermore, while emerging evidence suggests
that the CLA may be organized into functional modules, all of our
microwires sampled the mid-claustrum, as dictated by clinical
planning44,45. This prevented us from generalizing our results to the
entire claustrum. Additionally, claustrum subregions are known to
have anatomically distinct efferent projections. However, our analyses
did not directly identify the efferent targets of our sampled
neurons46,47. Thus, we considered all possible efferent connections,
reducing the specificity of our claims. Future studies combining high-
resolution tractography to trace efferent claustrum projections to the
cortex combined with higher-density macroelectrode intracranial
sampling may overcome this limitation and allow for the testing of the

hypothesis that trans-claustral circuits facilitate SW propagation
across the cortex. Other technical limitations of our study include the
unbalanced contribution of subjects to the pool of single units and the
possibility that someunitsmaybe counted across sleep sessions if they
persist across days of recording.

Despite these limitations, we found that a population of human
claustrum neurons increased their activity with SWs during NREM
sleep. This relationship was consistent across multiple timescales and
several measures of SWs and is in accordance with animal literature.
Taken together, our observations build on existing causal studies in
animals to converge on the theory that the human claustrum plays a
key role in coordinating SWs during NREM sleep. These results
advance our understanding of the normal physiology of human NREM
sleep and suggest that claustrum disruption may lead to sleep-related
neuropathology.

Methods
Participants
Two right-hand dominant female subjects (Subject A was 47 years old;
Subject B was 27 years old) with medication-refractory epilepsy

Fig. 5 | Claustrum population activity predicts slow-wave activity (SWA).
a Scatterplot of UMAP dimensions for Subject A’s single-unit spiking activity
demonstrating self-segregation of single units into two clusters (and one unclus-
tered group) indicated by shapes (left). Global slow-wave activity (middle, top
panel) with aligned z-scored population firing rates for UMAP clusters with frac-
tions indicating the proportion of claustrum units in each cluster (middle). Scat-
terplot of two UMAP dimensions for the same units after dimensionality reduction
of correlation with slow wave presence across channels (right). b Scatterplot dis-
playing the area under the curve (AUC) for the receiver operating characteristic
(ROC) curve and the precision-recall (PR) curve for support vector machine (SVM)
models classifying sleep stage using dimensionally reduced population activity

from single unit groups stratified by microwire region, response type, and sleep
recording (left panel). The same results are shown after averaging across sleep
recordings (right panel). Colors indicate unit region, and shapes indicate unit
response type. c Scatterplot displaying the root mean square error (RMSE) and
mean absolute error (MAE) of SVM models regressing global SWA using dimen-
sionally reduced population activity from single unit groups stratified bymicrowire
region, response type, and sleep recording (left panel). The same results are shown
after averaging across sleep recordings (right panel). Colors indicate unit region,
and shapes indicate unit response type. d Decile-wise calibration plots for the
models in (c) stratified by response type and unit region. Values are arbitrary units
(z-scored log10 of global SWA power). Colors indicate unit region.
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undergoing intracranial EEG (icEEG) electrode implantation for clinical
seizure localization were enrolled in the study after providing
informed consent. Plans for the icEEG studies were made exclusively
for clinical purposes; both subjects had macroelectrodes placed into
the middle insula, and microwires extending from those electrodes
sampled the claustrum (bilaterally in Subject A, left in Subject B). Both

subjects also remained on their home anti-seizure medications for the
duration of the study, and sleep sessionswere recorded in the epilepsy
monitoring unit. One sleep session was recorded for Subject A (2 h),
and three sleep sessions were recorded for Subject B (9.7, 10.6, and
10.4 h). The study was approved by the Institutional Review Board at
Yale University.

Fig. 6 | Claustrumsingle unitsphase-lockwith the slow-waveband. aRaster plot
demonstrating phase-locking of a claustrum unit with slow waves (SW) in an illus-
trative orbitofrontal channel (top) compared to phase-locking in an amygdala unit
with its adjacent amygdala channel (bottom) in Subject B, Night 03. The average
slow-wave waveforms are superimposed. b Phase histogram for the same
claustrum-orbitofrontal pair (top); the amplitude of an idealized slowwave for each
phase is shown (bottom). c Polar plot for the same claustrum-orbitofrontal pair
indicating the preferred phase angle for every unit-orbitofrontal pair with a phase
distribution significantly different from uniform. Color indicates unit region, and
arrows indicate the average preferred phase angle among all pairs of the same unit
region. d Histograms of mean resultant lengths (MRLs) for unit-channel pairs
stratified by unit region and sleep stage. High delta NREM (DREM) indicates NREM

sleep ≥75th percentile of NREM SWA power. Colors indicate unit region.
e Heatmaps of the phases at which MRLs occurred for each unit-channel pair,
stratified by unit region and sleep stage. f Scatterplot of phases at which MRLs
occurred during DREM sleep. Only pairs with a significant relationship in DREM
sleep but not in WREM sleep are displayed. The MRLs have been normalized to the
meanMRLofAMY-AMYpairs, which is indicated by thehorizontal black line.Colors
indicate unit region. gRegion-wise preferred phase angles for all unit-channel pairs
with a phase distribution significantlydifferent fromuniform inDREMsleepbut not
W/REMsleep (combined across all subjects). Colors indicate unit region. Diamonds
indicate the average preferred phase angles for each unit region. See Supplemen-
tary Table 5 for abbreviations.
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Electrophysiology system
Subdermal scalp electrodes were placed according to the
10–20 system. Spencer Probe and Behnke-Fried depth electrodes
(Ad-TechMedical Instrument Corp., Oak Creek,WI, USA) were placed
using a ROSA surgical robot (Zimmer Biomet, Warsaw, IN, USA) to
bilaterally sample field potentials from numerous brain regions48.
Scalp and macroelectrode data were recorded with a NeuroPort
Neural Signal Processor (Blackrock Neurotech, Salt Lake City, UT,
USA) at a sampling rate of 2048Hz with a 0.3–500Hz hardware
bandpass filter. Extracellular microwire recordings were sampled at
30 kHz with a 250Hz–7.5 kHz bandpass filter in Subject A and a
0.3Hz–7.5 kHz bandpass filter in Subject B. The online reference
electrodes were screwed into the outer cortex of the frontal bone,
and left orbitofrontal contacts were selected as the ground electro-
des in both subjects.

Electrode localization
Pre-operative axial non-contrast T1-weighted magnetic resonance
(MR) sequences with 1mm slices were co-registered with post-
operative axial non-contrast CT scans with 0.625mm slices using
Statistical ParametricMapping (SPM) 1249.Macro- andmicroelectrodes
were automatically localized on the fused image and manually adjus-
ted using LeGUI software (Supplementary Fig. 1)50. Gray and white
matter were automatically segmented, and macroelectrodes in white
matter were later excluded from analysis after re-referencing. The
fused image and electrode positions were warped into Montreal
Neurological Institute (MNI) 152 space for the assignmentof electrodes
to the nearest region of interest (ROI) in the Yale Brain Atlas (YBA)51.
Electrode coordinates were then transformed into MNI305 and then
tkrRAS space for visualization in MRIcroGL and the threeBrain
package52,53. A total of 76 contacts in Subject A and 74 contacts in

Subject B were selected for analysis (Supplementary Table 4). Per-
pendicular distances from the tips of the claustrum microwires to the
axial centerline of the claustrumwere calculated toquantify placement
accuracy (Supplementary Table 1). Claustrum microwire locations
were projected onto a three-dimensional claustrum model derived
from segmentation of the MNI 152 template using an algorithm that
has been previously described54. The position of microwires in the
claustrum was also confirmed using Lead-DBS, which uses Advanced
Normalization Tools for CT-MRI co-registration and transformation
into MNI 152 space prior to manual localization of the microwires
(Supplementary Fig. 2)55,56.

Pre-processing
The Blackrock Neural Processing Matlab Kit (NPMK) was used to
concatenate data and repair segments of packet loss (https://github.
com/BlackrockNeurotech/NPMK). Data were then cropped to sleep
intervals, notch filtered for 60Hz electrical line noise (and its harmo-
nics), lowpass filtered at 128Hz, and decimated to 256Hz using the
MNE software library57. Subdermal scalp and intracranial macroelec-
trodes were separately re-referenced to the common average refer-
ence (CAR) for their electrode type.

Sleep staging
Sleep recordings were divided into 30-second epochs, and a pre-
viously validated algorithm with integral artifact rejection was used to
automatically classify sleep stages based on scalp EEG (C4 in both
subjects)58. Automatic sleep staging was internally validated using
manual sleep stage classification by a board-certified neurologist.
Sleep staging yielded 65min of N2/N3 sleep in Subject A and 240, 319,
and 321min of N2/N3 sleep in Subject B’s three recordings (Supple-
mentary Table 3).

Fig. 7 | Claustrum units that increase spiking with slow-wave activity are
enriched with pyramidal cells. a–c Scatterplots of firing rate (log2, Hz) versus
a burst index (au), b trough-to-peak latency (negative-spiking units only, ms), and
c full-width at half-maximum (ms) stratified by unit response type. Colors indicate
unit region and shapes indicate cell type classification. d Paired dot plots of z-

scored firing rates for units in WREM versus NREM sleep stratified by cell type
classification and unit region; black horizontal lines indicate groupmedians, and p-
values are derived from FDR-corrected Wilcoxon signed-rank tests (two-sided).
Colors indicate unit region.
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Artifact rejection
For automatic intracranial macroelectrode channel rejection, the raw
time series was converted into a low-frequency time series (0–50Hz),
high-frequency timeseries (50–120Hz), andfirst derivative timeseries.
The local outlier factor (LOF) algorithm (10 neighbors) was then
computed for each time series, and any channel with a LOF score less
than −2 for any time series was rejected. The power spectral density
across the entire sleep recording was computed for every channel
usingWelch’smethod, andoutliersweremanually identified and cross-
referenced to confirm that all channels contaminated by artifact had
been removed. Next, interictal epileptiform discharges (IEDs) were
detected using a previously developed algorithm, and time intervals
within one second of an IED were excluded from subsequent slow-
wave detection in a channel-wise manner (https://github.com/Kleen-
Lab/Linelength-spike-detector-PYTHON). A total of 83, 796, 1407, and
1130 IEDs were detected in at least one channel across the four sleep
recordings of 2, 9.7, 10.6, and 10.4 h, respectively. Finally, sleep inter-
vals classified asN2orN3 sleepweredivided into 3-s epochs for further
artifact rejection. Numerous features were extracted for each epoch
(mean, variance, standard deviation, peak-to-peak amplitude, skew-
ness, kurtosis, root-mean-squared value, quantile, zero crossings,
Hurst exponent, band-wise average power for eight frequency bands
covering 0.5–128Hz, and slope of the power spectral density)59. The
LOF score was then computed on the extracted features for each
epoch in a channel-wise manner, and epochs with a LOF score of less
than −2 in more than three channels were excluded from slow-wave
detection (with an additional one-second interval before and after the
epoch time interval).

Audiovisual review
Audiovisual recordings of candidate sleep sessions were manually
reviewed at five-minute intervals on a Natus Neuroworks clinical EEG
system (Natus Medical Inc., Middleton, WI, USA). Behavioral state was
classified as either wakeful or quiescent, and these results were
manually compared to the hypnogram generated by the sleep staging
algorithm for each candidate sleep session.

Time–frequency processing
Time-frequency power spectrograms were generated with the Morlet
wavelet transform (cycles = 6) for 1–25Hz and log-ratio normalized by
frequency. Spectrograms for whole-sleep recordings were averaged
into 30-s time bins and smoothed with a Gaussian window. Slow-wave
activity (SWA) was extracted from the envelope of the Hilbert Trans-
form on the band-passed time series (0.3–4Hz). Sleep transitions were
identified via manual review of whole-recording intracranial
spectrograms.

Slow-wave detection
A previously validated algorithm for slow-wave detection on scalp EEG
wasadapted for use on intracranial EEG58. Only artifact-free intracranial
macroelectrode contacts were selected for use. By default, data is
0.3–1.5 Hz bandpass filtered, both negative and positive peaks are
labeled and sequentially paired, feature thresholding is applied, and
outliers are removed using the Isolation Forest algorithm. For adap-
tation to icEEG, raw time series were transformed into channel-wise
robust z-scores (rZS) before slow-wave detection. Feature thresholds
were set for the duration of negative deflection (0.3–1.5 s), duration of
positive deflection (0.1–1.5 s), negative peak amplitude (>1 rZS), posi-
tive peak amplitude (>1 rZS), and peak-to-peak amplitude (>4 rZS).
Channels with <3 detected slowwaves perminute across time intervals
classified as N2 or N3 sleep were excluded from the analysis. After
exclusion, we detected a median of 8.0 SWs per contact per minute of
N2/3 sleep in Subject A and 6.3, 7.0, and 6.8 in the three Subject B
recordings.

Spike sorting
The Combinato algorithm was used to detect spikes, reject artifacts,
and cluster spikes into units using a validated superparamagnetic
clustering algorithm (maximum cluster distance for grouping = 2.5,
minimum spikes for cluster selection = 25)60. Candidate units were
manually reviewed for artifacts and split or merged as appropriate. In
addition to the quality control steps in Combinato, unit stability was
ensured throughout the recording sessions by assessment of the
cumulative spike distribution and five metrics of waveform stability
calculated with randomly sampled spikes (n = 1000) from every single
unit, including the L-ratio and the coefficients of variation of the
maximum amplitude, full-width half-maximum, the area under the
curve, and Euclidean distance from the mean waveform (Supplemen-
tary Fig. 3). Candidate units with an average firing rate of <1 Hz or an
inter-spike interval <3ms in more than 5% of spikes were excluded
from the analysis. Spike sorting yielded 49 claustrum single units (37
left, 12 right), 18 anterior cingulate single units (8 left, 10 right), and 55
amygdala single units (4 left, 51 right) across all recordings (Supple-
mentary Table 2).

Cross-correlation
Raw cross-correlograms (21 bins, 5ms bin width) were computed for
the spike trains of all possible pairs of single units (excluding unit pairs
from the same region) during NREM sleep. For each raw cross-corre-
logram, surrogate cross-correlograms (n = 1000) were computed by
jittering spike times (20ms, uniform random distribution) in the spike
train of the second unit in each pair61,62. The means and standard
deviations of the surrogate cross-correlogram bins were then used to
transform the raw cross-correlograms into z-scored cross-correlograms
in a bin-wise fashion. The z-scored cross-correlograms then underwent
a threshold-free cluster enhancement (TFCE) procedure to produce a
TFCE-valued cross-correlogram63. Surrogates were generated by ran-
domly shuffling the z-scored cross-correlogram bins and then per-
forming the TFCE procedure (n = 1000). The maximum bin values of
the TFCE-valued cross-correlogram and its surrogates were extracted
(the lag time of the maximum bin value of the TFCE-valued cross-
correlogram was also extracted), and the p-value for each unit pair was
defined as the percent of maximum surrogate TFCE bin values greater
than the true TFCE bin value. The p-values were corrected for the false
discovery rate (FDR) using the Benjamini–Hochberg method.

SW measures
Data were divided into 10-s epochs, and for each epoch, three SW
measures were calculated: sleep stage (assigned based on 30-s epochs
from sleep staging), z-score of the average log-normalized delta power
(SWA), and slow-wave presence (percent of the epoch that a slowwave
was present). Adjacent slow waves within one second were merged
when calculating slow-wave presence. For each SW measure scatter-
plot, the χ2 testwas used to compare the proportion of CLAunits in the
upper and lower triangles of the scatterplot to those of other regions
(ACC and AMY).

Unit responsiveness
For each unit, the average firing rate was separately compared epoch-
wise to each of the three SW measures using a Spearman’s ρ correla-
tion; this comparison was channel-wise in the case of SWA and SW
presence. Spearman’s ρ correlation p-values were FDR-corrected using
the Benjamini–Hochberg method. Units were defined as positive
responders if they had a positive Spearman’s ρ with FDR-corrected p-
values < 0.01 across at least half of the ipsilateral intracranial channels
for both SWA and SW presence. Negative responders were defined
conversely, and units failing to meet either criterion were defined as
non-responders. Two auxiliary analyses were performed for the vali-
dation of unit responsiveness. First, FDR-corrected paired Wilcoxon
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signed-rank tests were used to assess differences in z-scored firing rate
between periods ofW/REM sleep and periods of NREM sleep for single
units after stratification by unit responsiveness and microelectrode
region. Second, sleep recordings were divided into deciles of nor-
malized global SWA, and the average z-scored firing rate for each
stratum was calculated per decile. A linear regression was then fit with
normalized global SWA as the dependent variable and z-scored firing
rate as the independent variable, and the R2 values were compared
between strata.

Population modeling
Population modeling of unit spiking was undertaken for the classifi-
cation of sleep stage (NREM versus non-NREM) and regression of
global SWA power, respectively. Features were extracted from 10-s
epochs of single-unit spiking activity by collapsing units into three
dimensions using temporal potential of heat-diffusion for affinity-
based transition embedding (T-PHATE)33. Support vector machines
(SVMs) were trained on these features using 10-fold cross-validation of
the training set (70% randomsplit), and performancewas evaluated on
the testing set (30% random split). Classification models were eval-
uated using the area under the curves (AUC) of the receiver operating
characteristic (ROC) curve and the precision-recall (PR) curve.
Regression models were evaluated using the mean absolute error
(MAE) and the root mean squared error (RMSE). Modeling was per-
formed independently for all strata as defined by sleep recording, unit
response type (positive, negative, other), and microwire region (CLA,
AMY, ACC). Stratawith <5 single unitswere excluded from the analysis.

Spike-phase coupling
The Hilbert transform was used to extract the phase of the 0.3–1.5Hz
frequency band for everymacroelectrode channel. Spike times of single
units during N2 or N3 sleep were then intersected with the nearest
sampled phase, and these phases were pooled for every unit-channel
pair. The set of phases for each unit-channel pair was tested for a sig-
nificant difference from the uniform distribution using a permutation-
based Rayleigh’s test with FDR correction. Briefly, z-statistics were
extracted from Rayleigh’s tests for each unit-channel pair. The same
procedure was applied to surrogate data (n = 1000), which were gen-
eratedby randomly jitteringphase angles by up to a quarterwavelength
in either direction62. The p-value was then defined as the percent of
surrogate z-statistics that were equal to or larger than the original z-
statistic. p-values for all unit-channel pairs underwent FDR correction.
Mean phase angles and mean resultant lengths were extracted for all
unit-channel pairs. This analysis was performed independently for dif-
ferent sleep stages of the data: W/REM, NREM, and high delta power
NREM (DREM). DREM was defined as periods of NREM sleep where the
SWA was at or above the 75th percentile of NREM SWA power.

Dimensionality reduction
The spiking activity of single units was binned into 10-s epochs across
sleep recordings and z-scored. This data was collapsed from an n × t
matrix (where t represents time bins) into an n × 2 matrix using uni-
form manifold approximation and projection (UMAP)31. Correlation
matrices of the Spearman’s ρ values between single-unit activity and
either the SWA or SW presence on macroelectrode channels (after
binning into 10-s epochs) were also reduced from n × c matrices into
n × 2 matrices (where c represents the macroelectrode channels) with
UMAP. Units were clustered using the hierarchical density-based spa-
tial clustering of applications with Noise (HDBSCAN) algorithm for
further analysis (the minimum points per cluster were manually opti-
mized for each sleep recording due to differing numbers of units)32.

Cell type classification
Several established metrics (firing rate, burst index, and trough-to-
peak latency) for inferring cell type were calculated for each single

unit64. Burst index was defined as the number of spikes occurring
within 10ms of each other divided by the total number of spikes.
Trough-to-peak latency was not calculated for positive-spiking
units. Thresholds favoring classification as a pyramidal cell were
firing rate <10 Hz, trough-to-peak latency >0.5ms, and burst index
>0.2. Single units were classified as pyramidal cells if the majority of
criteria favored classification as pyramidal; they were classified as
interneurons if the converse was true. In positive-spiking units
where trough-to-peak latency could not be calculated, single units
with ties in the number of criteria were classified as an unknown cell
type. Full width at half maximum (FWHM) was also computed to
quantify spike width across both positive- and negative-
spiking units.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Thedata generated in this study are freely availablewithout stipulation
or restrictions and can be obtained by request to the corresponding
author via email.

Code availability
The code for this project is available at https://github.com/
damisahlab/sleep_2.
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